
Whole-brain model replicates sleep-like slow-wave dynamics generated by 
stroke lesions

Sebastian Idesis a,*, Gustavo Patow a,b, Michele Allegra c,d, Jakub Vohryzek a,j,  
Yonatan Sanz Perl a,g,h,i, Maria V. Sanchez-Vives k,l, Marcello Massimini m,n,  
Maurizio Corbetta c,e,f, Gustavo Deco a

a Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer 
Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain
b ViRVIG, University of Girona, Girona, Spain
c Padova Neuroscience Center (PNC), University of Padova, via Orus 2/B, 35129 Padova, Italy
d Department of Physics and Astronomy “G. Galilei”, University of Padova, via Marzolo 8, 35131 Padova, Italy
e Department of Neuroscience University of Padova, via Giustiniani 5, 35128 Padova, Italy
f Venetian Institute of Molecular Medicine (VIMM), via Orus 2/B, 35129 Padova, Italy
g Universidad de San Andrés, Buenos Aires, Argentina
h National Scientific and Technical Research Council, Buenos Aires, Argentina
i Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
j Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
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A B S T R A C T

Focal brain injuries, such as stroke, cause local structural damage as well as alteration of neuronal activity in 
distant brain regions. Experimental evidence suggests that one of these changes is the appearance of sleep-like 
slow waves in the otherwise awake individual. This pattern is prominent in areas surrounding the damaged 
region and can extend to connected brain regions in a way consistent with the individual’s specific long-range 
connectivity patterns. In this paper we present a generative whole-brain model based on (f)MRI data that, in 
combination with the disconnection mask associated with a given patient, explains the effects of the sleep-like 
slow waves originated in the vicinity of the lesion area on the distant brain activity. Our model reveals new 
aspects of their interaction, being able to reproduce functional connectivity patterns of stroke patients and of
fering a detailed, causal understanding of how stroke-related effects, in particular slow waves, spread throughout 
the brain. The presented findings demonstrate that the model effectively captures the links between stroke oc
currences, sleep-like slow waves, and their subsequent spread across the human brain.

1. Introduction

The functional consequences resulting from a focal brain lesion, e.g., 
an ischemic stroke, can be attributed both to direct structural damage 
and to indirect changes in the functioning of nearby and interconnected 
brain regions (Corbetta et al., 2015). Moreover, it is believed that focal 
cortical injuries have the potential to disrupt neuronal activity on a 
broader scale, affecting large-scale networks that extend beyond the 

specific area of neuronal loss (Falcon et al., 2016). This phenomenon of 
functional alterations occurring in brain structures not directly affected 
by structural damage is referred to as “diaschisis” (Carrera and Tononi, 
2014; Die Lokalisation im Grosshirn und der Abbau der Funktion durch 
Kortikale Herde, 1914).

Evidence from electrophysiological studies conducted in animal 
models and from non-invasive clinical recordings of individuals with 
stroke and traumatic brain injuries suggests a noticeable slowing of 
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electroencephalographic (EEG) and magnetoencephalographic (MEG) 
rhythms, particularly in regions on the same side as the brain lesion 
(Butz et al., 2004; Nuwer et al., 1987). In addition, recent work using 
direct cortical perturbations with transcranial magnetic stimulation 
(TMS) has proposed the occurrence of slow EEG responses in the per
ilesional area, a phenomenon that is associated with disruptions in local 
information processing (Sarasso et al., 2020). In parallel, intracranial 
recordings showed that in patients undergoing radiofrequency thermo- 
coagulation, the activity in areas adjacent to the lesion during wake
fulness exhibited slow waves that closely resembled those observed 
during baseline non-rapid eye movement (NREM) sleep in the same 
individuals (Russo et al., 2021). Notably, these sleep-like slow waves 
were particularly prominent in the perilesional areas but could also 
spread through a network of connected regions, as predicted by the 
individual’s patterns of long-range effective connectivity (Sarasso et al., 
2020). This distant effect was even empirically observed in several 
contacts located up to 6 cm away from the lesion’s centroid, which 
displayed a notable increase in delta power (Russo et al., 2021).

In a recent review, Massimini and colleagues (Massimini et al., 2024) 
suggest the intriguing possibility that the intrusion of low-frequency 
neuronal activity into anatomically unaffected cortical tissue repre
sents a significant element contributing to functional network disruption 
following brain injuries (Russo et al., 2021). As such, it was proposed 
that the generation of focal sleep-like slow waves and their propagation 
across long distances within the awake brain may constitute a crucial 
electrophysiological aspect of diaschisis and, more broadly, a key factor 
in comprehending the functional consequences of focal and multi-focal 
injuries (Russo et al., 2021).

The concept of a localized slowing of wake EEG activity surrounding 
focal lesions has roots in early recordings of acute stroke patients 
(Nuwer et al., 1987). However, as the use of electrophysiology in stroke 
research gave way to structural and metabolic imaging techniques, our 
understanding of EEG slow rhythms in humans following strokes suf
fered from considerable delays, as reported recently in a review from 
Massimini and colleagues (Massimini et al., 2024). While compelling 
evidence has shown that slow waves appeared as highly synchronic 
discharges, interspersed with silent periods, or off-periods, that interrupt 
processing and causal interactions (Camassa et al., 2022), the relation
ship between localized slow waves occurring after focal brain injuries 
and the electrophysiology of natural sleep slow waves remains unclear 
(Clarkson et al., 2010; Nita et al., 2006). In this line, previous studies 
have looked into the relation of slow waves during wakefulness with 
behavior (Andrillon et al., 2021) and have used novel methods to track 
this sleep-like intrusions in fMRI data (Poudel et al., 2021). On the 
contrary, in a global methodology, whole-brain human models integrate 
structural neuroanatomical data (utilizing diffusion tensor imaging) and 
brain activity data (comprising fMRI, EEG, and MEG). Anatomical 
connectivity, mostly provided through MRI, is represented by the den
sity of axonal fibers according to a specific parcellation scheme. In these 
models, global dynamics emerge from the interactions of local node 
dynamics, coupled through the underlying structural connectivity 
matrix.

Inspired by the discussion presented in a recent article (Massimini 
et al., 2024) in this study, we aim to implement a generative model able 
to predict the effects of lesions on connectivity by using (f)MRI data of 
healthy controls and stroke patients. We employed an approximation of 
local dynamics, that is, a biophysically realistic mean-field model for 
spiking neurons (Deco et al., 2009; Deco and Jirsa, 2012). Although in 
this paper we provide a self-contained overview, the detailed mathe
matical formulation of this biophysical, realistic and dynamical mean- 
field model can be found elsewhere (Deco et al., 2014b). As a first 
step, for this predictive model, the whole-brain model will be calibrated 
using the fMRI functional connectivity (FC) matrices of participants 
from the healthy control group as performed in a previous study (Idesis 
et al., 2024a). Subsequently, to individually generate the FC matrix for 
each stroke patient, their real disconnection patterns were considered, 

simulating a damage to the healthy control model. Finally, we induce 
sleep-like slow waves in the affected local regions by introducing a 
specially tailored low frequency oscillation (Deco et al., 2014a). Simu
lations from our model indicate that perilesional sleep-like slow waves, 
and their spread across the human brain, can contribute to explaining FC 
alterations observed in stroke patients. Future studies may test our 
model’s prediction with EEG recordings in stroke patients.

