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ABSTRACT

Resting-state fMRI studies show that functional connectivity (FC) undergoes rapid
fluctuations. Although the underlying neural mechanisms are poorly understood, a recent
contribution analyzing stroke patients suggested that FC fluctuations involve a dynamic
reconfiguration of cortico-subcortical interactions. Here, we analyze cortical-subcortical
dynamic FC in a large cohort of healthy subjects (Human Connectome Project data base).
Our analysis confirms that FC shifts are synchronized in cortex and subcortex. Two core
subcortical ‘clusters’ comprising, respectively, limbic regions (hippocampus and amygdala)
and subcortical nuclei (thalamus and basal ganglia) change their connectivity pattern with
cortical regions. We consistently identify two recurring FC patterns (states). In state 1, limbic
regions couple with the default mode network, in state 2 with sensorimotor networks. An
opposite pattern is observed for thalamus/basal ganglia. Our findings hint at a general
relevance of cortico-subcortical interactions in the generation of whole-brain spontaneous
FC patterns.

INTRODUCTION

Even in absence of external stimuli and overt behavior, the human brain thrives with
activity1,2, most of which is sub-threshold and occurs in the infra-slow frequency range3. A
striking feature of this spontaneous activity is that its fluctuations exhibit a well-defined
spatiotemporal organization, with correlated fluctuations across the whole-brain that clearly
emerge when looking at fMRI functional connectivity (FC) at rest. This phenomenon has
been intensively scrutinized at the cortical level, leading to a well-established paradigm
according to which activity fluctuations reflect the existence of several, canonical ‘intrinsic
networks’4. In comparison, the subcortical level has received much less attention. Yet,
subcortical structures may be fundamental for the generation of spontaneous activity, as
cortical-subcortical loops are involved in most functional brain circuits according to a recent
proposal5. Several studies have focused on single subcortical structures, such as the
thalamus6, hippocampus7 or cerebellum8, analyzing their connectivity with the cortex and
showing that they can be subdivided into regions associated with different cortical networks.
An implicit assumption of these studies is that the functional coupling between subcortical
structures (or subdivisions thereof) and the cortex is fixed, or ‘static’. However, FC at rest is
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time-varying, a phenomenon known as dynamic functional connectivity9,10 (dFC). While there
is no universal agreement on the best methodology to characterize dFC, and on its meaning
and causes11, evidence for dFC is abundant, as are results showing association between
dFC and indicators of healthy and pathological cognition12,13. Therefore, the static picture of
subcortical-cortical connectivity may hide a dynamic landscape where subcortical structures
couple flexibly with cortical regions, and vice versa. Evidence in favor of this hypothesis
comes from the recent study by Favaretto and colleagues14 (henceforth called FA22), who
investigated the fluctuations in subcortical and cortico-subcortical FC in stroke patients.
FA22 observed synchronized fluctuations in cortical and subcortical FC, and identified two
main ‘blocks’ of highly synchronized subcortical structures (one comprising hippocampus
and amygdala, the other thalamus and basal ganglia) that alternate between different
patterns of connectivity with cortical networks. These findings suggested that
cortico-subcortical interactions may be relevant for the dynamic reorganization of
whole-brain FC, hinting at their general relevance in the emergence of whole-brain
spontaneous activity patterns.

Here we build on FA22’s results and analyze dFC and cortico-subcortical interactions in a
wide cohort of healthy young participants, made available by the Human Connectome
Project15. The large sample size (N=1200) and fine temporal resolution (0.71 s) allow for a
statistically reliable characterization of dFC, reducing instabilities due to individual variability,
sampling variability, and artifacts. We wish to test several hypotheses, suggested by the
FA22. First, we hypothesize the existence of synchronous connectivity shifts in cortex and
subcortex, captured by different connectivity states or ‘dynamic functional states’. Second,
we expect a split of subcortical structures into two groups characterized by internal
synchronization and dynamic links with cortical networks. Third, in the light of previous work
on the relationship between dFC and behavior, we conjecture that individual markers of
cortical-subcortical dFC may contribute to explaining inter-individual variability in cognition.
Finally, we assume that our findings will be robust with respect to details of the analysis
pipeline used, including specific choices of cortical/subcortical parcellations.

RESULTS

Analysis overview
We considered a large sample of healthy human subjects (n=1078) from the Human
Connectome Project15,16. For each subject, we extracted average BOLD time series for all
regions of an atlas comprising 71 cortical regions and 19 subcortical and cerebellar regions
from the Freesurfer atlas18,19. We computed functional connectivity (FC) matrices for sliding
windows with a 60s duration, projected them onto the space spanned by the principal
eigenvector, and vectorized them; we then concatenated together all time windows and
subjects and performed a K-means clustering over windows. The resulting clusters are
termed dynamic functional states (DFSs).

In Fig. 1a we show the average BOLD signal of two cortical networks (sensorimotor and
default mode) and two subcortical regions (thalamus and hippocampus). Starting from
sliding-window functional connectivity, we extract the DFSs (Fig. 1b), which correspond to
different cortical-subcortical interactions. This is evident in Fig. 1d, where we show dynamic
variations of FC associated with the different DFSs. In DFS1, task-negative regions correlate
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positively with SC2 and negatively with SC1, while the opposite pattern is observed for
task-positive regions. In DFS2, this trend is reversed, as task-negative regions correlate
negatively with SC2 and positively with SC1, while the opposite pattern is observed for
task-positive regions.

