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Abstract

Understanding how neural populations interact is crucial to understand brain function.
Most common approaches to infer neural interactions are based on Granger causality
(GC) analyses and effective connectivity (EC) models of neural time series. However,
an in-depth investigation of the similarity and complementarity of these approaches
is currently lacking. GC and EC are classically thought to provide complementary
information about the interdependence between neural signals. Whereas GC quantifies
the amount of predictability between time series and it is interpreted as a measure
of information flow, EC quantifies the amount and sign of the interaction, and it is
often interpreted as the causal influence that a neural unit exert over another. Here,
we show that, in the context of functional magnetic resonance imaging (fMRI) data
analysis and first-order autoregressive models, GC and EC share common assumptions
and are mathematically related. More precisely, by defining a ‘corrected’ version of GC
accounting for unequal noise variances affecting the source and target node, we show
that the two measures are linked by an approximately quadratic relation, where positive
or negative values of EC are associated with identical values of GC. While the relation
is obtained in limit of infinite sampling time, we use simulations to show that it can be
observed in finite data samples as classically observed in neuroimaging studies, provided
sufficiently long sampling, multiple sessions or group averaging. Finally, we compare the
GC and EC analyses on fMRI data from the Human Connectome Project, and obtain
results consistent with simulation outcomes. While GC and EC analyses do not provide
reliable estimates at the single subject or single connection level, they become stable
at the group level (more than approximately 20 subjects), where the predicted relation
between GC and EC can be clearly observed from the data. To conclude, our study
provides a common mathematical framework to make grounded methodological choices
in the reconstruction and analysis of directed brain networks from neuroimaging time
series.

Introduction 1

The study of large-scale brain networks [1, 2] strongly relies on the analysis of functional 2

magnetic resonance imaging (fMRI) data. The standard approach for reconstructing 3

brain networks from ongoing fMRI activity [3], especially spontaneous activity at rest (rs- 4

fMRI), is based on undirected functional connectivity (UFC), often defined as correlation 5
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of the blood-oxygen-level-dependent (BOLD) signals of two brain areas. Despite its 6

simplicity, UFC has yielded an extremely rich insight into the large-scale organization of 7

spontaneous activity in health and pathology, the relations with the underlying anatomy, 8

and neural signatures of individual behavioral traits [4–10]. 9

While UFC-based methods are statistically reliable and give reproducible findings [11], 10

they do not provide information about the directionality or asymmetry of interaction 11

between brain areas (i.e., UFC is a symmetric measure) and they are sensitive to third- 12

party effects. These limitations have prompted the development of methods that make 13

use of the temporal structure of BOLD signals to characterize direct (non-mediated) 14

and directed connections between brain areas [12]. Going further, it is possible to embed 15

anatomical priors in the estimation of connections, constraining the topology of network 16

models to be more biologically realistic than a naive fully connected one [13,14]. All such 17

methods assume, implicitly or explicitly, a generative model for the dynamics underlying 18

the observed signals. Thus, each method can be ideally placed within a continuum line 19

going from the weakest to the strongest model assumptions. 20

A first approach for the inference of asymmetric interactions between neural time 21

series is based on the Wiener-Granger principle [15–17], which identifies directed relations 22

from the ability to determine whether one time series is useful in forecasting another [18]. 23

While information theoretic measures based on the Wiener-Granger principle, such 24

as Transfer Entropy [19] and Directed Information [20], provide purely data-driven 25

tools capturing directed interactions, most Granger causality (GC) methods used in 26

resting-state fMRI [21–25] assume a linear multivariate autoregressive (MAR) model 27

as the generative process of BOLD time series. In the Granger-Geweke formalism, the 28

total interdependence between two time series is split into two components, the Granger 29

causality proper (GC) and the so-called instantaneous causality (IC), a non-directional 30

measure that captures instantaneous interactions (i.e., occurring faster than the sampling 31

time). 32

A second approach is based on effective connectivity (EC) models [26], which assume 33

that the data are generated by a continuous dynamical system. EC weights between 34

pairs of brain regions quantify the strength and sign of directional interactions and they 35

can be inferred by fitting the model to reproduce empirical fMRI time series. Most EC 36

approaches for whole-brain fMRI are based on similar models of neural activity: linear 37

systems of stochastic differential equations. A popular class of EC models are dynamical 38

causal models (DCMs) [27]. Due to computational complexity of model inversion, EC 39

models are rarely applied to large brain networks. However, recent work has shown 40

that with appropriate simplifications, EC models can be applied to multivariate time 41

series including hundreds of brain regions. The first approach consists in linearizing the 42

dynamics of the DCM, including approximating the hemodynamic convolution with a 43

linear filter), thus allowing the analysis of networks with n ≳ 50 areas and n2 ≳ 2500 44

links [27–30]. A second approach is based on the Lyapunov optimization for multivariate 45

Ornstein-Uhlenbeck processes (MOU) with linear dynamics [13, 30, 31]. DCM and 46

MOU mainly differ in terms of inference methodology (e.g., Lyapunov optimization vs. 47

variational Bayes), rather than the generative model underlying neural time series. 48

GC and EC approaches for fMRI analysis are not dichotomous. Indeed, EC and 49

GC for resting-state fMRI (rs-fMRI) activity (as compared to evoked activity) often 50

assume very similar models of fMRI activity and they both attribute a large relevance 51

to second-order statistics in the data (i.e., cross-correlations without and with lag among 52

time series, or its equivalent in the frequency domain) to infer directed relations. Whereas 53

GC assumes a linear multivariate autoregressive (MAR) model, EC is generally based 54

on a system of linear ordinary differential equations (ODEs) in continuous time. If the 55

noise is assumed to be Gaussian, a formal link exists between ODE systems and MAR 56

processes (via the integration of ODEs), so GC and EC are actually based on mutually 57
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consistent modeling despite seemingly different premises and formulation. 58

Given the widespread use of GC and EC models in network neuroscience, an open 59

question is whether these approaches are comparable, and whether they provide similar 60

or complementary information about brain interactions. In this work, we systematically 61

address this question, focusing on whether GC and EC yield consistent interpretations 62

in terms of 1) topological structure: presence of a directional and causal interaction 63

between two areas, and 2) asymmetry : presence of a stronger connection in one direction 64

as compared to the opposite direction. For both GC and EC, we focus on estimation 65

schemes that extract the spatio-temporal relationships between all signals in the network. 66

GC is estimated using the covariance-based method [32–34], where the estimation of 67

MAR model parameters is bypassed, and GC is directly inferred from observed cross- 68

covariance matrices. EC is estimated with the Lyapunov optimization of the MOU, also 69

based on lagged cross-covariances [13]. 70

In Methods, we discuss an analytical relation between EC and GC, which relies on 71

the assumption that the time series are generated by linear network dynamics with 72

Gaussian-like inputs (MOU model). We first analytically derive quadratic relations 73

between EC and GC measures, and identify for which conditions EC is best captured 74

by instantaneous Granger causality (IC). In Results, we discuss how these relations 75

emerge in finite-length data affected by (large) sampling noise. We present results from 76

numerical simulations to investigate to what extent the two methodologies converge in 77

estimating the topology and asymmetry of connectivity estimates, both theoretically, and 78

in the case of finite-sampling data. We then test our predictions on rs-fMRI data from 79

the Human Connectome Project [35, 36] involving short time series of about 500− 2000 80

frames. Finally, we discuss to what extent our theoretical predictions are met in the 81

data, and which degree of consistency between the two methods is obtained, at the 82

individual and group level. 83

Models and analytical derivations 84

Multivariate autoregressive (MAR) models and Granger Causality 85

A 1st order N -dimensional multivariate autoregressive (MAR) process is defined for 86

discrete time t (with steps ∆) by 87

x(t+∆) = Ax(t) + ϵ(t) (1)

where ϵ(t) is Gaussian noise with zero mean and covariance matrix S, 88

ϵ(t) ∼ N (0, S)

and ||A|| ≤ 1 for stability. The innovation, or noisy input, ϵj(t) in Eq. (1) corresponds 89

to the residual of the linear regression 90

ϵj(t) = xj(t+∆)−
∑
ji

Ajixi(t)

The variance of ϵj(t) (corresponding to a diagonal element of matrix S) reflects the 91

“magnitude” of the residual, which measures how well past values of the time series can 92

predict the next value at j, xj(t+∆), namely 93

Sjj = V ar[ϵj ] = V ar[xj(t+∆)−
∑
ji

Ajixi(t)]