Leveraging a large-scale (f)MRI database of healthy controls and 
stroke patients, in this study we aim to understand the possible local and 
distal effects of slow-wave activity in stroke patients’ resting state con
nectivity, by implementing a generative model accounting for the 
emergence of slow waves in the perilesional area. Our results show that 
the proposed model effectively captures the relationships between 
lesion areas, sleep-like slow waves, and their spread across the human 
brain. In summary, our generative whole-brain framework provides a 
detailed, causally mechanistic explanation of the relationship between 
stroke damage and its propagation. These results are essential for 
developing strategies for diagnosis, prediction, and, most importantly, 
stimulation-based recovery.

2. Methods

2.1. Overview

We used the Washington University Stroke Cohort dataset consisting 
of three cohorts of stroke-lesioned patients: after 1 or 2 weeks of the 
incident, 3 months and 1 year after onset, followed by a carefully 
tailored preprocessing (see below). Then, each lesion was manually 
segmented on the scans and verified by two board-certified neurologists. 
From this, the lesion volume was obtained from a voxel-wise analysis of 
the structural lesions. Using these volumes, a Lesion Disconnection Mask 
(see “Lesion disconnection masks” section) was built for each patient by 
counting the number of streamlines spared by the lesion. Then, at the 
simulation stage, a Dynamic Mean Field (DMF) using the Feedback In
hibition Control Mechanism was simulated and fed into a BOLD 
computation. This model was first used in the context of a Generative 
Effective Connectivity loop, which used the model to find the effective 
connectivity linking every pair of regions. Once this structural connec
tivity replacement was found, two different models were explored: First, 
a non-slow-wave (non-SWS) predictive model, that simply used the 
DMF model to assess the performance of the lesioned brains and 
compared it to the same model incorporating the slow-wave sleep (SWS) 
signal at the peri-lesion area. Finally, surrogates were computed and 
used to assess the validity of the proposed approach.

Code and sample data are available at: https://github.com/Sebast 
ianIdesis/SWS_Model

2.2. Subjects

We used the Washington University Stroke Cohort dataset (Corbetta 
et al., 2015). Despite being a longitudinal dataset, this study focuses on 
patients experiencing their first-time, single lesion stroke, predomi
nantly ischemic (83%) with a minority being hemorrhagic (17%). Our 
analysis solely concentrated on data collected at the initial time point, 
within 1–2 weeks post stroke (mean = 13.4 days, SD = 4.8 days). 
Additionally, we examined a control group matched for age, consisting 
of 27 healthy individuals, who were assessed twice, three months apart. 
From this cohort, we selected 96 stroke patients (M = 57%, F = 43%) 
and 27 healthy subjects (M = 59%, F = 41%) as performed in previous 
literature (Idesis et al., 2022b, 2023, 2024a). Details of patients’ de
mographic information and lesion location could be found in the orig
inal manuscript (Corbetta et al., 2015). The number of patients and 
controls in the study was fixed based on availability due to similar 
recording length and high data quality. Patients with low data quality 
were discarded as in previous publications (Idesis et al., 2022b, 2023, 
2024a).
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Stroke patients were prospectively recruited from the stroke service 
at Barnes-Jewish Hospital (BJH), with the help of the Washington Uni
versity Cognitive Rehabilitation Research Group (CRRG). The complete 
data collection protocol is described in full detail in a previous publi
cation (Corbetta et al., 2015). Healthy controls were selected based on 
the same inclusion/exclusion criteria as described in the original study 
(Corbetta et al., 2015). This group typically constituted of spouses or 
first-degree relatives of the patients, age- and education-matched to the 
stroke sample. Patients were characterized with a robust neuroimaging 
battery for structural and functional features, and an extensive (~2 h) 
neuropsychological battery.

2.3. Neuroimaging acquisition and preprocessing

As mentioned, we use data from the Washington University Stroke 
Cohort, extensively described in previous articles (Corbetta et al., 2015; 
Idesis et al., 2022a, 2022b; Siegel et al., 2016, 2018). A brief description 
of the data acquisition and preprocessing follows, while a complete 
description of it is explained in detail in a previous publication (Griffis 
et al., 2019).

Neuroimaging data were collected using a Siemens 3 T Tim-Trio 
scanner with a 12-channel head coil. It was obtained sagittal T1- 
weighted MP-RAGE (TR = 1950 msec; TE = 2.26 msec, flip angle =
90 degrees; voxel dimensions = 1.0 × 1.0 × 1.0 mm), and gradient echo 
EPI (TR = 2000 msec; TE = 2 msec; 32 contiguous slices; 4 × 4 mm in- 
plane resolution) resting-state functional MRI scans from each subject. 
Participants were instructed to fixate on a small centrally located white 
fixation cross that was presented against a black background on a screen 
at the back of the magnet bore. Between six and eight resting-state scans 
(128 volumes each) were obtained from each participant (~30 min 
total) giving a total of 768–1024 time points for each participant. The 
vast majority of subjects had 7 scans (896 points).

Resting-state fMRI preprocessing included (i) regression of head 
motion, signal from ventricles and CSF, signal from white matter, global 
signal (ii) temporal filtering retaining frequencies in 0.009–0.08 Hz 
band: and (iii) frame censoring, FD = 0.5 mm. Finally, the resulting time 
series were projected on the cortical and subcortical surface of each 
subject divided into 234 ROIs (200 cortical plus 34 subcortical).

These areas are taken from the multi-resolution functional 
connectivity-based cortical parcellations developed by Schaefer and 
colleagues (Schaefer et al., 2018), including additional subcortical and 
cerebellar parcels from the Automated Anatomical Labeling (AAL) atlas 
(Tzourio-Mazoyer et al., 2002) and a brainstem parcel from the Harvard- 
Oxford Subcortical atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases).

2.4. Stroke deficit assessment

- Lesion volume and severity

Lesion volume was calculated based on the topography of stroke 
using a voxel-wise analysis of structural lesions. Each lesion was 
manually segmented on structural MRI scans and checked by two board- 
certified neurologists. The location (cortico-subcortical, subcortical, 
white-matter) of each individual lesion was assigned with an unsuper
vised K-means clustering algorithm on the percentage of total cortical/ 
subcortical gray and white matter masks overlay. The overlap of each 
lesion group with gray matter, white matter and subcortical nuclei is 
explained in detail in a previous publication (Corbetta et al., 2015). In 
addition to the anatomical lesion volume, the patients’ clinical severity 
was assessed through the National Institutes of Health Stroke Scale 
(NIHSS) (Brott et al., 1989) that includes 15 subtests addressing: level of 
consciousness (LOC), gaze and visual field deficits, facial palsy, upper 
and lower motor deficits, limb ataxia, sensory impairment, inattention, 
dysarthria and language deficits. The total NIHSS score was used as an 
averaged measure of the clinical severity for each patient. The lesion 
volume relation with the NIHSS was assessed, showing a significant 

association (p < .01) (Idesis et al., 2023). The metric of total discon
nection tracks was described in detail in previous literature (Griffis et al., 
2019).