Existence of two groups of subcortical regions
FA22 identified two groups of subcortical regions exhibiting anticorrelated FC fluctuations: a
first group (‘subcortical group 1’, ‘SC1’) comprising hippocampus and amygdala, and a
second group (‘subcortical group 2’, ‘SC2’) comprising thalamus, basal ganglia and
cerebellum. This result was obtained by performing a principal component analysis (PCA)
on the subcortical projection of (the first principal eigenvector of the windowed FC, of𝑣
which we consider entries corresponding to subcortical regions). The rationale behind this
analysis was that can be thought of as a ‘condensed’ representation of the windowed FC.𝑣
Consequently, performing a PCA on the subcortical projection of allows identifying𝑣
subcortical regions having similar fluctuations in windowed FC across time (windows). Two
main PCs were found, projecting respectively on SC1 and SC2.
We replicated this analysis in the HCP data set, identifying a main principal component
(PC1), explaining 34% of the total variance (Fig. 2a) [2nd component: 14%; 3rd component:
7%; all other components < 4%]. PC1 loaded positively on cerebellum, thalamus, putamen,
caudate (bilaterally) and the brain stem; it loaded negatively on hippocampus, amygdala,
nucleus accumbens (bilaterally) and had weak loadings on globus pallidus and diencephalon
(bilaterally). PC1 is also displayed in a volumetric brain representation in Fig. 2b. This
principal component aligned with the subcortical cluster division identified by FA22, as it
loaded mostly positively on regions identified as SC1 in FA22, and mostly negatively on the
majority of regions identified as SC2 in FA22. Using PC1 loadings, we can thus obtain a
division of the subcortex and cerebellum into two groups, which we also term SC1 and SC2.
Even though the main split thalamus/basal ganglia vs limbic regions
(hippocampus/amygdala) is strongly confirmed by our replication study, we report two
discrepancies: globus pallidus was included in SC1 in FA22, but it could not be included in
either SC1 or SC2 in our study (it exhibits a weak loading on PC1); the nucleus accumbens
was not included in either SC1 or SC2 in FA22, while it was included is SC2 in our study
(loading negatively on PC1).
To explore whether a more fine-grained parcellation would give a more nuanced picture
(particularly for the thalamus and cerebellum), we repeated the analysis with different
subcortical parcellations. In Fig. S1 we report the results obtained using two subcortical
parcellations20, one with 8 bilateral regions (‘TianS1’) and the other with 27 bilateral regions
(‘Tian S4’). The Tian S1 parcellation roughly aligns with the Freesurfer parcellation, but it
excludes some regions (cerebellum, brainstem, and diencephalon) and it splits the thalamus
in an anterior and posterior portion. Using this parcellation, we found a main principal
component explaining 33% of the variance [2nd component: 15%; 3rd component: 8%; 4th
component: 6%, all other components < 5%]. Results are consistent with those obtained with
the Freesurfer parcellation, with two main differences. Firstly, the nucleus accumbens is no
longer associated with SC2, as it exhibits weak values of PC1. This outcome is more
consistent with FA22. Moreover, we a neat split of the thalamus is observed: the anterior
portion is strongly associated with SC1, while the posterior one has weak values of PC1, and
it cannot be clearly included in either SC1 or SC2. Results obtained with the Tian S4
parcellation (which provides further subdivisions of Tian S1 regions) were very consistent.
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Specifically, we found a main PC (PC1) explaining 24% of the total variance [2nd
component: 8%, 3rd component: 5%, all other components < 4%]. PC1 loaded positively on
regions of the anterior thalamus, caudate and putamen; negatively on regions of the
hippocampus and amygdala; and weakly on regions of the nucleus accumbens, posterior
thalamus and globus pallidus. To further confirm the split between the anterior and posterior
portion of the thalamus, we additionally considered the anatomical Morel atlas of the
thalamus21, which provides divisions of the thalamus into nuclei (at the coarsest granularity
level, the thalamus is split into 7 bilateral portions). We combined the Tian S1 parcellation
with the Morel atlas (replacing the anterior/posterior thalamus in Tian S1 with the 7 regions
of the Morel atlas, and maintaining the other subcortical regions as given in Tian S1).
Results are consistent. We found a main principal component explaining 28% of the total
variance [2nd component: 10%, 3rd component: 6%, all other components < 4%]. PC1 loads
positively on the medial, lateral and anterior regions of the thalamus, and more weakly on
the posterior regions and the additional nuclei (Fig. S1). Finally, we considered a possible
subdivision of the cerebellum into 7 regions22 associated (by strong values of static FC) with
one of the classical seven cortical RSNs23. Adding cerebellar regions to the Tian S1 regions,
we obtained results consistent with the previous ones. PC1 loads positively on anterior
regions of the thalamus, and more weakly on the posterior regions and the additional nuclei
(Fig. S1). In summary, this component is very robust and found independently of the specific
subcortical parcellation used.

Coordination of cortical and subcortical connectivity shifts
Another key finding in FA22 was the general coordination between cortical and subcortical
connectivity shifts. Mirroring the analysis in FA22, we computed the average windowed FC
within each RSN ( approximating the FC with its first eigenvector and taking the average of
the absolute values within each RSN), and computed an RSN-wide FC change as the
difference between two successive windows. We identified an ‘FC jump’ whenever this
difference falls in the upper tail of the corresponding distribution (5th percentile). Finally, we
computed conditional probabilities of observing an FC jump in RSN1, given𝑃(𝑅𝑆𝑁1|𝑅𝑆𝑁2)
that a jump is observed in RSN2. Synchronization between cortical and subcortical jumps
implies a higher-than-chance conditional probabilities of cortical given subcortical jumps and
vice versa. All probabilities were >50% (Fig. 2c), implying that FC jumps are strongly
synchronized among all regions. Notably, conditional probabilities involving cortical networks
and subcortical groups being all >60%. In particular, among the strongest conditional
probabilities are those involving simultaneous jumps between SC1 (basal ganglia/thalamus)
and cortical networks.