. 94

To quantify the Granger causal effect of node i on node j, one can measure the relevance 95
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of xi(t) in predicting xj(t+∆). To this aim, one defines a a “reduced” MAR process 96

where the influence of node i is removed: 97

x(t+∆) = A′x¬i(t) + ϵ′(t) (2)

where x¬i(t) is obtained from x(t) by removing its i-th component and ϵ′(t) is Gaussian 98

with zero mean and covariance matrix S′, 99

ϵ′(t) ∼ N (0, S′)

Again, the magnitude of the residual ϵ′j(t) can be assessed via its variance 100

S′
jj = V ar[ϵ′j ] = V ar[xj(t+∆)−

∑
ji

A′
jixi(t)]

The effect of node i on node j defined by Granger causality (GC) [21,37] is given by 101

the log-ratio of the variances 102

Gij = log

(
S′
jj

Sjj

)
(3)

Note that we consider the conditional version of GC, meaning that the linear regression 103

in Eq. (2) includes all remaining nodes in the network. Also note that Eq. (3) defines 104

a “model” GC, which differs from its estimates obtained from finite data and noisy 105

covariance matrices (see below). We can show an approximate relation between the 106

Granger Causality Gij and the MAR coefficient aji. Assuming that A′ ≃ A¬i (where 107

A¬i is simply A without the i-th column), one obtains 108

S′
jj ≃ V ar[xj(t+∆)−

∑
k ̸=i

Ajkxk(t)] = V ar[Ajixi(t) + ϵj ]

= A2
jiV ar[xi(t)] + Sjj = A2

jiQ
0
ii + Sjj

using the further assumption of the statistical independence between xi(t) and ϵj . 109

Therefore we have 110

Gij ≃ log

(
A2

jiQ
0
ii + Sjj

Sjj

)
= log

(
1 +

A2
jiQ

0
ii

Sjj

)
(4)

hence Gij is approximately a monotonic function of A2
ji. For sufficiently small Aji ≪ 111

Sjj/Q
0
ii, Gij is approximately a quadratic function of A2

ji. 112

113

In addition to the standard Granger causality (3), Geweke [37] defined the “instanta- 114

neous” Granger causality Iij , which compares the magnitude of the innovations when 115

considered jointly or separately. The innovations {ϵi(t), ϵj(t)} jointly have a covariance 116

matrix 117

S[ij] =

(
Sii Sij

Sij Sjj

)
The total magnitude of the joint innovations can be measured as log(detS[ij]). If one 118

considers the innovations independently, one obtains instead logSii + logSjj . The 119

instantaneous Granger causality is defined as 120

Iij = log(Sii) + log(Sjj)− log(detS[ij]) = log(SiiSjj)− log(SiiSjj − S2
ij)

= − log

(
SiiSjj − S2

ij

SiiSjj

)
= − log

(
1−

S2
ij

SiiSjj

)
While the instantaneous causality is often discarded in Granger causality analyses, it 121

may capture a large part of the interdependence between two time series. 122
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Covariance-based GC 123

A standard method to estimate Gij from the data is by inferring the parameters of 124

the MAR (1) and the reduced MAR (2). An alternative and computationally simple 125

approach exploits a relation between the variance of the MAR residuals and covariance 126

terms, assuming Gaussian innovations [32,38,39]. Indeed, it can be shown that 127

V ar[ϵj ] = V ar[xj(t+∆)|x(t)] = det(Cov[xj(t+∆),x(t)])

det(Cov[x(t)])
(5)

V ar[ϵ′j ] = V ar[xj(t+∆)|x¬i(t)] =
det(Cov[xj(t+∆),x¬i(t)])

det(Cov[x¬i(t)])
(6)

Furthermore, we have: 128

detS[ij] = det(Cov[xi(t+∆)xj(t+∆)|x(t)]) = det(Cov[xi(t+∆), xj(t+∆),x(t)])

det(Cov[x(t)])

detSii = det(Cov[xi(t+∆)|x(t)]) = det(Cov[xi(t+∆),x(t)])

det(Cov[x(t)])

detSjj = det(Cov[xj(t+∆)|x(t)]) = det(Cov[xj(t+∆),x(t)])

det(Cov[x(t)])

Thus, exploting covariance relations, we can express Gij and Iij as follows: 129

Gij = log
det(Cov[x(t)]) det(Cov[xj(t+∆),x¬i(t)])

det(Cov[xj(t+∆),x(t)]) det(Cov[x¬i(t)])
(7)

Iij = log
det(Cov[xi(t+∆),x(t)]) det(Cov[xj(t+∆),x(t)])

det(Cov[x(t)]) det(Cov[xi(t+∆)xj(t+∆)|x(t)])
(8)

Thus, Gij and Iij can be both expressed in terms of elements of the 0-lagged and the 130

∆-lagged covariance matrices 131

Q0 = E[x(t)xT (t)], Q∆ = E[x(t)xT (t+∆)]

Note that for Gaussian systems, there is a relation between the entropy and the covariance 132

matrix, 133

H(x) = − log(det(Cov(x))

Using this relation, one can show that the covariance-based GC is equivalent to the 134

transfer entropy [40].Granger causality measures can therefore be formulated in com- 135

pletely information-theoretical terms, based on entropy estimates [32,34]. 136

Estimates Ĝij and Îij can be obtained from finite-sampling estimates of the covariance 137

matrix, 138

Q̂0
ij =

1

L

L∑
t=1

(xi(t)− µi)(xj(t)− µj), µi =
1

L

L∑
t=1

xi(t)

139

Q̂1
ij =

1

L

L−1∑
t=1

(xi(t)− µi)(xj(t+ 1)− µj)

Before computing covariance-matrices, we applied the cop-norm transformation on the 140

signal of each region, x → F−1
N (Femp(x)) where Femp(x) is the empical cumulative 141

distribution function of x, and FN (x) is the cumulative distribution function of a 142

standard normal. This transformation corrects for possible non-Gaussianity of the signal 143

distributions, assuming a Gaussian copula [41]. 144
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Multivariate Ornstein-Uhlenbeck (MOU) process and relation to MAR 145

Another approach to characterize the causal effect of node i on node j is to assume a 146

generative dynamical model in continuous time, and assess the value of the i, j coupling 147

that can be seen as model effective connectivity. Gilson et al. rely on the multivariate 148

Ornstein-Uhlenbeck process (MOU) given by 149

dx = Jxdt+ dw (9)

where 150

J = −1

τ
I+ CT (10)

with the process time constant τ > 0 and the identity matrix I. Here w is a Wiener 151

process (akin to white noise) corresponding to a diagonal covariance matrix Σ with 152

input variances σ2
i and zero input cross-covariance, such that

∫ t+dt

t
Cov(dw) = Σdt. At 153

equilibrium, the covariance matrix Q0 for x(t) following Eq. (9) satisfies the (continuous) 154

Lyapunov equation 155

JQ0 +Q0JT +Σ = 0 (11)

Furthermore, the 0-lagged and ∆-lagged covariance matrix Q0 and Q∆ obey the relation 156

Q∆ = Q0eJ
T∆

with ∆ a given time lag. Therefore, one can use the matrix logarithm to obtain 157

J =
1

∆
log((Q0)−1Q∆)T (12)

The “causal” effect of node i on node j is quantified here by the model effective 158

connectivity Cji. In practice, the matrices Q0 and Q∆ in Eq. (12) can be replaced by 159

their empirical counterparts (Q̂0,Q̂1) calculated from the data to obtain estimates Ĵ , Ĉ 160

of hence J,C. In this work, we rely on a more elaborate estimation procedure based on 161

a gradient descent (or Lyapunov optimization) to robustly estimate C for fMRI data 162

that typically consist of a limited number of time points due to the sampling rate [13]. 163

In essence, it uses a partial differentiation of Eq. (12) to iteratively optimize Ĵ and Σ̂. 164

Here an important point to note is that the matrix logarithm can yield complex values 165

for Ĵ , while the iterative optimization keeps the matrix elements real-valued. 166

For any given MOU process (9), we can build an equivalent 1st order MAR process 167