- Lesion disconnection masks

The Lesion Quantification Toolkit (Griffis et al., 2021) produces a 
comprehensive set of atlas-derived lesion measures that include mea
sures of gray matter damage, white matter disconnection, and alter
ations of higher-order brain network topology. Importantly, the 
measures produced by the toolkit are based on population-scale (N =
842) atlases of gray matter parcel boundaries and white matter 
connection trajectories that were constructed from high-quality resting- 
state functional MRI and diffusion MRI data using state-of-the-art 
methods. Healthy controls group-averaged structural connectivity (SC) 
consisted in anatomical connections between the regions of interest and 
was calculated based on the afore-mentioned population-scale atlases.

To compute an individual structural connectivity for each patient, 
we did not directly measure disconnection (e.g., by using diffusion im
aging), but used a model-based approach where the structural connec
tivity loss is inferred based on lesion location. Taking advantage of the 
Lesion Quantification Toolkit (LQT) (Griffis et al., 2021), the structural 
disconnection (SDC) mask consist of an adjacency matrix of spared 
connections where each cell (i,j) quantifies the percentage of stream
lines, among those connecting the pair of regions (i,j), that are spared by 
the lesion, when the latter is superimposed on an the atlas-based 
structural connectome. The multiplication of each SDC mask (model- 
based, derived from the LQT) with the group-averaged SC (Griffis et al., 
2021) provides an atlas-based estimate of structural connectivity links in 
individual patients. The SDC masks were computed embedding the 
lesion in the healthy structural connectivity atlas. Therefore, the mea
sures of structural disconnection were indirectly derived.

Since many stroke lesions occur predominantly in the white matter, 
or include both a gray and white matter component, the SDC mask 
should provide an accurate description of the damage to the con
nectome. Thus, we computed the total amount of disconnection (Griffis 
et al., 2019) as a metric of anatomical impairment to assess the validity 
of the model.

2.5. Whole-brain dynamic mean field model

The Dynamic Mean Field (DMF) model previously introduced (Deco 
et al., 2014b) is a mean-field approximation that uses a set of coupled 
stochastic differential equations to model the dynamics of the activity at 
one or more interacting brain regions. The key idea behind mean-field 
approximations is to reduce a high-dimensional system of randomly 
interacting elements (i.e., neurons) to a system of elements treated as 
independent entities. In this approach, the average activity of a homo
geneous population of neurons is represented by the activity of a single 
unit of this class. In the DMF model, each brain region is modelled as two 
coupled neuronal masses — one excitatory and one inhibitory — and 
considers excitatory and inhibitory synaptic currents mediated by 
NMDA, AMPA (excitatory) and GABA (inhibitory) receptors. Different 
brain regions (usually defined by a given brain parcellation) are coupled 
via their excitatory populations exclusively, according to the structural 
connectivity matrix: 

I(E)i = Iext
i +WEI0 +W+JNMDAS(E)

i + JNMDA

∑

j
CijS(E)

j − JiS(I)
i , (1) 

Ii
(I) = WII0 + JNMDASi

(E) − Si
(I), (2) 

r(E)i = H(E)
(

l(E)i

)
=

aEI(E)i − be

1 − exp
(
− dE

(
aEI(E)i − be

)), (3) 
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r(I)i = H(I)
(

I(I)i

)
=

aII(I)i − bI

1 − exp
(
− dI

(
aII(I)i − bI

)) , (4) 

dS(E)
i (t)
dt

=
S(E)

i

τE
+
(

1 − S(E)
i

)
γr(E)i + συi(t), (5) 

dS(I)
i (t)
dt

=
S(I)

i

τI
+ r(I)i + συi(t), (6) 

This model also includes a self-regulating mechanism from the 
inhibitory population on the excitatory one to keep regional natural 
oscillating frequencies at around 3 Hz, called the Feedback Inhibition 
Control Mechanism (Deco et al., 2014b; Herzog et al., 2022). In this 
study, we base our implementation on a version of the model presented 
in a previous article by Herzog and colleagues (Herzog et al., 2022). It is 
important to clarify that the inspection of low-dimensional features in a 
stroke population has been reported in the previous literature (Idesis 
et al., 2023; Talozzi et al., 2023).

2.6. Simulated BOLD signal

We used the generalized hemodynamic model of Stephan and col
leagues (Stephan et al., 2007) to simulate the regional BOLD signals in 
the model. Global regression was performed in both empirical and 
simulated data. We calculate the BOLD signal in each brain area n from 
the simulated BEI model firing rate of the excitatory pools rn

(E), from Eq. 
3. In this hemodynamic model, an increase in the firing rate causes an 
increase in a vasodilatory signal, sn, that is subject to auto-regulatory 
feedback. Blood inflow fn responds in proportion to this signal, 
inducing changes in blood volume vn and deoxyhemoglobin content qn. 
The set of equations describing the hemodynamic model coupling these 
biophysical variables are: 

dsi(t)
dt

= 0.5zi + 3 − kisi − γi(fi − 1) (7) 

dfi(t)
dt

= si (8) 

τi
dvi(t)

dt
= fi − v1/α

i (9) 

τi
dqi(t)

dt
=

fi

(
1 − (1 − pi)

1/fi
)

pi
−

qiv1/α
i

vi
(10) 

Here, ρ denotes the resting oxygen extraction fraction, τ is a time 
constant and α represents the resistance of the veins. To compute in each 
area n, the BOLD signal, Bn, we calculate a volume-weighted sum of 
extra- and intravascular signals, which comprises a static nonlinear 
function of volume, vn, and deoxyhaemoglobin content, qn, and is 
expressed as follows: 

Bn = V0

[(

k1(1 − qn)+ k2

(

1 − qn/vn

)

+ k3(1 − vn)

]

(11) 

We used the original biophysical parameters (Stephan et al., 2007). 
To focus on the most functionally relevant frequency range in resting- 
state conditions, we applied a bandpass filter to both empirical and 
simulated BOLD signals (0.08 > f > 0.008 Hz) (Biswal et al., 1995; 
Glerean et al., 2012).