Dynamic functional states
To find dynamic functional states (DFSs), we performed K-means clustering for increasing
values of K (the total number of clusters), using the GordonLaumann+FreeSurfer
parcellation17,18,19. As typical for K-means, increasing K leads to the survival of the most
robust clusters and the splitting of the dimmer into subclusters. The ‘optimal’ number of
clusters (assessed though the Silhouette coefficient) should correspond to the largest
silhouette value (Fig. S5). Unsurprisingly, the two states found at K=2 (best choice of K) are
also the two most stable states across the choice of K. In Fig. 3a/b, we show these two
states displayed in a matrix and in a brain surface/volume representation respectively. DFS1
displays high DAN/DMN segregation, positive limbic-DMN connectivity and negative
limbic-DAN connectivity, closely resembling the typical pattern of healthy static FC. DFS2
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presents a significant DAN/DMN integration, negative limbic/DMN connectivity and a
negative coupling between cognitive clusters and sensorimotor clusters. These two states
capture the competitive relationship between basal ganglia/thalamus (SC1) and limbic nuclei
(SC2), with DFS1 showing a positive correlation between DMN and SC2 and DFS2 showing
the opposite FC pattern. Additionally, DFS1 maintains a FC profile similar to healthy static
FC. The correlation between cortical and subcortical regions in the two states is summarized
in Fig. 3c.

We compared results for K=5 with the 5 states found by FA22 in the Washington University
data set (‘WU’). We only partially replicate the patterns found in the previous study. Fig. S6b
shows a confusion matrix representing the similarity of the K=5 states found by FA22 and the
states found in the HCP data set (‘HCP’). Similarity is assessed by the correlation between
the state centroids. The DSF1 (WU) is approximately reproduced by the DFS1 (HCP), with a
correlation of 0.82. This state corresponds to the DFS1 found with K=2. The DFS3 (WU) is
well reproduced by the DFS4 (HCP; correlation value of 0.7), and partially reproduced by the
DFS1 and DFS3 (HCP; with correlation values of 0.5 and 0.46 respectively). DFS4 (WU)
resembles (the correlation value is 0.68) the DFS3 (HCP), as they both show a weak
cortico-subcortical connectivity. DSF2 and DFS5 (WU) could not be associated with any of
the DFSs found in HCP. Notably, DFS2 (WU) was particularly common in stroke patients at
the acute stage, showing abnormal integration of cortical connectivity. Comparable fraction
times and dwell times are observed for both data sets.

We tested the robustness of the K=2 analysis with respect to preprocessing and parcellation
steps. We replicated the analysis by changing the cortical and subcortical parcellation used.
For a different cortical parcellation, we used the well-known Schaefer atlas with 100
regions24. For the Schaefer atlas, regions are divided into RSNs according to the classical
classification23, where the control network (CON) includes regions associated to the
frontoparietal network and the VAN includes regions associated to the cingulo-opercular
network17. For a different subcortical parcellation, we used the same atlas described above20,
which does not include cerebellar regions. In Fig. S7 we show the results of changing
cortical and subcortical parcellation, respectively. The core structure of the DFS (K=2) is
preserved across the parcellation changes. In particular, DFS1 is characterized by a strong
DAN-DMN anticorrelation, while the hippocampus couples positively with the DMN and
negatively with the task positive networks (DAN and primary networks). Conversely, DFS2 is
characterized by a strong segregation of the primary networks from the association
networks. Hippocampus/amygdala (SC2) correlate positively with primary networks and
negatively with association networks, while the opposite pattern is observed for
thalamus/basal ganglia (SC1). Next, we investigated the impact of specific preprocessing
steps. We first addressed the impact of the temporal downsampling step (used to match the
TR of previous studies, TR=2). Downsampling had virtually no effect on the clustering results
(Fig. S3). We then tested the impact of global signal regression (GSR). Omitting GSR
produced a substantial change in the structure of DFSs (Fig. S2), confirming the sharp effect
of this preprocessing step. Finally, to test whether the lagged cross-covariance structure of
the data is sufficient to yield the observed DFSs, we applied phase randomization (PR). PR
generates surrogate data that preserve the empirically measured cross-covariances but are
linear and Gaussian25. As shown in Fig. S4, DFSs resulting from the PR-generated time
series closely resemble the ones obtained with the original data. This correspondence is
furtherly investigated in the confusion matrix represented in Fig. S4b. The latter shows a
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neat one-to-one correspondence between the two sets of clusters, with very similar
centroids.