(1). Indeed, by integrating Eq. (9) for a given lag ∆, one obtains 168

x(t+∆) = eJ∆x(t) +w (13)

where w ∼ N (0, Σ̃) is a Gaussian noise with covariance matrix 169

Σ̃ =

∫ ∆

0

dt eJtΣ eJ
T t = σ2

∫ ∆

0

dt eJ
∗t = σ2(2(J∗)−1)(e2J

∗t − I)

where J∗ = log eJeJ
T ∼ J + JT + 1

2 [J, J
T ]. 170

However, for a given 1st order MAR process, the equivalent MOU process corresponds 171

to 172

S = Σ̃, A = eJ∆ = e−
∆
τ eC

T∆ (14)

which implies the following constraints on S and A: 173

logA ∝ κ1 + CT
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174

S = κ2

∫ ∆

0

dt At (AT )t

where κ1 < 0, κ2 > 0 are constants, and C is a real matrix with null diagonal, Cii = 0. 175

In sum, any MOU process (9) with real coefficients is associated with an equivalent 176

MAR process (1) with real coefficients. The reciprocal, however, is not true, as an 177

arbitrary matrix A will not yield in general a real-valued, but a complex-valued matrix 178

J = log(A) because of the matrix logarithm. We will refer to a MOU-compatible MAR 179

when the process can be associated to a real-valued J . 180

Theoretical relation between GC and EC 181

Assuming compatibilty, the multivariate dynamics underlying the estimation of GC and 182

EC are fully consistent. We can therefore compare Cij and Gij , which both measure 183

the effect of node i on node j. The following analysis relies on the approximation of the 184

matrix exponential by a first-order expansion: 185

eC
T∆ ≃ I+ CT∆ (15)

Eq. (15) holds under the following condition 186

||C|| ≪ 1

∆
(16)

where ||·|| denotes matrix 2-norm. Note that this condition can be formulated considering 187

the dominant eigenvalue of C: µ1 ≪ 1
∆ with µi being the real parts of the eigenvalues 188

of C in decreasing order (µ1 ≥ µ2 · · · ≥ µN ). Also note that the eigenvalues of J are 189

equal to those of C shifted by − 1
τ , so the stability of the resulting network dynamics 190

requires that the real parts of µi are smaller than 1
τ (again, it is sufficient to check only 191

the dominant eigenvalue). We thus distinguish three regimes, 192

∆ ≪ τ sampling faster than process = fast sampling rate (FSR)

∆ ≈ τ sampling as fast as process = matched sampling rate (MSR)

∆ ≫ τ sampling slower than process = slow sampling rate (SSR)

In FSR, Eq. (16) is always satisfied since |µi| ≤ 1
τ ≪ 1

∆ . In MSR, Eq. (16) is satisfied 193

whenever 194

||C|| ≪ 1

τ
≃ 1

∆
weak coupling

becoming more constraining in SSR 195

||C|| ≪ 1

∆
≪ 1

τ
very weak coupling

In practice, condition (16) can often be considered to be satisfied in both FSR and MSR, 196

essentially because large values of Cij are incompatible with stability, so ||C|| ≪ 1/τ . 197

However, SSR might break the assumption. 198

We can show that, provided Eq. (15) holds, there exist quadratic relations between 199

IC, GC and EC. As detailed in Eqs. (22) and (24) in S1Text., we have 200

Gij ≃ ∆2 1

e
2∆
τ − 1

σ2
i

σ2
j

C2
ij (17)

Iij ≃ τ2
(
1− 2∆

τ

e−
2∆
τ

1− e−
2∆
τ

)2σ2
iCij + σ2

jCji

2σiσj
(18)
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with C̃ij =
σ2
iCij+σ2

jCji

2σiσj
being a mean of the reciprocal connection weights between i and 201

j weighted by the input variances. If the input noise is homogeneous across all nodes, 202

σi = σ, these relations further simplify: 203

Gij ≃ ∆2
C2

ij

e
2∆
τ − 1

Iij ≃ τ2
(
1− 2∆

τ

e−
2∆
τ

1− e−
2∆
τ

)2
C̄ij

2

with C̄ij = (Cij + Cji)/2 being the symmetrized effective connectivity between i and 204

j. So, assuming equal input noise on all nodes and neglecting asymmetries, there is an 205

approximately quadratic relation between the symmetrized effective connectivity Cij and 206

Iij . In particular, these relations mean that Granger causality provides an estimate of 207

the quadratic interaction between nodes governed by continuous dynamics (i.e., having 208

a MOU as a generative process). In the general case of inhomogeneous noise variance, 209

we can nevertheless retrieve the approximately quadratic relation using a “corrected” 210

versions of G and I: 211

cGij =
Q0

jj

Q0
ii

Gij ≃ ∆2
C2

ij

e
2∆
τ − 1

(19)

cIij = Iij ·
4Q0

iiQ
0
jj

Q0
ii +Q0

jj

≃ τ2
(
1− 2∆

τ

e−
2∆
τ

1− e−
2∆
τ

)2
Cij

2 (20)

Here we have used the fact that the node variance Q0
ii is strongly related to the 212

corresponding input variance σ2
i . This holds in practice for weak coupling and can be 213

seen via the Lyapunov equation (11) where J is then dominated by its diagonal elements 214

− 1
τ , yielding Q0

ii ≃ τ
2σ

2
i . 215

A last quantity of interest is the ratio between Granger causality and instantaneous 216

causality: 217

ρ =
cGij

cIij
≈ (∆2/τ2)(

e
2∆
τ − 1− 2∆

τ

)2 ≃ (∆2/τ2)(
2∆2

τ2

)2 =
1

2

τ2

∆2
(21)

This means that in FSR we have cG ≫ cI, whereas cG ≪ cI in SSR (note that this 218

also true for the uncorrected versions G and I). Thus, G and I do not always reflect 219

the underlying network connectivity. In other words, when a continuous MOU model 220

is a valid generative model for the observed time series, the information about C is 221

differentially captured by G and I, crucially depending on the sampling regime. 222

Materials and Methods 223

Network simulations 224

We generated time series using the MOU model (9) with process time scales τ ∈ [0.1, 10] 225

and a fixed sampling period ∆ = 1. The model connectivity C was a random matrix 226

with probability p1 = 30% of connection between each pair of nodes. We considered 227

networks of N = 10, N = 40 and N = 100 nodes, The weights were drawn from a 228

Pareto distribution p(w) =
αwα

0

wα+1 with α = 5 and w0 = 0.1/τ (for N = 5); with α = 3 229

and w0 = 0.1/τ (for N = 40); with α = 3 and w0 = 0.5/τ (for N = 100). With a 230

probability p2 = 30%, a pair of reciprocal connections (Cij ,Cji) was chosen as their 231

sign is flipped. Thus, roughly 30% of connections are negative. Finally, for all pairs 232

of non-zero reciprocal links, a random number 0 < r < 0.2 was extracted, and one of 233

the two connections was multiplied by 1+r
1−r , so as to generate asymmetries in reciprocal 234
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connections. 235

In all simulations, we used a diagonal noise matrix Σ = diag{σ2
i }. We made the values 236

of σi dependent on τ , as to align the noise time scale to the process time scale (stated 237

otherwise, to align the magnitude of Σ to that of C). We generated random numbers 238

0.2 ≤ si ≤ 5, and considered σi =
√
5si/τ , i.e., different nodes were affected by noise of 239

different magnitude, with noise magnitudes spanning roughly an order of magnitude. 240

Human resting-state fMRI data 241

We used the 100 unrelated subjects’ subset (54 females, 46 males) from the Human 242

Connectome Project (HCP) [35]. For the main analysis, we used the left-right (LR) 243

phase- encoding runs from the first session resting state fMRI data. We later replicated 244

the analysis for the right-left (RL) phase-encoding runs. Time series had 1200 time 245

points with a TR of 0.72 sec, meaning ≈ 15 mins duration. The full description of the 246

imaging parameters and minimal preprocessing pipeline is given in Ref. [42]. In short, 247

after correction for motion, gradient, and susceptibility distortions the fMRI data was 248

aligned to an anatomical image. The aligned functional image was corrected for intensity 249

bias, demeaned, and projected to a common surface space, which resulted in a cifti-file. 250

Artifacts were removed though Independent Component Analysis (ICA) using the FSL’s 251