2.7. Generative effective connectivity calculation

Generative Effective Connectivity (GEC) is a general framework that, 
in an iterative process, utilizes differences detected at different times in 
the simulated signals between connected pairs of brain regions to infer 
the effective effect one brain region has on the other. The analysis of the 

GEC incorporates an indirect metric (as it is derived from other pre
sented metrics) into the DMF whole-brain model to replace the existing 
descriptive metrics of FC and SC, providing a better fit to empirical data 
than with any previous method. Previous studies have shown how the 
GEC is a fundamental tool for understanding the propagation of infor
mation in structural networks (Gilson et al., 2016; Jobst et al., 2017). 
Methods for estimating GEC are explained in detail in a previous pub
lication (Kringelbach et al., 2023). Here we provide a summary.

We computed the distance between the output of our model (i.e., the 
DMF) and the empirical grand average phase coherence matrices (as a 
measure of synchronization of the system) of the empirical BOLD signals 
from the healthy controls group. For the stroke patients’ group, in an 
iterative procedure, we adjusted each structural connection separately 
(i.e., individually) using a greedy version of the gradient-descent 
approach. To work only with positive values for the algorithm, all 
values were transformed into a mutual information measure (assuming a 
Gaussian distribution). Also, the individual subject information is 
introduced by means of its disconnection mask, computing the group 
average SC in combination with each subject’s SDC, derived from the 
Lesion Quantification Toolkit, as described above. The SC matrix was 
normalized to be comparable across subjects. We then fit the connec
tivity matrix C such that the model optimally reproduces the empirically 
measured covariances FCempirical (i.e., the normalized covariance matrix 
of the functional neuroimaging data) and the empirical time-shifted 
covariances FSempirical(τ) where τ is the time lag. The FCempirical are 
normalized for each pair of regions j and k, using the shifted covariance 

matrix, by 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

KSempirical
jk (0)KSempirical

jk (0)
√

. These computations are itera
tively repeated for each C, update until the fit is fully optimized. At each 
step, the anatomical connectivity matrix C is updated (For more infor
mation, see (Deco et al., 2023)) as: 

Cjk = Cjk + ε
(

FCemp
jk − FCmod

jk

)
+ έ

(
FSemp

jk (τ) − FSmod
jk (τ)

)
. (12) 

As we can see, C is updated with the difference between the grand- 
averaged phase coherence matrices (Empirical: FCemp

jk and model: 
FCmod

jk ) and the difference between the time-shifted covariance matrices, 
both scaled by factor ε = 0.005 and έ  = 0.001. Here, FSmod

jk (τ) is defined 
similarly to FSemp

jk (τ). After this process, C is considered as a GEC matrix. 
As we see, the prediction, therefore, is based on the current estimation of 
the structural connectivity, which gets updated optimizing the phase FC 
in each iteration. The model was run repeatedly with iterative updates of 
GEC until convergence was reached. The distinction between functional 
and effective connectivity is crucial here: FC is defined as the statistical 
dependence between the neurophysiological activity of brain regions, 
whereas GEC is defined as the influence one neural system exerts over 
another, thus providing directionality in the relations and making the 
matrices asymmetrical (Friston, 2011; Friston et al., 2003).

2.8. Models

- “Non-Slow-wave Sleep (non-SWS)” Predictive model

We calculated a predictive model to capture the dynamical effects of 
stroke lesions between one and two weeks after onset. First, we 
computed the GEC, as described before, on the same group. Next, for 
each stroke patient, we added the information of the individual SDC 
masks to the existing GEC to simulate fMRI BOLD data of the corre
sponding patient. As a result, the simulated time series (referred to as 
“Predictive model”) contains structural information of the patient. It is 
important to remark that this procedure does not use the functional 
information of the patients, thus making it a predictive model, in 
contrast to the previously discussed non-predictive models (Idesis et al., 
2024a).
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- “Slow-wave sleep (SWS)” model

As reported in the previous section, the GEC of the healthy control 
group was calculated first, and then the SDC mask of each patient was 
added to the existing structural template to obtain the final SC for each 
stroke patient. The main difference with the previously described non- 
SWS model is the addition of a sine wave as an intrinsic oscillation 
before transforming the simulated excitatory firing rate into the simu
lated BOLD signal in the nodes embedded in the perilesional area. This is 
done by adding an extra intrinsic sinus-shaped oscillation at the excit
atory current in Eq. 1 for perilesional areas surrounding the lesion 
nodes. The size of the perilesional areas was set to 1 cm (Euclidean 
distance) around the lesioned areas, based on previous works (Russo 
et al., 2021; Sarasso et al., 2020). Extended perilesional sizes were also 
contemplated to probe their effect in the model (Fig. 2d). To find the 
optimal parameters for each subject, we performed an exploration of the 
possible oscillatory waves (Amplitudes: 0.01,0.05,0.1,0.25; Fre
quencies: 1, 2, 3, 4). We used as the optimal point for each patient the 
combination in which the difference with the non-SWS was highest.

- Surrogate models

To assess the validity of our results, we compared the performance of 

the SWS model with three different surrogate models. The first con
tained the correct lesion information but the parameters of the slow 
wave oscillations were randomly replaced from another subject. The 
second contained the correct addition of the delta oscillations but the 
lesion mask of a different subject. Lastly, the third contained both the 
lesion and the SW signal, from a different patient instead of the corre
sponding one. The performance comparison between the original model 
and the surrogate ones is observed in Fig. 3a.

3. Results

To infer the dynamical effects of stroke lesions two weeks after onset, 
we used an averaged structural matrix from the healthy control group 
(Fig. 1a, left) as input for a computational model based on biophysically 
grounded assumptions, referred as “Dynamic mean Field” model 
(Fig. 1a, center). The accuracy of the model in healthy controls is 
depicted in Supp Fig. 1. We used this model to compute as output, be
sides the simulated BOLD signal, the Generative Effective Connectivity 
(GEC), which captures directional interactions between regions by 
comparing at different times in the simulated signals the regions’ con
nections (Fig. 1a, right). In the current study, we used only the func
tional data of the healthy control dataset (n = 27) to optimize the GEC 
parameters at the group level. By initializing the GEC to be equal to the 

Fig. 1. Pipeline for the SWS whole-brain model: (A) Overview of the Generative Effective Connectivity (GEC) calculation: We considered 200 cortical regions from 
the Schaefer parcellation, and 34 subcortical and cerebellar regions from the AAL and Harvard-Oxford atlas. In the schematic brain, circles are brain regions and 
connections between brain regions are colored according to their connection weight. The local dynamics of each brain region are simulated by recurrently connected 
pools of excitatory (E, red circle) and inhibitory (I, blue circle) neuronal populations. In turn, brain regions are connected among themselves through the E pools, 
such that the excitatory inputs from other regions are weighted according to their respective connection weight. The connection from the I pool to the E one - Jn, the 
local inhibitory feedback - compensates for the excess of excitatory activity injected from other regions to keep each region’s activity at a frequency of approximately 
3 Hz. The simulated firing rate of each excitatory pool is used to generate BOLD-like signals for each brain region using the Balloon-Windkessel model. Healthy 
control GEC was calculated by using the healthy average SC as template with each healthy control fMRI time series. The model was optimized using the previously 
mentioned whole-brain model to create an average GEC for the healthy controls which provides asymmetrical structural information. (B) The non-SWS whole-brain 
predictive model uses each patient’s disconnection mask to modify the control GEC and obtain the patient’s simulated FC. (C) The SWS whole-brain model adds to 
the nodes within the perilesional region a delta oscillation in their corresponding simulated local excitatory firing rate, to replicate the after-stroke effects more 
accurately. (D) The model performance was compared between the non-SWS and SWS models to assess the influence of the addition of the slow wave oscillations in 
the model. The results show a significant enhancement of the model performance once the delta waves are added to the corresponding nodes (p < .001). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Structural Connectivity (SC), we iteratively adjusted its values to get an 
effective connectivity that maximizes the similarity between the model 
and empirical FC at a (healthy) group level.