Correlation with behavior
We tested a possible correlation between individual dynamic FC metrics and individual
behavioral traits. The large array of behavioral variables (“subject measures”) available in
the HCP data set were summarized into a few general descriptors capturing key aspects of
cognition and behavior (Fig. 4c). We first used the positive-negative mode (PNM) of
behavior-FC covariation26, which is a single indicator of global behavioral/social function
(Methods). In addition, we considered seven individual markers identified in a recent study27

which capture different aspects of cognition (Fig. 4c).
We first tested for correlation between behavioral metrics and individual fraction/dwell times
obtained with K=2. We performed a linear regression using the behavioral metrics as
dependent variables and the fraction/dwell times as predictors. The total regression R2 was
always lower than 0.01, meaning that fraction/dwell times explain less than 1% of the
variation in the behavioral metrics considered (Fig. 4d). We thus found no significant effect of
fraction/dwell times on behavioral metrics (permutation test on R2, corrected for 32
comparisons). In addition, we tested whether the probabilities of synchronized jumps
between cortical regions and the two main subcortical clusters could predict behavior. We
averaged the conditional probabilities (Fig. 2c) by aggregating cortical regions, regions
belonging to SC1, and regions belonging to SC2, obtaining a 3 x 3 matrix of synchronized
jumps. From this matrix we extracted four entries corresponding to the probabilities of
synchronized jumps between the cortex and, respectively, SC1 and SC2. We performed a
linear regression using the behavioral metrics as dependent variables and these probabilities
as predictors. The total regression R2 was always lower than 0.01 and non significant (Fig.
4d). Finally, we tested whether the average FC patterns in each DFS could predict behavior.
We computed an average DFS pattern for each individual subject, by averaging the sw-FC
over time windows assigned to one of the K=2 DFSs (Fig. 4a). This can be considered as a
DFS pattern ‘adjusted’ to each participant. We averaged the FC patterns by aggregating
task-positive regions (SMN, DAN, VIS), task-negative regions (CON, DMN), regions
belonging to SC1, and regions belonging to SC2, obtaining two 4 x 4 matrices (one for each
DFS) for each participant. We performed a linear regression using the behavioral metrics as
dependent variables and the entries of this matrix as predictors. The total regression R2 was
significant for the PNM, which displayed R2 = 0.07, with a significant effect (P=0.003,
permutation test on R2 , corrected for 32 comparisons). Higher values of the PNM are
associated with higher segregation within the cortex, and between the cortex and SC1 in
DFS1; and, conversely, higher integration within the cortex, and between the cortex and SC1
in DFS2 (Fig. 4b).
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Fig. 1. Analysis overview. This work focuses on dynamic cortico-subcortical interactions.
As shown by FA22, two groups of subcortical regions (a ‘limbic’ group comprising
hippocampus/amygdala and a ‘subcortical nuclei’ group comprising thalamus/basal ganglia)
couple dynamically with cortical regions, showing flexible connectivity with task-positive
regions (sensorimotor/dorsal attention network) and task-negative regions (default mode
network). Connectivity switches are well captured by ‘dynamic functional states’ (DFSs), i.e.,
recurring patterns of whole brain (cortical-subcortical) connectivity. (a) (Average) BOLD
signal from four regions belonging respectively to the sensorimotor network, the default
mode network, the limbic group and the subcortical nuclei group for an example subject. (b)
Overview of the analysis pipeline. Sliding window functional connectivity (swFC) is computed
using sliding windows of 60 s duration (with a step of 3 s). Then, each swFC matrix is

approximated as , by projecting on the leading eigenspace defined by the first𝑣
𝑖
 × 𝑣

𝑖
𝑡

eigenvector vi. The upper triangular part of these swFC matrices is vectorized and
concatenated across windows and subjects, in order to finally apply a timewise K-means
clustering algorithm with correlation distance to identify a set of recurring swFC patterns or
DFSs. Each sliding window is assigned to a specific DFS. (c) BOLD signal of four key
regions (same as in panel a), with different colors highlighting the DFS of the corresponding
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window (the window centered at that point). Two DFSs capture the dynamic coupling
between subcortical and cortical regions. In particular, in DFS1 the hippocampus couples
positively with the default mode network and negatively with the sensorimotor network, while
the thalamus shows an opposite trend. In DFS2, this pattern of subcortical-cortical
connectivity is reversed (d). Time courses of the subcortical-cortical swFC, shaded with
different colors according to the corresponding DFSs. The dynamic coupling described
above can be noted: switching trends of subcortical-cortical connectivity are summarized
graphically in the brain plots on the right.

Fig. 2. Existence of two main clusters of subcortical regions We applied PCA on the
time evolution of (principal eigenvector of the sliding-windows FC), restricting attention to𝑣
subcortical regions (a) The first PC shows the competitive relationship between two different
subcortical clusters: SC1, which includes the basal ganglia, thalamus and cerebellum, and
SC2, which includes the limbic nuclei. CER: cerebellum; THA: thalamus; CAU: caudate
nucleus; PUT: putamen; GP: globus pallidus; BST: brain stem; HIP: hippocampus; AMY:
amygdala; NAc: nucleus accumbens; DIE: diencephalon (b) Visualization of the first PC
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using a volumetric representation of the brain (c). We computed a metric of “FC change”
within each resting state network (RSN) by computing the change of (principal eigenvector𝑣
of the sliding-windows FC) across adjacent time windows (left). For each RSN, we record an
“FC jump” whenever the change of is in its 5th upper percentile (middle; blue circles). We𝑣
then compute conditional probabilities of observing jumps in each RSN, conditioned on
concurrent jumps in other RNSs (right).