MELODIC tool paired with the FMRIB’S ICA-based X-noisefilter. No additional global 252

signal regression was applied. All fMRI data were filtered between 0.1 and 0.01 Hz to 253

retain the relevant frequency range for further analyses of the BOLD signal. Functional 254

data can be mapped to different spatial resolutions using the Schaefer parcellation [43], 255

which optimizes local gradient and global similarity measures of the fMRI signals. Here, 256

we selected the parcellation consisting of 100 regions. For both fMRI datasets, regional 257

time series were extracted using Workbench Command provided by the HCP. 258

For each participant, we computed Ĝij , Îij using the covariance-based approach and Ĉij 259

using the Lyapunov optimization method. For each individual connection (in Î,Ĝ,Ĉ), 260

we estimated a group-level significance using a t test. Connections were considered 261

significantly positive if T > 0 and p < 0.05, significantly negative if T < 0 and p < 0.05, 262

non-significant if p > 0.05. P-values were corrected for 9900 multiple comparisons using 263

the false discovery rate approach [44]. For each pair of reciprocal connections (i → j, 264

j → i) we computed connection asymmetries as ∆Ĉ = Cij − Cji, ∆|Ĉ| = |C|ij − |C|ji, 265

∆Ĝ = Gij −Gji. We estimated the group-level significance of connection asymmetry 266

using a t test. Asymmetry was considered significant in the direction i → j if T > 0 267

and p < 0.05, significant in the direction j → i if T < 0 and p < 0.05, nonsignificant if 268

p < 0.05. P-values were corrected for 4950 multiple comparisons using the false discovery 269

rate approach [44]. 270

Results 271

Relation between EC and GC on numerical simulations 272
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Fig 1. Theoretical relations between model EC and conditional GC/IC. We
considered a random network of N = 40 nodes evolving according to the MOU dynamics
(9) for different values of τ : 0.1 for SSR, 1 for MSR and 10 for FSR. Panels (A-C) show
the relation between the C weights and the corresponding values of G (in red) and I (in
black) for each connection, without correcting for unequal input noise variances. Panels
(D-F) show the relation between the C weights and the corresponding values of rG (in
red) and rI (in black) for each connection, i.e., correcting for unequal input noise
variances. G and I (as well as rG, rI) were obtained from the theoretical covariance
matrices Q0, Q1, corresponding to their empirical counterparts in the limit of infinite
observation length, L → ∞. Each dot corresponds to a pair (i, j), and solid lines to the
approximate quadratic scalings; note that correction on GC/IC is not necessary here as
the generative model has homogeneous input noise variance. For all valued of τ , the
approximate quadratic relation are well satisfied. The relative importance of I vs. G
depends on the value of τ , with I prevailing at low τ and G at large τ .
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Validation of the analytical relations using simulated MOU network dynamics 273

In order to test the analytical relations derived in the previous sections, we generated a 274

MOU process with known (“ground truth”) connectivity and we computed the Granger 275

causality measures (GC and IC) from simulated time series. We tested the quadratic 276

relations ((22) and (24) between the model connectivity (C in equations) and Granger 277

causality measures (G and I, respectively), which were derived in the “Models and 278

analytical derivation sections and reported here for convenience: 279

Gij ≃ ∆2 1

e
2∆
τ − 1

σ2
i

σ2
j

C2
ij

Iij ≃ τ2
(
1− 2∆

τ

e−
2∆
τ

1− e−
2∆
τ

)2σ2
iCij + σ2

jCji

2σiσj

where τ is the timescale of the MOU process, ∆ the sampling time, σi, σj the standard 280

deviations of the noise affecting i,j. These relations are theoretical, as they emerge 281

in the limit of infinite sampling time where G and I are reconstructed with no error 282

from the data. The relation for G is relatively easy to interpret: the influence from i 283

to j is proportional to the square of the connection weight Cij and the noise ratio
σ2
i

σ2
j
. 284

This implies two sources of possible imbalance between i and j: coming from Cij ̸= Cji 285

and/or σi ̸= σj . For I, we have C̃ij =
σ2
iCij+σ2

jCji

2σiσj
that corresponds to the mean of the 286

reciprocal connection strengths weighted by the input/noise variances. As discussed 287

in Methods, one can obtain simpler, (approximately) quadratic relations by defining 288

“corrected” quantities cG (19) and cI (20) that obliterate the effect of the noise imbalance 289

between the two nodes: 290

cGij ≃ ∆2 1

e
2∆
τ − 1

C2
ij Iij ≃ τ2

(
1− 2∆

τ

e−
2∆
τ

1− e−
2∆
τ

)2
C2

ij

We tested these relations by considering a MOU process with random connectivity. 291

We considered networks of N = 10, N = 40 and N = 100 nodes, with directed links 292

randomly with probability p = 0.3 between each pair of nodes. We randomly selected link 293

weights from a power-law distribution to reproduce the heavy-tailed weight distribution 294

observed in typical brain networks, and we allowed for connectivity asymmetries (see 295

Methods for details). We considered the case of unequal noise on all nodes (spanning 296

more than one order of magnitude). We fixed the sampling time ∆ = 1 and considered 297

three different cases where ∆ ≪ τ,∆ ≈ τ and ∆ ≫ τ . 298

Results are shown in Fig. 1. We compared the consistency of C with the uncorrected 299

(G, I) and corrected (cG and cI) versions of Granger causality. The quadratic relations 300

(22) and (24) were satisfied to a very good accuracy for the corrected case. When the 301

correction was not applied, the quadratic relation between C and G was significantly 302

degraded. Furthermore, as expected, we observed that I prevails over G at low τ , while 303

the opposite occurs at high τ . Although the theoretical relations were derived for the 304

conditional version of G and I, very similar results were obtained by considering the 305

unconditional version of G and I (Supp. Fig. S1Fig). 306

Influence of sampling rate and time series duration. Following previous work [45, 307

46], we then examined how the GC estimates are affected by the finite length L of time 308

series, as well as the sampling rate of the signal. For increasing values of L, we computed 309

a quadratic fit of ĉG, ĉI over the model connectivity C, estimating the goodness of fit 310

through the R2 coefficient. Values of R2 equal to 1 signify that the quadratic scaling 311

is perfectly satisfied. Results are shown in Fig. 2, Panels (A) to (F). As expected, 312

the quadratic relations are well satisfied for large sampling time L. For L ≳ 104, the 313
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Fig 2. Relations between model connectivity (MC) and empirical conditional
Granger measures (GC/IC) for finite sampling time. We considered the same
random network as in Fig. 1, which we simulated for different values of τ (x-axis) for
L ∈ {102, 103, 104, 105} (dashed, solid, dashed-dotted, and dotted, resp.). The columns
correspond to several network sizes, from N = 10 to 100. (A-C) Variance explained by
the fit of ĉG as a quadratic function of C (the model connectivity). The match between
MD and GC is bad for small τ (SSR), but becomes better for larger values (MSR and
FSR). Somewhat surprisingly, the match for short duration L becomes worse for FSR.
(D-F) Same as above panels for ĉI. A contrary trend is seen with a better match of IC
with MC for SSR and MSR, becoming worse for FSR.In both cases, larger duration L
implies a better match. (G-L) Same as (A-F), but using non-corrected quantities G,I.
In absence of the correction, the relation between Ĝ and C is significantly degraded.
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relations are well satisfied with R2 close to 1. However, the relations are not observed at 314

very low sampling time L = 10 (R2 < 0.1 for ĉG; R2 < 0.2 for ĉI) and only partially 315

observed at intermediate sampling time L = 103. More generally, the quadratic relation 316

between ĉG and C is not observed in the SSR condition (τ ≪ ∆), congruently with 317

the fact that ĉG is small and more difficult to estimate. Analogously, the quadratic 318

relation between ĉI and C is not observed in FSR (τ ≫ ∆), congruently with the fact 319

that ĉI is small and difficult to estimate in this regime. Somewhat unexpectedly, the 320

quadratic relation between ĉG and C is also degraded in the FSR condition (τ ≫ ∆) 321

for low values of L. This depends on the fact that in this regime, as the process time 322

scale is long, the empirical Q̂1 is less accurate since the system has not evolved enough 323

to appreciate lagged dependencies. In S2Fig (D-F) we show the Pearson’s R2 between 324

the theoretical Q1 and the estimated Q̂1. The most accurate estimate Q̂1 occurs when 325

τ ≈ ∆. We observed that I was less affected by the problem of inaccuracies of Q̂1, as it 326

mostly depends on Q̂0, whose estimation was much more robust (S2FigA-C). In Panels 327

(G) to (L) we considered the quadratic fit of the uncorrected quantities Ĝ, Î over the 328

model connectivity C. The behavior of the fit with respect to the sampling length L 329

was qualitatively similar to what observed for ĉG, ĉI. Hover, without the correction the 330

relation between C and cG was degraded, as reflected by much lower values of R2. 331