We then superimposed the structural disconnection mask of each 
individual patient to the healthy group GEC to simulate the structural 
damage caused by stroke, creating a predictive model that generated a 
simulated version of each patient’s FC matrix (Fig. 1b, left). Therefore, 
in contrast to most previously reported models, this predictive model 
simulates a patient’s FC matrix using only the functional data of healthy 
control subjects; plus the structural disconnection (SDC) mask. We 
labelled this model as non-SWS whole-brain model, to differentiate it 
from the next model, where slow waves are included. This model was 

compared with two different surrogates (including a disconnection mask 
from a different patient or without any mask) to assess its validity (Supp 
Fig. 2). Finally, we developed the Slow-Wave Sleep (SWS) whole-brain 
model, where the nodes in the assumed peri-lesional area had a slow- 
wave oscillation incorporated in the nodal dynamics (Fig. 1c). The 
outcome of this last model allows us to assess the influence of the per
ilesional regional dynamics in the after-stroke effects. Model perfor
mance was assessed through Pearson’s correlation between the (upper 
triangular part of) the simulated and experimental FC matrices. The 
comparison of the model performance with and without the inclusion of 
the slow-wave oscillations is depicted in Fig. 1d showing a significantly 
better performance of the SWS model (t(95) = 17.86, p < .001). An 

Fig. 2. SWS model accuracy and propagation effects: (A) Correlation between each empirical node and the corresponding simulation was assessed to explore which 
model shows a higher accuracy for that node (with or without slow-wave oscillation inclusion). (B) We inspected which nodes displayed a higher accuracy in the 
SWS model than in the non-SWS model (without added oscillations). Renders display at each ROI which model was more accurate. At a group level, the SWS showed 
a significantly higher accuracy in both peri-lesional (left render) and remote nodes (right render). (C) The accuracy of the remote nodes was disentangled between the 
nodes directly and indirectly connected to the peri-lesional nodes showing a significant increase in both cases when including the slow oscillations in the model (D) 
The relation between the accuracy of the model and the distance to the lesion was inspected showing significantly higher accuracy of the SWS model in the peri- 
lesional nodes. At the subject level, we found a negative trend where the highest accuracy corresponds to the nodes closer to the damaged area.
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example of the dependency of the SWS model performance on the SWS 
parameters (Frequency and amplitude of the oscillation) is shown in 
Supp Fig. 3a. In the case of several positive alternatives, the combina
tion of parameters with the highest difference was selected. Although 
the optimal parameters are patient-specific, most of the patients had 
their optimal values in the amplitude 0.01 and the frequencies 3 and 4 
(Supp Fig. 3b). The influence of the oscillation phase in the model was 
assessed showing no significant impact (Supp Fig. 5).

3.1. Propagation effects

Next, we inspected if the addition of slow-wave oscillations affected 
only the manipulated nodes or if the effects could be observed 
throughout the brain. With that goal in mind, we compared the behavior 

of each empirical node with both models (SWS and non-SWS), testing 
whether the addition of slow oscillations increased or reduced the ac
curacy of the model for that specific region (Fig. 2a). We defined an 
accuracy for each node as the Pearson correlation between the node’s 
simulated and empirical FC values (corresponding rows of the simulated 
and empirical FC matrix) and we compared the accuracy of the nodes 
corresponding for both peri-lesional and remote nodes. To achieve this 
goal, we inspected how many nodes were more accurately described by 
the SWS model in comparison to the non-SWS model (Fig. 2b, left and 
right extremes). The comparison showed that the SWS model has a 
higher performance both in the peri-lesional nodes ((t(89) = 20.69, p <
.001), Fig. 2b, center-left) and, quite remarkably, in the remote nodes ((t 
(89) = 49.44, p < .001), Fig. 2b, center-right).

In addition, we compared the performance in the model by assessing 
the accuracy of the directly connected and indirectly connected nodes to 
the perilesional region. The comparison showed a significant difference 
between the SWS and non-SWS model in both directly connected ((t 
(87) = 14.5, p < .001), and indirectly connected nodes ((t(87) = 15.45, 
p < .001) (Fig. 2c).

Lastly, we calculated the relation between the model accuracy and 
the distance of the nodes to the lesion (Fig. 2d). We found a significantly 
improved performance of the SWS model in the peri-lesional nodes 
compared to the remote nodes (t(89) = 12.53, p < .001). Furthermore, at 
the subject level, there was a negative relation between the variables, 
where the nodes closer to the damaged area showed a higher accuracy.

In summary, the addition of slow-wave oscillations to the model 
caused a clear effect in the simulated brain activity, spreading across 
many regions including those distant from the lesion. Furthermore, the 
relation of accuracy with the distance from the lesion allows the com
parison of these results with previously reported ones (Russo et al., 
2021; Sarasso et al., 2020). The presented model, based on this, can 
replicate the after-stroke effects not only in the peri-lesional region 
(where the manipulation was performed) but, more importantly, 
throughout the whole brain.

3.2. Model validity

We aimed to assess the influence of each feature on the model by 
modifying the two principal inputs (lesion mask and slow-wave oscil
lations). With this goal, we compared the validity of the SWS against 
null models where the mask and the added slow waves were manipu
lated (Fig. 3a). We found a significant difference in accuracy between 
the models (F(3,180) = 7.35, p < .001) where the original SWS showed 
the highest accuracy (significantly higher than the other three models, p 
< .001), followed by the model with correct mask, the model with the 
correct delta oscillations and finally the model with both parameters 
shuffled. There was also observed a significant difference between the 
second model (correct mask and surrogate delta) and the fourth model 
(surrogate mask and surrogate delta) (p < .001), while there was no 
significance in the remaining comparisons.