Fig. 3. DFS analysis. (a) Matrix representation of the Dynamic Functional States displayed
globally (top) and with a focus on the cortico-subcortical interactions (bottom). The most
robust states observed for K=2 capture the alternating connectivity pattern observed in the
Washington dataset between limbic regions (i.e., hippocampus and amygdala) and
task-negative (default mode) vs. task positive (dorsal attention and sensorimotor) networks.
(b) Volumetric representation of the Dynamic Functional States (K=2) (c) Average
connectivity between subcortical clusters (SC1 and SC2) and cortical networks in the two
most robust DFSs (d) Distribution of fraction and dwell times for the K=2 states. FTs/DTs
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was averaged within subjects and then plotted across subjects, resulting in violin plots that
display the mean values (black lines). VIS: visual network; SMN: sensorimotor network;
AUD: auditory network; CON: cingulo-opercular network; VAN: ventral attention network;
DAN: dorsal attention network; FPN: frontoparietal network; DMN: default mode network.

Fig.4. Functional connectivity and behavior We investigated the impact of functional
connectivity differences among individuals on behavior by carefully scrutinizing the
relationships between different facets of the former and the latter through a series of
Generalized Linear Models (GLMs). (a) For each subject we separately averaged the
windows assigned to DFS1 and DFS2 by the clustering procedure, resulting in an individual
representation of the states. These representations were reduced in dimensionality to 4x4
matrices (of which we retained the upper-triangular part) averaging entries pertaining to
primary networks (PRI), cognitive networks (COG) and the two subcortical components
SC1/2. (b) We show t-statistics associated with the coefficients of the linear model trying to
predict the PNM from individual 4 x 4 connectivity patterns in the two DFSs. (c) In order to
encompass the complexity of the multitude of behavioral and demographic indices available
thanks to the HCP consortium, we employed two alternative methodologies: the first one26

established a behavioral positive-negative mode (PNM) allowing to determine a score for
each participant depending on their overall performance in a series of 150
behavioral/demographic tests (for a complete list see Supplementary Information). The
second one27 grouped 38 behavioral/demographic indices into 7 clusters: mental health
(MTL), pain (PAI), low cognitive functions (LCF), delay discounting (DDT), high cognitive
functions (HCF), substance abuse (SUB), externalizing problems (EXT). From each
community we extracted a score for each subject. (d)We then considered several aspects of
FC as predictors (fraction/dwell times, P(jump in area1|jump in area2), individual DFSs) in an
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exploratory analysis to determine the most relevant representations by the means of their
coefficient of determination (magnified and highlighted in black).

DISCUSSION (1954)

Human neuroscience has traditionally focused on the neocortex, often neglecting the
subcortical brain. This ‘corticocentric bias’28 reflects both technical limitations in imaging the
subcortex and the widely held misconception that ‘higher’ cognitive functions in humans
would mostly depend on the neocortex, considered as the culmination of brain evolution.
Research in the last decade has shown that ‘ancient’ subcortical regions underwent
significant reorganization accompanying cortical expansion during evolution29, and they play
a critical role in advanced cognitive functions30,31,32. A recent proposal5 holds that cognition
would rest on a highly parallel, ‘shallow’ neural network architecture whereby hierarchical
cortical processing is complemented by cortical-subcortical loops. While these
considerations would suggest systematically including subcortical regions in the description
of large-scale brain dynamics, only few studies have focused on whole-brain
cortico-subcortical functional connectivity (FC) so far. The majority of these works portray a
static coupling between cortex and subcortex, trying to ‘affiliate’ subcortical structures to
well-known cortical resting state networks through their static FC33,34,35,36,37. An exception is
FA22, where dynamic functional connectivity was investigated in a mixed sample including
mainly stroke patients, providing evidence that subcortical structures couple flexibly with
cortical networks. In the present work, we focus on a much larger sample of healthy young
subjects, the Human Connectome Project HCP1200 data set. Our results provide substantial
support for the main conclusions of FA22.

In FA22, the dynamic FC analysis identified two main clusters of subcortical regions. The
first (‘subcortical cluster 1’ or ‘SC1’) comprised the thalamus, basal ganglia and cerebellum;
the second (‘subcortical cluster 2’ or ‘SC2’) the hippocampus and the amygdala. These two
clusters are already distinguishable at the level of subcortical static FC (Fig. S8). Regions
within the two clusters show positive FC, while negative FC is observed between the two
clusters. Fine-grained parcellations of the thalamus and cerebellum confirm this ‘two-block’
picture with minor refinements (the posterior thalamus and the ‘visual’ cerebellum show only
weak affiliation with SC1). In terms of (static) cortical FC, SC1 shows weakly negative
coupling with primary regions (SMN, AUD, VIS) and weakly positive coupling with
associative networks (CON, DAN, VAN, FPN, DMN). On the other hand, SC2 shows a
strongly positive FC with task-negative regions (DMN), a weakly positive FC with primary
networks, and a weakly negative FC with associative networks. However, our dynamic FC
analysis reveals that static FC ‘hides’ a rich dynamic picture where the two subcortical
clusters couple flexibly with cortical regions. In particular, the two clusters also have
anticorrelated fluctuations in FC. When doing a principal component analysis on
sliding-window FC, we identified a first principal component with positive loadings on SC1
and negative loadings on SC2 (Fig. 2a), consistently across different subcortical
parcellations (Fig. S1). The two clusters thus seem to behave as ‘cohesive blocks’ in terms
of their static and dynamic FC. The internal cohesion of these two clusters is in agreement
with both classical and recent results. SC2 comprises regions conventionally considered part
of a single system, the ‘limbic system’ for emotion and memory38,39. The tight coupling within
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SC1 is less straightforward to interpret. The cerebellum and basal ganglia were traditionally
thought to be independent, giving complementary contributions to learning and motor
control40, and to communicate only at the cortical level. However, recent findings provided
solid evidence that the two systems are reciprocally interconnected not only at the level of
the thalamus41, but also through more direct subcortical pathways42,43. This suggests that
cerebellum, basal ganglia and thalamus constitute an integrated network42 that acts in
concert with the cortex via cortical-subcortical loops. On the contrary, the apparent
antagonism between the two clusters is neither widely discussed nor reported in the
literature. An exception is a recent contribution43 , where cortical-subcortical interactions
were investigated with edge-centric FC, showing that edges involving hippocampus and
amygdala have a distinct pattern from those involving striatum and thalamus.