Finally, in S4Fig we showed the ratio between G and I. While the ratio monotonically 332

increased with τ as expected, we noted that only in the limit of large sampling time we 333

observed a strong variation with τ . Generally, in the case of finite sampling it may not 334

be easy to accurately identify the dynamical regime from this ratio. 335

Asymmetric interactions . The quadratic (non-monotonic) relation (19) implies that 336

G is insensitive to whether the underlying connections are “excitatory” or “inhibitory”, 337

Cij > 0 or Cij < 0, respectively. This complicates the interpretation of G in terms 338

of asymmetry of reciprocal connections, aiming to quantify a net directional effect 339

between pairs of nodes. For the typical situation of excitatory weights, asymmetry can 340

be measured by taking the difference between the weights of reciprocal connections i → j 341

and j → i. For C and G, this leads to e.g., 342

∆Cij = Cij − Cji ∆Gij = Gij −Gji

However, when effective connections are either positive or negative, these quantities are 343

not necessarily concordant. This is exemplified in Fig. 3A. A positive value of ∆Cij > 0 344

associated to a net asymmetry i → j of the effective connection can correspond to three 345

different situations, depending on the sign of Cij and Cji: 346

• Cij > 0, Cji > 0,∆Cij > 0: both connections are excitatory, and the influence of i 347

over j is larger than the reverse. ∆Cij and ∆Gij are concordant. 348

• Cij < 0, Cji < 0,∆Cij > 0: both connections are inhibitory, but in this case it is 349

the influence of j over i that prevails. ∆Cij and ∆Gij are discordant. 350

• Cij > 0, Cji < 0,∆Cij > 0: effective connections are discordant - one is excitatory 351

and the other inhibitory. In this case, ∆Cij and ∆Gij are not necessarily concordant; 352

∆Gij could even be zero. 353

In all cases, the net influence asymmetry measured by ∆G aligns with the net difference 354

in the absolute strength (positive or negative) of the effective connection, measured by 355

∆|C|ij = |Cij | − |Cji|

This is further illustrated in Fig. 3B-D. We considered the network in Fig.1 forN = 40 and 356

τ = 10. We divided pairs of effective connections depending on the sign of connections. 357
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If both signs are positive, ∆C and ∆G are concordant (3B; If both signs are negative, 358

∆C and ∆G are discordant (3C; If signs are discordant, ∆C and ∆G can be either 359

concordant or discordant (3D. If we combine all types of connections, no clear relation 360

emerges (Fig. 3E). In order to observe a meaningful relation, one must consider separately 361

∆|C|ij and ∆Gij . As shown in Fig. 3F, these two quantities obey a monotonic relation. 362

In Fig. 4 we analyzed the concordance between ∆Gij and ∆|Cij | for finite sampling 363

length L, using the same setting as in Fig. 2. Note that, due to the unequal noise variances 364

affecting different nodes, we used the corrected quantity cG. In panels A to C we show 365

the Pearson R2 between ∆cGij and ∆|Cij | as a function of L and τ . Qualitatively, we 366

have the same behavior observed for cG: R2 is monotonically increasing as a function of 367

L, and peaks for τ ≈ 1. However, a good detection of the asymmetry of connections 368

requires large sampling time L (≳ 104). This implies that the asymmetry of connections 369

(in terms of strength of influence) estimated with GC is not accurate for low and moderate 370

sampling time. This implies severe limitations in reliably inferring the asymmetry of 371

connections using individual-level data in fMRI (with, typically, L ∼ 103). We note 372

that the correction for unequal noise variances is critical to have a concordance in the 373

estimation of connection asymmetry. In panels D to F we show the concordance between 374

∆|C| and the uncorrected ∆G. Without the correction, the estimates of the asymmetry 375

of the connection are much less consistent between the two methods. 376

Comparing GC/IC estimates with EC estimates In general, the ground truth 377

C is not known, but it can be inferred from the data by minimizing the discrepancy 378

between the model Q0, Q1 and the observed Q̂0, Q̂1. Here, we rely on a gradient-descent 379

approach developed in [13], which is more efficient than directly solving Eq. (12). We 380

thus investigated the relation between the estimated Ĝ, Î and the estimated Ĉ. Results 381

are shown in S3Fig. We observed that quadratic relations hold better for larger sampling 382

time L. The values of R2 between Ĉ and Ĝ are generally larger than those between 383

C and Ĝ. This suggests that both Ĝ, Î and Ĉ are affected by similar biases via their 384

estimation procedures, which are based on the same data. We also observed that the 385

quadratic relation between I and Ĉ is not observed in SSR (τ ≪ ∆), congruently with 386

the fact that C is difficult to estimate in this regime. 387
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Fig 3. Theoretical relations between the asymmetry of connections for EC
and GC Panel (A) displays the conceptual relation between ∆G, ∆C and ∆|C| for the
three cases in which Cij , Cji are both positive (“bidirectional excitation”), both
negative (“bidirectional inhibition”) or discordant. Panels (B-D) display the relations
between ∆C and ∆G for the same random network as in Fig. 1 with N = 40 and
τ = 10, separately by categorizing the pairs of reciprocal connections according to the
three cases depicted in (A). Combining those, panel (E) pools all types of pairs together
for ∆G as a function of ∆C, to be compared with ∆G as a function of ∆|C| in panel
(F). It illustrates that a monotonic relation appears between ∆C and ∆G, but not
∆|C| and ∆G.
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Fig 4. Relations between EC asymmetry and GC asymmetry for finite
sampling time. We considered the same random networks as in Fig. 1, which we
simulated for different values of τ and L. (A-C) We show the R2 between the model
asymmetry in EC, |∆C|, and the asymmetry in the corrected Granger causality, ∆cG.
(D-F) We show the R2 between the model asymmetry in EC, |∆C|, and the asymmetry
in the uncorrected Granger causality, ∆cG.
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Fig 5. (A) Ĉ matrix (group average over 100 subjects). Only significant links (t test
over subjects, p < 0.05 FDR-corrected) are shown. (B) Ĉ matrix (group average over
100 subjects). Only links that are significantly different from zero (t test across subjects,
p < 0.05 FDR-corrected) are shown, in red for positive weights and blue for negative
weights. (C) Network-wise effective connectivity Ĉ(net) (group average over 100
subjects). Only significant links (t test over subjects, p < 0.05 FDR-corrected) are
shown. (D) network-wise Granger causality Ĝ(net) (group average over 100 subjects).
Only significant links (t test over subjects, p < 0.05 FDR-corrected) are shown.

EC and GC relations in rs-fMRI data 388

We considered human resting-state fMRI data of 100 unrelated participants from the 389

Human Connectome Project [35]. Upon surface projection and minimal preprocessing, 390

time series were projected onto the Schaefer-100 atlas (100 regions). Regions were divided 391

into seven resting state networks, (RSNs) according to the well-established division 392

proposed by Yeo et al. [47]. 393

Effective connectivity analysis. We first considered the effective connectivity Ĉ, 394

that was estimated individually for each participant. We observed that the estimated Ĉ 395

displayed both positive and negative effective connections, on average across subjects. In 396

particular, we found 3804 significant connections at a group level (t test over subjects, p < 397

0.05, FDR corrected for 9900 multiple comparisons). Among all significant connections, 398

we found both significantly positive (64%) and significantly negative connections (36%). 399

There is a wide debate about the spurious or genuine nature of negative correlations 400

of BOLD signals [48], with several authors arguing that negative correlations are due 401
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Cij > 0, Cji > 0 Cij > 0, Cji = 0 Cij > 0, Cij < 0 Cij < 0, Cji < 0 Cij < 0, Cji = 0

812 771 35 306 727

Table 1. Sign concordance of reciprocal connections

to the use of global signal regression [49,50]. Here, we find negative connections with 402

statistical significance and without global signal regression (Fig. 5A). Looking at pairs 403

of reciprocal connections (A → B and B → A), significant connections tended to be 404

either unidirectional (i.e., the reciprocal connection is non-significant), or concordant 405

(the reciprocal connection is also significant and has the same sign; Table 1). We 406

found only ≈ 1% of pairs of significant connections with discordant sign (S5FigA-B). 407

Positive-positive reciprocal connections were frequently found within different areas of 408

the same resting state networks (RSNs), while connections between nodes of different 409