Lastly, we tested the influence of the distance criterion used to define 
the perilesional area affected by SWS in the model (1, 2 and 3 cm). We 
observed a significant difference between the non-SWS and the SWS 
model (p < .001) while no significant difference between the distinct 
peri-lesional sizes (p > .9) (Fig. 3b), showing that the original assump
tion of a 1 cm padding suffices to characterize the perilesional area. An 
extended version is displayed in Supp. Fig. 4 where the last model is 
compared to a model where both the surrogate mask and the surrogate 
slow oscillations are obtained from the same patient, showing similar 
results. Also, the lack of significant differences between the three size 
shows the strong influence of the slow-wave oscillations of the peri- 
lesioned nodes on their surroundings.

In summary, we observed that the accuracy of the model critically 
depends on including the specific patient’s disconnection mask (not just 
a generic disconnection) and adding slow-save oscillations in the per
ilesional area (and not just a random area), while the performance 

Fig. 3. Model validity among conditions and model accuracy dependency on 
the perilesional area size: (A) Accuracy of the models when using the subject 
mask and stimulated nodes correctly or shuffled. The highest accuracy was 
observed when the lesion and the manipulated nodes were correctly corre
sponding to the subject. (B) We assessed the influence of the perilesional size by 
running the model with different diameters for this region (1, 2 and 3 cm). By 
comparing the different parameters, we observed a significant difference be
tween the non-SWS and the SWS model (p < .001) while no significant dif
ference between the distinct peri-lesional sizes.
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enhancement due to the addition of slow-wave oscillations in the per
ilesional nodes can be achieved with a relatively strict definition of the 
perilesional area (1 cm from the lesion).

4. Discussion

In this study, we compared measured the effect of a putative 
neurophysiological marker of disconnection, i.e., delta wave activity 
near the lesion, on the accuracy of different whole-brain models in 
predicting the FC patterns of stroke patients. Both the pattern of struc
tural disconnection inferred from a healthy atlas of white matter con
nections and the presence of perilesional delta wave activity improved 
the fit of the functional connectivity of the model with the empirically 
functional connectivity in the same patients. This result shows for the 
first time in-silico that perilesional delta wave activity contributes to the 
abnormal functional connectivity caused by focal stroke lesions, not 
only near the lesion, but also at a distance in connected regions.

We first fitted the model to data from age- and education-matched 
healthy controls based on a healthy structural connectome and the 
healthy controls subjects functional imaging data. Then, we modified the 
healthy model to make it specific to the patient. As in previous literature 
(Griffis et al., 2019; Idesis et al., 2022b), we obtained a disconnection 
mask by overlapping the patient’s segmented lesion with a streamline 
tractography atlas, determining the proportion of streamlines between 
each pair of regions that are interrupted by the lesion. This atlas-based 
procedure does not require patient-specific tracking of structural con
nections, but only the segmentation of the lesion that can be obtained 
through clinical scans. It could be validated with direct measures of SC 
disconnection based on diffusion imaging. For each patient, we then 
determined how the patient’s lesion modified the healthy structural 
connectome and made corresponding changes to the structural connec
tivity parameters in the healthy model (the GEC parameters) without 
additional model fitting and without using the patient’s functional data. 
We thus, generated patient-specific predicted FC, which was compared 
against the empirically measured FC. Specifically, model accuracy was 
evaluated by assessing the correlation between the patient’s empirical 
and predicted FC matrices. Because FC matrices specify the functional 
interactions between each pair of brain regions, the predicted matrices 
potentially provide information concerning which functional connections 
are particularly affected by lesions in the patient (non-SWS model). 
Lastly, by incorporating slow-wave oscillations in the peri-lesional nodes, 
we managed to enhance the efficiency of the model to create a more 
accurate representation of the lesion consequences (SWS model).

The findings indicate that a comprehensive brain computational 
model can accurately predict functional connectivity in patients solely 
based on the structural disconnections resulting from their brain lesions 
and the group-level healthy connectome. This suggests that this bio
physical model, to some extent, mechanistically captures the link be
tween anatomical structure and functional activity. Additionally, 
incorporating slow-wave oscillations in nodes near the lesion improved 
the model’s performance in predicting the observed fMRI connectivity. 
This agrees with recent literature finding SWS activity in the perilesional 
area (Russo et al., 2021; Sarasso et al., 2020). This research strongly 
suggests that slow-wave activity arising in the perilesional area in
fluences distal areas, with an effect on functional interactions (connec
tivity) onto regions connected to the lesion.

There are two possible explanations for these remote effects of delta 
waves. First, distal areas are disconnected anatomically from/to the 
lesion either through callosal connections or long-range intrahemi
spheric connections. Another possible intra-hemispheric disconnection 
can involve subcortical regions of the thalamus or basal ganglia. This 
disconnection can lead to the generation in remote areas of local slow 
wave activity. As discussed previously (Sanchez-Vives et al., 2017; 
Sarasso et al., 2020) slow wave activity emerges spontaneously when 
tissue is disconnected from other inputs suggesting that slow waves 
represent a “default’ functional state of cortex controlled by intrinsic 

mechanisms of excitability (up/down states).
Second, abnormal delta wave activity can propagate to distant sites 

through a dynamic phenomenon of attraction. Specifically, a strong 
source of activity (oscillatory or not) in the perilesional cortex can cause 
“dynamic” attraction of connected regions. This result is supported by 
the gradual modulation of slow waves going from perilesional to directly 
vs. indirectly disconnected regions. Indirectly disconnected regions, two 
or more synapses away from the lesion, plausibly would show a mod
ulation mainly through dynamic attraction.

These findings and the effects of slow-waves on resting state func
tional networks shall be tested empirically by measuring both fMRI and 
EEG connectivity in the same stroke patients.

Furthermore, this study offers a fresh perspective on the dynamical 
consequences of brain injuries. Drawing inspiration from previous 
research demonstrating EEG slowing in perilesional areas (Butz et al., 
2004; Russo et al., 2021; Sarasso et al., 2020), we establish a direct 
connection between the electrophysiological patterns seen in local sleep, 
extensively documented in the sleep literature, and the pathophysiology 
of focal brain injuries and strokes (Sarasso et al., 2020). Literature is rich 
in reports on how stroke affects the power of different EEG frequency 
bands (Finnigan et al., 2016; Finnigan and van Putten, 2013). Recent 
findings (Sarasso et al., 2020), using TMS-EEG, showed clear differences 
in TMS-evoked oscillatory activity between cortical and non-cortical 
lesions. Regarding the lesion localization, previous literature reports 
clear spectral changes in middle cerebral artery cortical strokes 
(Fanciullacci et al., 2017), while similar evidence is less consistent for 
subcortical, lacunar and posterior circulation strokes (Macdonell, 1988).