FA22 showed that large shifts in the connectivity of cortical regions are accompanied by
large shifts in the connectivity of subcortical ones, providing evidence that FC
rearrangements are a phenomenon involving the cortex and the subcortex jointly. Here we
confirm this picture, observing that subcortical connectivity shifts predict cortical shifts with
>60% accuracy and vice versa (Fig 2c). One may speculate that FC shifts are driven by
subcortical regions, but possible mechanisms remain very hypothetical. Invasive recordings
in rats have revealed that different types of subcortical activity, such as slow-frequency
activity45, ripples46 and dentate spikes in the hippocampus47, regular spikes48 and spindles49

in the thalamus can trigger widespread cortical effects. In two cases, simultaneous
electrophysiological/fMRI recording allowed observing subcortical effects on the cortical
BOLD signal45,49, such as FC changes triggered by hippocampal events45. However, no such
evidence has been collected in humans so far. Given the difficulty of performing causal
manipulations and invasive recordings in humans, future work could at least characterize
directional interactions between subcortical and cortical areas50 through Granger causality or
effective connectivity51.

Simultaneous shifts in cortical-subcortical FC arrangements are well captured by dynamic
functional states (DFSs). Our analysis identified K=2 as the optimal number of states, and,
congruently, identified two states that are consistently observed across different values of K
(Fig. S5). The first state (DFS1) is characterized by a strong DAN-DMN anticorrelation, and
a correspondingly antinomic pattern in the coupling of SC2 (hippocampus/amygdala) with
the cortex: SC2 couples positively with the DMN and negatively with the task positive
networks (DAN and primary networks). Conversely, the second state (DFS2) is characterized
by a strong segregation of the primary networks from the association networks. SC2
correlates positively with primary networks and negatively with association networks, while
the opposite pattern is observed for SC1. Thus, these two states capture the competitive
relationship between SC1 and SC2, and their flexible coupling with task-negative vs.
task-positive regions.

Currently, we hesitate to advance strong hypotheses on what could drive these state
alternations. However, recent literature suggests arousal as one possible mechanism, given
its synchrony with FC changes11. Based on concurrent fMRI-pupillometry or fMRI-EEG, clear
evidence was given that arousal can modulate FC 52,53,54,55,56,57,58. In particular, some works
related arousal variations with FC dynamics, identifying ‘low-arousal’ and ‘high-arousal’
states. Decreases in arousal were associated with decreases in anticorrelation between the
default mode and task-positive networks52, and a low-arousal state characterized by
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negative FC between the thalamus and primary networks and reduced DAN-DMN
anticorrelation was identified55. This pattern shows remarkable similarities with DFS2 in the
present study. These similarities suggest that arousal could contribute to DFS switches we
observe. If arousal plays a role, then it would not be surprising to observe an involvement of
subcortical regions in state switches, as the role of the thalamus in the regulation of arousal
is well recognized59. In this context, our findings would suggest that thalamus-mediated
changes in arousal have a large impact on the organization or cortical and limbic
connectivity.

While we qualitatively reproduced the main results of FA22, there are some discrepancies
between the set of DFSs found in FA22 and those found in the present work. Using a very
large sample (n=7500), Abrol et al.60 reported typical similarities above 0.8 between the
cluster centroids of DFSs obtained in different subsamples - a stronger consistency than the
one observed between the present study and FA22. There are several possible explanations
for this difference. First, the cohort studied in FA22 mostly included stroke patients. The
latter generally present widespread alterations of FC61, such as reduced interhemispheric FC
and increased intra-hemispheric FC. One of the DFSs found in FA22 (DFS2) corresponded
to this stereotypical ‘stroke’ pattern, and it is therefore unsurprising that we miss it in the
present study. Other differences (such as the absence of a pattern corresponding to the
DFS5 in FA22) may be due to additional discrepancies between the data sets. The two
cohorts markedly differed in terms of average age (53 years for FA22, 23 years for HCP), a
variable that has a large influence on the functional connectome62. Acquisition was not
identical (TR=0.7s in this study, TR=2s in FA22), and preprocessing pipelines exhibit minor
differences (nuisance regression was performed through ICA-fix for HCP and regression of
nuisance time series in FA22).

Testing for “significance” of the observed DFSs is very hard, as there is no consensus on the
appropriate null model to use in this case. While phase randomization (PR) has been often
employed to test for dynamic connectivity25, PR surrogates match all spectral and
cross-correlation properties as the original data (power spectra and cross-covariances at all
lags are preserved), and it is quite contentious that they can be genuinely considered to lack
FC dynamics63. Many dynamical features observed in fMRI times, such as a large variability
in sw-FC64, co-activation patterns65, or ‘events’ of high-amplitude co-fluctuation66, also
appear in PR surrogates25,67,68. In fact, while PR data are stationary (in the statistical sense),
this does not imply that observed window-to-window FC variations are just sampling noise,
but merely that such variations do not follow a well-defined temporal trend. Our observations
of closely matching DFSs in PR surrogates is in line with previous literature60,63, with which
we share the main conclusion, i.e., that the emergence of DFSs substantially depends on
the lagged cross-covariance structure of the time series.