RSNs were predominantly unidirectional. Negative connections were nearly exclusively 410

found between different RSNs (S5Figb). For all pairs of reciprocal connections, we tested 411

for significant connection asymmetry, ∆Cij = Cij − Cji (t test over subjects, FDR 412

corrected for 4950 multiple comparisons). We found a significant asymmetry for 27% of 413

link pairs (S5FigC). Asymmetries between positive connections were found within areas 414

of the same resting state network (RSNs), while asymmetries between inter-RSN links 415

were mostly due to one connection being positive/negative and the reciprocal one being 416

non-significant (S5FigD). Only a negligible fraction (2%) of significant asymmetries 417

involved discordant connections. 418

We averaged the Ĉ values over the nodes belonging to each of seven resting state 419

networks (RSNs) for both hemispheres, therefore obtaining 14×14 network-wise effective 420

connectivity matrices. In Fig. 5C we show significant positive and negative network-wise 421

links (t test over subjects, p < 0.05 FDR corrected for 182 multiple comparisons). We 422

observed strong positive connections within each RSN, between its LH and RH parts. 423

On the other hand, negative connections were found between different RSNs, more 424

strongly within the RH. Negative connections were found between nodes of the control 425

network (CON), especially the right CON and other RSNs; and between the default 426

mode network (DMN) and other cognitive networks such as the ventral attention network 427

(VAN), the dorsal attention network (DAN) and the CON. Positive connections were 428

mostly observed within RSNs. Along with Ĉ, we also estimated the noise covariance Σ̂, 429

assuming diagonal covariance. The noise variances affecting different nodes wee found 430

to be widely different among nodes, spanning roughly an order of magnitude (S6Fig), 431

with ventral and posterior nodes displaying the larges values of σ2. 432

Granger causality analysis. Next, we estimated Granger causality. At a group 433

level, the estimated ĉG displayed 944 significant connections (Fig. 5B) (t test over 434

subjects, p < 0.05 FDR corrected for 9900 multiple comparisons). Of these, 827 were 435

also significant Ĉ connections. Most (744, 90%) of these significant ĉG connections 436

are associated with positive Ĉ connections (Table 2). The strongest connections were 437

found between homologous regions of the LH/RH. We averaged the ĉG values over 438

the LH/RH nodes belonging to each of seven resting state networks (RSNs), obtain- 439

ing 14× 14 network-wise Granger causality matrices. In Fig. 5d) we show significant 440

network-wise links (t test over subjects, p < 0.05 FDR corrected for 182 multiple com- 441

parisons). The strongest links were again observed within the LH and RH part of 442

each RSN. We tested pairs of reciprocal links for connection asymmetry: only a small 443

number of link pairs (217, ∼ 5%) presented a significant asymmetry. Of these, most 444

(146) also presented a significant asymmetry in terms of Ĉ. Thus, ĉG appears generally 445

less effective than Ĉ in detecting both significant connections and significant asymmetries. 446

447
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Fig 6. (A) effective connectivity Ĉ (group average over 100 subjects) vs corrected
Granger causality ĉG (group average). (B) squared Pearson correlation R2 between
group Ĉ and group ĉG for groups of increasing size n. (C) effective connectivity Ĉ
(group average over 100 subjects) vs corrected instantaneous Granger causality ĉI
(group average). (D) squared Pearson correlation R2 between group Ĉ and group ĉI for
groups of increasing size n. (E) asymmetry in effective connectivity ∆Ĉ (group average
over 100 subjects) vs asymmetry in corrected Granger causality ∆ĉG (group average).
(F) squared Pearson correlation R2 between group ∆Ĉ and group ∆ĉI for groups of
increasing size n.
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Ĉ > 0 Ĉ < 0 ĉG

Ĉ > 0 2430 0 754

Ĉ < 0 1374 73

ĉG 944

Table 2. Significant connections shared among effective connectivity Ĉ and Granger
causality Ĝ

Fig 7. Principal eigenvector of the average C2 matrix (A) and the average G matrix
(B), projected onto the cortical surface.

Comparison between effective connectivity and Granger causality . We 448

systematically assessed the degree of group-level consistency between Ĉ and ĉG by 449

computing averaged group-wise matrices Ĉ and ĉG. Fig. 6A shows the scatter plot 450

of Ĉ and ĉG, averaged over the whole cohort of n = 100 subjects. The theoretically 451

expected quadratic relation is approximately matched. We computed the squared 452

Pearson correlation R2 between Ĉ2 and ĉG, obtaining a large degree of consistency, 453

R2 = 0.72. We tested group-level consistency also for smaller groups of subjects. To 454

this aim, we considered subgroups of increasing size n. For each n, we averaged the R2
455

over N = 100 random subgroups of size n. Results are shown in Fig. 6B: R2 rapidly 456

increases with n, reaching values R2 ≳ 0.6 for n > 20. For comparison, we also show 457

the R2 between Ĉ and the non-corrected version of Granger causality, Ĝ. The degree 458

of consistency is notably inferior, with values R2 ≳ 0.5 for n > 20, up to R2 = 0.6 for 459

n = 100. We assessed the degree of consistency between the two measures at the level 460

of asymmetry of connections. Fig. 6E shows the scatter plot between ∆|Ĉ| and ∆ĉG, 461

for links with Ĉ > 0. We computed the Pearson correlation R2 between ∆|Ĉ| and ∆ĉG, 462

obtaining R2 = 0.39. Also in this case, the degree of consistency increases with group 463

size n, reaching values R2 ≈ 0.3 for n > 20 (Fig. 6F). For comparison, we also show the 464

corresponding results for the non-corrected version of Granger causality, Ĝ. In this case, 465

the degree of consistency is much lower (R2 ≈ 0.18). 466

Model inconsistencies. Fig. 6C shows the scatter plot of Ĉ and ĉI, averaged over 467

subjects. In this case, the squared Pearson correlation R2 between the two measures 468

is much lower than for Ĝ, R2 = 0.21. Fig. 6D shows that R2 rapidly increases with n, 469

reaching values R2 ≳ 0.15 for n > 20. This analysis shows several discrepancies with 470

respect to theoretical expectations. First of all, the values of ĉI are much larger than 471

the values of Ĝ. In fact, on average, Ĝ/Î ≈ 10−2. This ratio would be expected in case 472

of an extremely rapid process time scale; however, the average (estimated) process time 473

is τ = 2.3± 0.6 (mean ± st.dev. over subjects). Furthermore, the correlation between 474

Ĉ and Ĝ is larger than the correlation between Ĉ and Î, consistently with this process 475
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time estimate. 476

Hub structure. We compared C and G in terms of the consistency of the hub structure 477

related to the C and G network respectively. To this aim, we computed the principal 478

eigenvectors ot the average G matrix and of the average C2 matrix. We find a correlation 479

R = 0.41 between the two principal eigenvectors, pointing at a good consistency of the 480

hub structure. The two eigenvectors are projected on the cortical surface and shown 481

in Fig. 7. The important regions indicated by this centrality measure slightly differ 482

between C2 and G, presumably because of the empirical noise. 483

Replication. We replicated the same analysis using the second fMRI session available 484

for all subject. In Fig. 8 we perform a quantitative comparison between the results of 485

the two sessions. In Fig. 8A we show the consistency (R2) of the estimates of Ĉ,Ĝ, ĉG,Î 486

and the corresponding asymmetries at the individual level. At this level, we observed a 487

very poor consistency (R2 < 0.1) between the estimates of the two sessions, except for 488

Ĝ (R2 ≈ 0.2) and, especially, Î (R2 ≈ 0.6). However, averaging over at least 20 subjects 489

(Fig. 8B) yielded reliable estimates (R2 > 0.6) for all of Ĉ,Ĝ, ĉG,Î. Moreover, also the 490

asymmetries ∆Ĉ,∆Ĝ,∆ĉG obeyed the same trend, with reliable estimates (R2 > 0.4) 491

starting from 20 subjects (Fig. 8C). Last, the confusion matrices in Fig. 8D-E showed that 492

when using the whole sample (n = 100), the detection of links with significant weights 493

in Ĉ exhibits more than 80% replicability, with no single connection being identified as 494

significantly positive in one session and significantly negative in the other. Moreover, 495

the detection of pairs with significant asymmetry achieved 65% replicability, with no 496

detection of opposite asymmetries in the two sessions. Thus, estimates of connection 497

strength and asymmetry were reliable at a group level. 498

Consistently with these results, the relations between C and G observed in Fig. 6 at a 499

group level were well replicated in the second session. Fig. S7Fig shows results analogous 500

to those of Fig. 6 for the second session. It is apparent that results are fully consistent 501

with those obtained for the first session. 502

Discussion 503

Substantial (if partial) information about causal interconnections can be learned from 504

time-lagged relationships between brain areas observed in neural activity recordings [12]. 505