By connecting the notion of local sleep to the pathophysiology of 
focal brain injury and stroke, perilesional off-periods may represent a 
valid clinical indicator of the state of discrete cortical circuits following 
brain injury as well as a potential target for the development of novel 
therapeutic interventions and physical rehabilitation aimed at fostering 
functional recovery (Sarasso et al., 2020). Various factors may explain 
this perilesional effect as explained extensively in a recent review from 
Massimini and colleagues (Massimini et al., 2024). First, local edema, as 
observed in animal models (Russo et al., 2021). Second, the expression 
of slow waves in the perilesional regions may reflect lack of input from 
ascending activating systems due to damage of white matter fibers 
(Russo et al., 2021). The disconnection of cortical regions often results in 
the expression of slow waves as a default activity pattern of the cortical 
circuits (Sanchez-Vives, 2015; Sanchez-Vives et al., 2017). One inter
esting possibility is that slow waves might be protective and beneficial in 
the acute recovery phase (decreasing the energy consumption near the 
damage region) and then become detrimental if they persist indefinitely 
into the chronic phase. While the current study explains the local and 
long-range effects of this phenomenon on functional connectivity, the 
origin of this slow-wave dynamic is out of the current scope.

In this context, the presence of lesions involving both white and gray 
matter in patients seems to be particularly suited in producing EEG slow 
waves and off-periods in response to a direct cortical perturbation. 
Although the precise assessment of the effects of lesion size and location 
is beyond the scope of the present work, the inclusion of a larger sample 
of patients affected by cortico-subcortical lesion with different volumes 
and locations (Tscherpel et al., 2020) represents an interesting venue for 
future studies. At the same time, performing multiple, controlled stim
ulations while systematically increasing the distance with respect to the 
lesion boundaries will also allow assessing the precise spatial extent of 
perilesional areas (Sarasso et al., 2020), allowing us to better constrain 
the SWS model. Furthermore, it would be relevant to develop predictive 
whole-brain computer models of individual patients with stroke to 
simulate different personalized stimulation protocols with the goal of 
normalizing abnormal local and global dynamics (Perl et al., 2023). In 
particular, one could test whether the suppression or enhancement of 
slow waves, achieved by means of appropriate stimulation, would shift 
the patient’s resting state dynamics closer or farther from normal ac
tivity, and use this information to assist recovery treatment.
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In conclusion, the information obtained from these models could be 
used for optimizing treatment protocols combining stimulation with 
behavioral training, adding the potential to influence the progression of 
stroke rehabilitation by modulating slow waves during specific time 
intervals.

4.1. Limitations

The primary objective of this study was to shed light on the 
connection between sleep-like slow oscillations in perilesional areas and 
the consequences of strokes. However, it remains unclear how the slow 
oscillations change as patients recover. Subsequent research endeavors 
could leverage this longitudinal dataset to explore and answer these 
specific questions. Additionally, it’s worth noting that the dataset pre
dominantly comprises ischemic stroke patients, and it would be prudent 
to replicate these findings in hemorrhagic stroke cases before extending 
the conclusions to encompass all stroke patients.

At this point it is important to mention that the original studies by 
Russo and coworkers (Russo et al., 2021) used a different imaging 
technology (sEEG) than the one we use here (fMRI), observing important 
sleep-like activity in frequencies below 4 Hz. Although fMRI is far from 
linear in its responses to neural activity (Robinson et al., 2006), the 
frequencies reported in this work (1–4 Hz) also present important dis
crepancies in perilesional activity with respect to healthy areas, thus 
rendering valid the current analysis. Furthermore, the presented he
modynamic model (BW) is merely one approach to link the oscillatory 
signal to fMRI data. Further studies containing longer electrophysio
logical data (Idesis et al., 2024b), or even both modality formats could 
explore the robustness of the model.

5. Conclusion

In conclusion, the addition of slow-wave oscillations in the perile
sional region enhanced the accuracy of the model replicating with 
higher precision the consequences of stroke on functional connectivity, 
both in the affected area and in distant areas at the whole-brain level. 
This model can provide unique insights into how strokes disrupt resting 
brain organization and the propagation of the corresponding effects 
across the brain, opening many venues for treatment and more efficient 
recoveries. Through generative whole-brain models, linking the 
engagement of cortical sleep-like dynamics to focal brain injury provides 
a plausible biophysical mechanistic explanation for diaschisis effects in 
the resting state connectivity of stroke patients. Furthermore, the 
availability of a computational model, allowing for controlled analysis 
of the local and distal effects of SWS, may open new clinical possibilities, 
such as positively affecting stroke rehabilitation by dampening or 
enhancing slow waves in specific time windows.

Funding

S⋅I is supported by the project NEurological MEchanismS of Injury, 
and Sleep-like cellular dynamics (NEMESIS) (ref. 101071900) funded by 
the EU ERC Synergy Horizon Europe. G.P. is supported by Grant PID2021- 
122136OB-C22 funded by MCIN/AEI/ 10.13039/501100011033 and by 
ERDF A way of making Europe. G.D. is supported by 10.130 
39/50110001103310.13039/501100011033Grant PID2022-136216NB- 
I00 funded by MICIU/AEI/10.13039/501100011033 and by "ERDF A 
way of making Europe",  "ERDF, EU". MVSV is supported by PID2020- 
112947RB-I00 AEI /10.13039/501100011033, funded by the Spanish 
Ministry of Science, Innovation and Universities (MCIU). MC is supported 
by Fondazione Cassa di Risparmio di Padova e Rovigo (CARIPARO)(GA 
number 55403); Ministry of Health Italy: NEUROCONN (RF-2008 
-12366899); H2020 European School of Network Neuroscience- euSNN, 
H2020-SC5–2019-2, (Grant Agreement number 869505); Ministry of 
Health Italy: EYEMOVINSTROKE (RF-2019-12369300);

CRediT authorship contribution statement

Sebastian Idesis: Visualization, Methodology, Formal analysis, 
Conceptualization, Writing – review & editing, Writing – original draft. 
Michele Allegra: Methodology, Formal analysis, Writing – review & 
editing. Jakub Vohryzek: Visualization, Methodology, Writing – review 
& editing. Yonatan Sanz Perl: Methodology, Formal analysis, Writing – 
review & editing. Maria V. Sanchez-Vives: Writing – review & editing. 
Marcello Massimini: Writing – review & editing. Maurizio Corbetta: 
Conceptualization, Writing – review & editing. Gustavo Deco: 
Conceptualization, Writing – review & editing, Writing – original draft.

Declaration of competing interest

Marcello Massimini is co-founder of Intrinsic Powers, a spin-off of the 
University of Milan.

Data availability

Data will be made available on request.

Acknowledgments

We thank Melina Timplalexi for assisting with the figures.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nbd.2024.106613.

References

Andrillon, T., Burns, A., Mackay, T., Windt, J., Tsuchiya, N., 2021. Predicting lapses of 
attention with sleep-like slow waves. Nat. Commun. 12 https://doi.org/10.1038/ 
s41467-021-23890-7, 3657–3657. 

Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity 
in the motor cortex of resting human brain using echo-planar mri. Magn. Reson. 
Med. 34, 537–541. https://doi.org/10.1002/mrm.1910340409.