We investigated whether dynamic FC can predict aspects of individual cognition or behavior.
Looking for statistically reliable association between a large set of behavioral variables
(subject measures, SMs) and brain function may require very large samples69. Therefore,
despite the availability of 262 variables across 15 behavioral domains in the HCP data set,
we restricted attention to a few summary metrics effectively summarizing several SMs. The
first was the ‘positive-negative mode (PNM) of population covariation’26, highlighting a global
individual ‘function outcome’ associated with cognitive function, emotion regulation, alcohol
and substance use. We then considered seven ‘factors’27 summarizing different cognitive
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domains. We did not find a significant relationship between SMs and DFS metrics such as
fraction times (FT) and dwell times (DT), with all R2 < 0.005. Analogously, we did not find a
relation between behavior and the probabilities of cortical/subcortical FC jumps (R2 < 0.01).
Consistently with our findings, Lee et al.70 previously reported weak correlations of behavior
with DT/FT co-activation patterns. These results suggest that temporal summary metrics of
dynamic FC, such as FT/DT and jump probabilities, do not significantly contribute to
explaining inter-individual behavioral variability. This is possibly due to the fact that such
summary measures do not account for variation in the strength of specific FC links. A
link-wise analysis of static FC26 explained a large fraction of the PNM variance (R2=0.75).
Similarly, a significant fraction of behavioral variability in the HCP data could be predicted
using all link strengths in the non-lagged and 1-lagged FC matrices71. When considering
network-averaged FC strengths associated with DFS1 and DFS2 in single individuals, we
obtained significant correlations, up to R2=0.07 for the PNM and a measure of. In particular,
more positive values of the PNM (generally associated with better cognitive health)
corresponded to a dynamic cortical-subcortical connectivity pattern, where cortex and SC1
are less integrated in DFS1, and more integrated in DFS2. Healthier cognition may thus
require an alternation of states with higher and lower cortico-subcortical integration.

In conclusion, our study replicates the main findings of FA22. The human brain at rest is
characterized by large fluctuations in functional connectivity, with synchronized changes
occurring in the cortex and the subcortex. Connectivity oscillates between states
corresponding to different patterns of cortical-subcortical connectivity, captured by different
dynamic functional states (DFSs). Two main groups of subcortical regions, one comprising
the thalamus, basal ganglia and cerebellum, the other comprising limbic regions such as
hippocampus and amygdala, show flexible coupling arrangements with task-positive and
task-negative cortical regions. The mechanisms underlying synchronous cortical-subcortical
connectivity changes are presently unknown and demand further investigation, possibly
integrating neuroimaging results with electrophysiologic and behavioral measurements.
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MATERIALS AND METHODS

Washington dataset

All subjects included in FA22 were scanned with a 3T Siemens Tim-Trio scanner at the
Washington University School of Medicine with a standard 12-channels head coil. They were
divided into four experimental groups: three groups of stroke patients, depending on the time
they were scanned after stroke onset (1-2 weeks, 3 and 12 months after) and one
age-matched control group. Pulse sequence included a gradient-echo EPI sequence with
TR=2s acquiring 32 contiguous 4 mm slices, with 4x4 mm in-plane resolution while fixating
on a small white crosshair. Pre-processing included: regression of head motion, signal from
ventricles and Cerebrospinal fluid, signal from white matter, global signal; temporal filtering
retaining frequencies between 0.009 and 0.08 Hz; frame censoring, with framewise
displacement of 0.5 mm. After all the pre-processing steps, a total of 20 controls and 47
patients with first-time strokes were considered for the analysis.

Human Connectome Project dataset

The HCP’s dataset included 1206 participants, who underwent neuroimaging sessions and a
large battery of behavioral tests. Of the 1206 participants, 1096 were scanned with a
modified 3T Siemens “Connectome skyra” scanner at the Washington University, using a
standard 32-channels Siemens receive head coil and a specifically designed “body”
transmission coil. Pulse sequence included slice-accelerated multiband acquisition with a
multiband factor of 8, spatial resolution of 2 mm isotropic voxels and TR=0.7s. Participants
underwent two 15-minutes scanning sessions with opposite phase encoding directions (L/R
and R/L), while fixating on a crosshair. We included in the analysis only participants that
were scanned both in the L/R and in the R/L direction for 840 s (n=1078). We used
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pre-processed data provided by the HCP. The HCP’s preprocessing pipeline is divided into
two distinct protocols72: one applied entirely on the volume data involving temporal filtering
and de-noising and the second one regarding mapping the data to cortical surfaces and
subcortical gray-matter domains using the Connectivity Informatics Technology Initiative file
format (CIFTI). One promising approach for removing structured artifacts involves denoising
each 15-minutes rfMRI scan with the Independent Component Analysis (ICA) based tool
called FSL’s MELODIC. This tool, paired with the FMRIB’S ICA-based X-noise filter, allows
decomposing the data into multiple components (comprising a spatial map and a
corresponding time course) and to classify them in order to subsequently regress out the
confounding ones. Additionally, in line with FA22, we included two supplementary
pre-processing steps: signals were band-passed in the frequency band [0.009 Hz,0.08 Hz]
with a Butterworth filter of order 1 and the mean GM signal was linearly regressed (global
signal regression).