Research in this direction has mostly relied on fMRI recordings, due to their fine spatial 506

resolution. In this context, techniques going beyond traditional, undirected functional 507

connectivity can remove spurious connections arising from indirect effects and reveal 508

asymmetries between reciprocal connections (that underlie a key principle of brain 509

organization, hierarchical processing [51, 52]. Thus, these methods have contributed 510

to elucidating hierarchical relations underlying specific cognitive functions such as 511

working memory [53,54], cognitive control [55], language [56], and revealing task-related 512

modulation of functional interactions [57]. From a clinical standpoint, these methods 513

are essential to characterize pathological alterations of functional hierarchies, [34, 58] 514

and obtain improved biomarkers for clinical classification [59]. 515

While several directed connectivity analysis methodologies have been proposed [60], 516

the majority of studies focus on two classes of methods: effective connectivity (EC) 517

analysis, and Granger causality (GC) analysis. GC reflects the amount of directional 518

interactions (or ”information flow” if interpreted according to the notion of transfer 519

entropy), whereas EC quantifies both the amount and sign of the directed interaction. 520

The state-of-the-art wisdom about using these two methods is somewhat contradictory. 521

On one hand, methodological literature has often stressed the difference between GC 522

and EC [27], insisting that i) they rest on different assumptions: EC aims to “retrieve 523
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Fig 8. Consistency of results in two independent independent recording sessions (A)
consistency of single-subject estimates across the two sessions (squared Pearson
correlation). (B) Squared Pearson correlation R2 between group estimates of
Ĉ, ĉG, Ĝ, Î for groups of increasing size n. (C) Squared Pearson correlation R2 between
group estimates of ∆Ĉ,∆ĉG,∆Ĝ, Î for groups of increasing size n. (D) Confusion
matrix between the connection category identified in fMRI session 1 (significantly
positive, significantly negative, non significant/null) and the category identified in fMRI
session 2, at a group level (n = 100). (E) Confusion matrix between the connection
asymmetry category identified in fMRI session 1 (significant asymmetry from i → j,
significant asymmetry from j → i, non significant asymmetry) and the category
identified in fMRI session 2, at a group level (n = 100).
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the minimal circuit explaining the observed timing relationships”, while GC is based on 524

statistical dependencies ii) they differ in important technical details: EC often (but not 525

always [13]) takes into account hemodynamics in the modeling, while GC often (but not 526

always [61]) doesn’t. On the other hand, in applications the two techniques are used 527

quite interchangeably, in that the results of an EC or GC analysis on fMRI are often 528

interpreted in the same way: EC or GC links are thought of as directed couplings between 529

brain areas. In particular, many researchers in the field share an implicit intuition that 530

large effective connections between two areas should be reflected into large values of 531

Granger causality. In this work, we have emphasized the methodological similarity of 532

the two approaches, which are based on common assumptions: essentially, that observed 533

time series are generated by a linear process. In fact, at the theoretical level, if Gaussian 534

noise is assumed (as it often happens for most GC and EC variants), we explicitly derived 535

that GC and EC are mathematically linked by a monotonic (approximately quadratic) 536

relation (Eqs.(17),(18) and Fig. 1). 537

With the aid of numerical simulations of artificial networks, we discussed to what 538

extent the theoretical EC/GC relations can be observed from finite-length data (Fig. 2,4). 539

The main limitation arises from the sampling rate and the length of empirical time series, 540

in line with previous work [17,62]. For a network of 100 areas (a typical number for usual 541

fMRI parcellation schemes), the theoretical relations can be clearly observed only for a 542

sampling time of L = 104, which amounts to 10 times the length of a typical recording 543

session. In case of the typical sampling time of an fMRI session (L = 103), the quadratic 544

relation is satisfied quite roughly (correlation between C2 and G yields R2 ≈ 0.4). 545

Therefore, the relation can be neatly observed only for unusually long recordings (such 546

as [63]), or, more plausibly, by concatenating the data of several subjects (neglecting inter- 547

individual variability). At least 10 subjects (order of magnitude) should be concatenated. 548

While the relations predict a concordance of EC/GC in the estimation of connection 549

asymmetry, observing it in finite-length data is considerably difficult.For a network of 550

100 nodes, only a very large sampling time (T = 105) can allow observing a certain 551

degree of consistency (R2 ≈ 0.4). 552

Importantly, we did not limit ourselves to testing the EC/GC relation on simulated 553

network activity (as in [45, 60]. We also tested the similarity between EC and GC 554

with real fMRI data, where some of the assumptions (e.g. Gaussianity of generated 555

signals) are either only loosely or simply not satisfied. Our results show that GC and EC 556

yield similar connectivity at a group level(Fig. 6), meaning that they provide consistent 557

and reliable estimates for directional connectivity across brain regions when pooling 558

at least 15 subjects together. To observed consistency between the two methods in 559

the analysis of pairwise asymmetry, a group of 20 subjects or more is needed. These 560

numbers are necessary to average the empirical session-to-session noise inherent to fMRI. 561

In fact, we observed that individual EC and GC estimates are not reliable, as seen 562

from a test-retest analysis (Fig. 8. We stress that lack of reliability concerns individual 563

connection estimates, while reliable information may emerge at a network level. Indeed, 564

it has been previously shown that EC can be used for robust prediction at the level 565

of individual subjects [14,59,64]. In that case, the prediction power comes from using 566

the whole network (all EC values jointly) for classification. In other words, there is 567

an unavoidable trade-off: accuracy cannot be achieved at both individual session and 568

individual connection level, unless sufficient data is collected over several subjects or 569

connections. 570

The analytical relation between EC and GC derived for the simple case of covariance- 571

based, first-order Granger causality highlights subtle difference between EC and GC, 572

suggesting several important caveats to consider when interpreting both quantities. We 573

now review the main possible incongruences between the two methods when analysing 574

real fMRI data, where first-order GC is often used [17,34] in parallel to EC. 575

February 22, 2024 23/38

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.22.581068doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.22.581068


The first difference stems from the non-monotonicity of the EC-GC relation, which is 576

(approximately) quadratic (Eqs.(17),(18): both strongly positive and strongly negative 577

effective weights between two areas are reflected in large values of Granger causality. 578

Negative weights generally result from anticorrelations, whose presence in fMRI data 579

has been hotly debated: negative FC can be artificially induced when using global 580

signal regression [48, 65], but recent studies have shown that they it predicts brain 581

states and cognitive functions [66,67]. Here, we find negative EC values in rs-fMRI in 582

approximately a third of connections consistently across subjects (Fig. 5) without global 583

signal regression. This suggest that the analysis of brain networks using graph theoretical 584

approaches, such as community detection or identification of hubs, would benefit from 585

taking into account the presence of links displaying negative (i.e., “repulsive”) effects 586

that are not immediately indentified in GC analysis. The combination of GC and EC 587

estimates in network analysis may be a promising direction for future studies. The 588

quadratic relation between EC and GC also determines the agreement (or lack thereof) 589

of the two methods in assessing the asymmetry of connections. The two methods agree 590

only if the asymmetry for EC is defined by taking into account the modulus of the 591

connection strength (Fig. 3): i.e., if a stronger negative A → B than B → A implies 592

that the asymmetry is A → B. 593

The second difference is that quadratic EC/GC relations hold only if all areas have 594

equal signal variance, corresponding to the same level of random input noise affecting or 595

received by areas or nodes). However, when the signal power (variance) differs across 596

areas, the quadratic relation fails. As an example, for symmetric connections between 597

two areas, the GC from the area with higher power will be larger than in the reverse 598

direction. This is not necessary a pitfall of GC, that was conceived as a measure of 599

“influence”: in presence of equal connections, the influence of an area with larger power 600

is stronger. However, this implies that GC cannot be considered a measure of coupling 601

like EC. In “theoretical relation between EC and GC”, we showed that in presence 602

of non-homogeneous signal power, it is still possible to recover a quadratic relation 603

between EC and GC/IC (Eqs.(19),(20)) by “correcting” GC estimates by a simple 604

factors accounting for the heterogeneity in nodal input. 605

The third difference is that the validity of the implication large EC ⇒ large GC 606

depends on the relation between two time scales: the sampling time and the process 607

time. The process time (τ) is the time scale of the stochastic ODE system underlying 608

the observed time series, related to the autocorrelation time of the dynamical system. 609