Brott, T., Adams, H.P., Olinger, C.P., Marler, J.R., Barsan, W.G., Biller, J., Spilker, J., 
Holleran, R., Eberle, R., Hertzberg, V., 1989. Measurements of acute cerebral 
infarction: a clinical examination scale. Stroke 20, 864–870. https://doi.org/ 
10.1161/01.str.20.7.864.

Butz, M., Gross, J., Timmermann, L., Moll, M., Freund, H.-J., Witte, O.W., Schnitzler, A., 
2004. Perilesional pathological oscillatory activity in the magnetoencephalogram of 
patients with cortical brain lesions. Neurosci. Lett. 355, 93–96. https://doi.org/ 
10.1016/j.neulet.2003.10.065.

Camassa, A., Galluzzi, A., Mattia, M., Sanchez-Vives, M.V., 2022. Deterministic and 
stochastic components of cortical down states: dynamics and modulation. 
J. Neurosci. 42, 9387–9400. https://doi.org/10.1523/JNEUROSCI.0914-22.2022.

Carrera, E., Tononi, G., 2014. Diaschisis: past, present, future. Brain 137, 2408–2422. 
https://doi.org/10.1093/brain/awu101.

Clarkson, A.N., Huang, B.S., Macisaac, S.E., Mody, I., Carmichael, S.T., 2010. Reducing 
excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. 
Nature 468, 305–309. https://doi.org/10.1038/nature09511.

Corbetta, M., Ramsey, L., Callejas, A., Baldassarre, A., Hacker, C.D., Siegel, J.S., 
Astafiev, S.V., Rengachary, J., Zinn, K., Lang, C.E., Connor, L.T., Fucetola, R., 
Strube, M., Carter, A.R., Shulman, G.L., 2015. Common behavioral clusters and 
subcortical anatomy in stroke. Neuron 85, 927–941. https://doi.org/10.1016/j. 
neuron.2015.02.027.

Deco, G., Jirsa, V.K., 2012. Ongoing cortical activity at rest: criticality, multistability, 
and ghost attractors. J. Neurosci. 32, 3366–3375. https://doi.org/10.1523/ 
JNEUROSCI.2523-11.2012.

Deco, G., Jirsa, V., McIntosh, A.R., Sporns, O., Kötter, R., 2009. Key role of coupling, 
delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. USA 106, 
10302–10307. https://doi.org/10.1073/pnas.0901831106.

Deco, G., Hagmann, P., Hudetz, A.G., Tononi, G., 2014a. Modeling resting-state 
functional networks when the cortex falls asleep: local and global changes. Cereb. 
Cortex 24, 3180–3194. https://doi.org/10.1093/cercor/bht176.

Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G.L., Mantini, D., Corbetta, M., 
2014b. How local excitation-inhibition ratio impacts the whole brain dynamics. 
J. Neurosci. 34, 7886–7898. https://doi.org/10.1523/JNEUROSCI.5068-13.2014.

Deco, G., Lynn, C.W., Sanz Perl, Y., Kringelbach, M.L., 2023. Violations of the 
fluctuation-dissipation theorem reveal distinct nonequilibrium dynamics of brain 
states. Phys. Rev. E 108. https://doi.org/10.1103/physreve.108.064410.

S. Idesis et al.                                                                                                                                                                                                                                    Neurobiology of Disease 200 (2024) 106613 

9 

https://doi.org/10.13039/501100011033
https://doi.org/10.13039/501100011033
https://doi.org/10.13039/501100011033
https://doi.org/10.13039/501100011033
https://doi.org/10.1016/j.nbd.2024.106613
https://doi.org/10.1016/j.nbd.2024.106613
https://doi.org/10.1038/s41467-021-23890-7
https://doi.org/10.1038/s41467-021-23890-7
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1161/01.str.20.7.864
https://doi.org/10.1161/01.str.20.7.864
https://doi.org/10.1016/j.neulet.2003.10.065
https://doi.org/10.1016/j.neulet.2003.10.065
https://doi.org/10.1523/JNEUROSCI.0914-22.2022
https://doi.org/10.1093/brain/awu101
https://doi.org/10.1038/nature09511
https://doi.org/10.1016/j.neuron.2015.02.027
https://doi.org/10.1016/j.neuron.2015.02.027
https://doi.org/10.1523/JNEUROSCI.2523-11.2012
https://doi.org/10.1523/JNEUROSCI.2523-11.2012
https://doi.org/10.1073/pnas.0901831106
https://doi.org/10.1093/cercor/bht176
https://doi.org/10.1523/JNEUROSCI.5068-13.2014
https://doi.org/10.1103/physreve.108.064410


Die Lokalisation im Grosshirn und der Abbau der Funktion durch Kortikale Herde, 1914. 
J. Am. Med. Assoc. LXIII 797. https://doi.org/10.1001/ 
jama.1914.02570090083033.

Falcon, M.I., Riley, J.D., Jirsa, V., McIntosh, A.R., Chen, E.E., Solodkin, A., 2016. 
Functional mechanisms of recovery after chronic stroke: modeling with the virtual. 
Brain eNeuro 3. https://doi.org/10.1523/ENEURO.0158-15.2016. ENEURO.0158- 
15.2016. 

Fanciullacci, C., Bertolucci, F., Lamola, G., Panarese, A., Artoni, F., Micera, S., Rossi, B., 
Chisari, C., 2017. Delta power is higher and more symmetrical in ischemic stroke 
patients with cortical involvement. Front. Hum. Neurosci. 11 https://doi.org/ 
10.3389/fnhum.2017.00385, 385–385. 

Finnigan, S., van Putten, M.J.A.M., 2013. EEG in ischaemic stroke: quantitative EEG can 
uniquely inform (sub-)acute prognoses and clinical management. Clin. 
Neurophysiol. 124, 10–19. https://doi.org/10.1016/j.clinph.2012.07.003.

Finnigan, S., Wong, A., Read, S., 2016. Defining abnormal slow EEG activity in acute 
ischaemic stroke: Delta/alpha ratio as an optimal QEEG index. Clin. Neurophysiol. 
127, 1452–1459. https://doi.org/10.1016/j.clinph.2015.07.014.

Friston, K.J., 2011. Functional and effective connectivity: a review. Brain Connect. 1, 
13–36. https://doi.org/10.1089/brain.2011.0008.

Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. NeuroImage 19, 
1273–1302. https://doi.org/10.1016/s1053-8119(03)00202-7.

Gilson, M., Moreno-Bote, R., Ponce-Alvarez, A., Ritter, P., Deco, G., 2016. Estimation of 
directed effective connectivity from fMRI functional connectivity hints at 
asymmetries of cortical connectome. PLoS Comput. Biol. 12 https://doi.org/ 
10.1371/journal.pcbi.1004762 e1004762–e1004762. 

Glerean, E., Salmi, J., Lahnakoski, J.M., Jääskeläinen, I.P., Sams, M., 2012. Functional 
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