The sampling time (∆) is the interval between two successive observations, which, in 610

fMRI, corresponds to the repetition time. When the process is fast (τ ≪ ∆), the values 611

of the (discrete) observed time series at the previous time point are poorly predictive 612

of the next time point. Thus, regardless of the strength of effective connections, GC 613

remains low, in line with previous work [45]. The presence of strong effective connection 614

still creates a strong statistical dependency between the two time series, but most of 615

this interdependence appears as correlation that cannot be predicted on the basis of 616

previous time points. This is instead captured by the “instantaneous (Granger) causality” 617

(IC), a non-directional connectivity measure that is often neglected but is part of the 618

original Granger-Geweke formalism [37]. In “theoretical relation between EC and GC”, 619

we also derived an analytical relation between EC and IC (20). While both measures are 620

then proportional to the square of EC, for τ ≪ ∆ the proportionality constant is much 621

stronger for the IC than GC. Instead, when the process is slow, (τ ≫ ∆), the values of 622

the (discrete) observed time series at the previous time point are strongly predictive of 623

the next time point. In this case, the presence of a large effective connection creates 624

a strong statistical dependency between the two time series that can be predicted on 625

the basis of previous time points, reflecting into large values of GC (while IC is very 626

small). More generally, our study shows that large (in modulus) effective connections 627
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reflect large values of Granger causality or instantaneous causality. Detecting the regime 628

(τ ≪ ∆ or τ ≫ ∆) from data is not trivial. In principle, one can locate the regime based 629

on the average GC/IC ratio, but this requires long sampling (Fig. S4Fig). More generally, 630

our study stresses the importance of considering the regime at which the neural data 631

are sampled. In this respect, a possible limitation of this study is the assumption of a 632

diagonal noise covariance matrix in the MAR model: in presence of a large common 633

input between regions, the noise should be modeled as having non-diagonal covariance 634

Σ, which could reflect into larger values of the instantaneous Granger causality I. This 635

could explain the anomalous IC values observed in fMRI data. Reliably inferring a 636

non-diagonal noise covariance poses additional challenges [68,69]. Future work will better 637

investigate the relation between C,Σ and G, I in case of correlated noise. 638

We finally mention a possible limitation of the application to fMRI in this study: we 639

did not investigate or model hemodynamics. Assuming that the model (MOU/MAR) 640

holds at the level of neural time series, the effect of hemodynamics can be multiple. 641

Firstly, it can introduce deviations from the model at the level of observed BOLD time 642

series (such that a MOU or first order MAR no longer yield an accurate description of 643

the data). Secondly, regional differences in the hemodynamic response may bias timing 644

relations observed at the BOLD level, hence biasing EC/GC estimates, in particular 645

estimates of connection asymmetry. In principle, one should then estimate EC/GC 646

from “neural” time series obtained after a deconvolution of the hemodynamic response. 647

Further work is need to appreciate the effect of the hemodynamic response on the 648

GC/EC relation, and the application of blind approaches (e.g., [61,70]) to deconvolve 649

the hemodynamic response from resting-state fMRI data. 650

651

To conclude, our study addressed the consistency of GC and EC in the reconstruction 652

and analysis of directed brain networks from neuroimaging time series. In the context of 653

the first-order autoregressive models typically used in fMRI, GC and EC share common 654

assumptions and are mathematically related. The relation is non-trivial due to the 655

presence of negative effective connections and unequal noise variance on different network 656

nodes. When these factors are properly taken into account, the two methods yield a 657

largely consistent description of directed brain networks at a group level. 658
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S1Text: Approximate formulas for GC, IC 862
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For the instantaneous causality, one obtains 872
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Supplementary figures 874

Fig S1Fig. Theoretical relations between model EC and non-conditional
GC/IC. We considered a random network of N = 40 nodes evolving according to the
MOU of τ = 0.1, 1, 10. In (A-C) we show the relation between the EC weights and the
corresponding values of GC and IC. The GC and IC were obtained from the ideal
covariance matrices Q0

∞, Q1
∞ obtained in the limit of infinite observation length,

T → ∞. Each dot corresponds to a pair (i, j), and straight lines to the approximate

quadratic scalings, GC ∼ C2

e2/τ−1
, IC ∼ τ2C2

(
1− 2/τ

e2/τ−1

)2
. For all valued of τ , the

approximate quadratic relation are well satisfied. The relative importance of IC vs. GC
depends on the value of τ , with IC prevailing at low τ and GC at large τ .
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Fig S2Fig. Error in covariance matrices for finite sampling time. We
considered the same random network as in Fig. 1. In real cases T < ∞, the covariance
matrices Q0, Q1 are affected by an estimation error (whose magnitude decreases with
T ). We show here the relation between the ideal Q0, Q1 and the empirical
Q0,emp, Q1,emp, for different values of τ and T , measured in terms of squared Pearson
correlation R2. R2 is an increasing function of T . Note that R2 is not a monotonic
function of τ , but reaches a maximum for τ ≈ 1, i.e., when sampling time and process
time are of the same order.
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Fig S3Fig. Relations between empirical EC and empirical conditional
GC/IC for finite sampling time. We considered the same random network as in Fig.
1, which we simulated for different values of τ and T . In real cases T < ∞, the
covariance matrices Q0,emp, Q1,emp are affected by an estimation error (whose
magnitude decreases with T ). In the presence of estimation noise, the relation between
EC and GC, IC become much less tight. For each T ,τ , we fitted GC and IC as a
quadratic function of EC0 (the ideal EC). The R2 of the fit is an increasing function of
T , with relatively low values of R2 obtained for T ≤ 1000. Estimation noise also affects
the IC/GC relation as a function of τ . In panel (g-i) we show the average ratio GC/IC
(averaged over all pairs i, j) as a function of τ for different values of T . The monotonic
increase of GC/IC as a function of τ becomes less sharp for low values of T .
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Fig S4Fig. Average ratio between conditional Granger measures (GC/IC)
for finite sampling time. We considered the same random network as in Fig. 1,
which we simulated for different values of τ (x-axis) for L ∈ {102, 103, 104, 105} (dashed,
solid, dashed-dotted, and dotted, resp.). The columns correspond to several network
sizes, from N = 10 to 100. (a-c) Average ratio cG/cI (over all pairs i, j) as a function
of τ . The monotonic increase of cG/cI as a function of τ becomes sharper for larger
values of L.
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Fig S5Fig. Effective Connection sign and asymmetries. We considered all pairs
of reciprocal connections, and divided them into sign categories according to their sign:
(+,+) both connections are significantly positive (+, ) one connection is significantly
positive and the reciprocal is non-significant (−,) both connections are significantly
negative (−, ) one connection is significantly negative and the reciprocal is
non-significant (+,−) one connection is significantly positive and the reciprocal is
significantly negative. Furthermore, connections pairs were divided in network
categories depending on the connected areas: i) areas belonging to the same RSN and
the same hemisphere ii) areas belonging to the same RSN but different hemispheres iii)
areas belonging to different RSNs. (A) We show all significant link pairs, with color
depending on their sign category (B) For each sign category, we show the fraction of
significant connections belonging to each network category. (C) We show all link pairs
with significant asymmetry, with color depending on their sign category (D) For each
sign category, we show the fraction of connections with significant asymmetry belonging
to each network category.
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Fig S6Fig. Noise affecting different nodes. (A) For each region, we computed the
average (over subjects) noise σ2 and sorted regions by this value. The blue line
represents the average (over subjects) noise σ2, the shaded area represents standard
deviation (over subjects). (B) In this rendering, the node size is proportional to the
average (over subjects) noise σ2.
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Fig S7Fig. Replication of fig. 6 with independent recording sessions (A) effective
connectivity Ĉ (group average over 100 subjects) vs corrected Granger causality ĉG
(group average). (B) squared Pearson correlation R2 between group Ĉ and group ĉG
for groups of increasing size n. (C) effective connectivity Ĉ (group average over 100
subjects) vs corrected instantaneous Granger causality ĉI (group average). (D) squared
Pearson correlation R2 between group Ĉ and group ĉI for groups of increasing size n.
(E) asymmetry in effective connectivity ∆Ĉ (group average over 100 subjects) vs
asymmetry in corrected Granger causality ∆ĉG (group average). (F) squared Pearson
correlation R2 between group ∆Ĉ and group ∆ĉI for groups of increasing size n.
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