Parcellations

For our initial analysis, we used the same parcellation used in FA22. Time series were
projected on the cortical surface of each subject divided according to the resting state
functional connectivity boundary mapping developed by Gordon et al.17. This technique
leverages abrupt transitions in resting-state functional connectivity (RSFC) to noninvasively
identify the borders separating cortical areas. The original parcellation includes 333 regions,
but all regions with <20 vertices (~50 mm2) were excluded due to low signal-to-noise ratio
(SNR) (Siegel et al., 2016). The remaining 324 regions were further reduced to 71 by a
clustering procedure14 and grouped into 8 resting state networks (RSNs): Visual Network
(VIS), Sensory Motor Hand-Mouth Network (SMN), Auditory Network (AUD), Control or
Cingulo-Opercular Network (CON), Ventral Attention Network (VAN), Dorsal Attention
Network (DAN), Fronto Parietal Network (FPN), Default Mode Network (DMN), Limbic
Network (LIM). We also considered 19 subcortical and cerebellar regions derived from the
FreeSurfer subcortical atlas18,19. Expanding the initial analysis to aid the investigation of
cortico-subcortical interactions, we used a different parcellation of the subcortex20, which
provides four different parcellations with an increasing degree of granularity. The coarsest
parcellation includes 8 bilateral regions, while the most fine grained one comprises 27
bilateral regions (see Supplementary Table 2 of Tian et al.20). This subcortical cartography
was based on resting state functional connectivity gradients (“gradientography”): region
boundaries were identified on the basis of strong shifts in functional connectivity gradients.
To analyze the cerebellum, we considered the cerebellar parcellation by Buckner et al.22.
This parcellation was obtained by considering the resting-state FC between the cerebellum
and the cortex. In particular, the cortex was divided into seven RSNs 23, and the FC between
each voxel in the cerebellum and each cortical RNS was assessed; based on the maximal
FC, cerebellum voxels were assigned to one of seven clusters based on their maximum
correlation with cortical regions. Finally, we considered an anatomical parcellation of the
thalamus (‘Morel atlas’) provided by Krauth et al.21. This map was obtained from detailed
histological maps of the thalamus.

Sliding-window functional connectivity

FC dynamics were investigated through sliding window temporal correlation, one of the most
straightforward approaches for dynamic FC analysis. Similarly to a moving average function,
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this technique computes a succession of pairwise Fisher z-transformed Pearson correlation
matrices, relative to windows of a given width. These correlation matrices are informative of
the time-varying FC between the networks considered in the brain parcellation of choice.
Importantly, to compensate for the difference in TR durations between the two datasets (i.e.,
FA22's TR=2s and HCP’s TR=0.7s), we down-sampled HCP’s timeseries to one third of the
points. Then, from the down-sampled timeseries, we extracted windows lasting
approximately one minute (28 TRs), with a sliding step of 3 TRs (approximately 2s).
Window-length choice represents a critical point in dynamical functional connectivity
analysis73. Namely, having windows shorter than the analyzed components’ wavelengths
might cause spurious fluctuations in dFC. Similarly, too long windows might prevent
legitimate functional fluctuations to be identified. Thus, we selected our sliding window’s
width on the basis of previous results, matching FA22’s choice. Additionally, each correlation
matrix was approximated by projecting it onto the corresponding eigenspace, defined by the
first eigenvector . Since eigenvectors are defined less than the sign, we averted this𝑣

𝑖

problem by translating each eigenvector into the reconstructed square matrix , saving𝑣
𝑖

× 𝑣
𝑖
𝑡

the vectorized upper-triangular part alone, avoiding redundancies in the data. Ultimately, all
the resulting vectors were concatenated across windows, subjects, and time points.

Dynamic Functional States’ definition

The last step for defining Dynamic Functional States (DFS), required the application of a
time-wise K-means clustering procedure with correlation distance. K-means is a clustering
technique, aiming to partition an N-dimensional population into k clusters based on a
sample. Each observation belongs to the cluster with the nearest mean (e.g., cluster
centroid), serving as a prototype of the cluster. In this case, this procedure resulted in a set
of five Dynamic Functional States (all the operations described up to now are summarized in
Fig. 1b). This algorithm minimizes within-cluster variances, taking into account a range of
possible distance metrics. For this analysis, we employed the correlation distance, which is
defined as follows:

𝑑(𝑥, 𝑐) = 1 − (𝑥−𝑥)(𝑐−𝑐)'

(𝑥−𝑥)(𝑥−𝑥)' (𝑐−𝑐)(𝑐−𝑐)'

Where: is an observation and is a centroid. In addition, ,𝑥 𝑐 𝑥 = 1
𝑝 (

𝑗=1

𝑝

∑ 𝑥
𝑗
)1

𝑝
→  

and is a row vector of ones. Furthermore, the optimal K value was𝑐 = 1
𝑝 (

𝑗=1

𝑝

∑ 𝑐
𝑗
)1

𝑝
→ 1

𝑝
→ 𝑝

deducted by comparing the clustering performances with different numbers of clusters (from
2 to 6), with respect to a metric for interpreting and validating the consistency within clusters
of data: the Silhouette value. This parameter is a measure of the fitness of a certain data
point for its cluster of belonging, compared to other clusters. This metric ranges from -1,
indicating the lowest fitness and +1, indicating the highest fitness. Then, for a certain data
point , where is the cluster of belonging, the Silhouette value is defined as follows:𝑖 ∈ 𝐶

𝐼
𝐶

𝐼

𝑠(𝑖) = 𝑏(𝑖)−𝑎(𝑖)
𝑚𝑎𝑥{𝑎(𝑖),𝑏(𝑖)} ,  𝑖𝑓 𝐶

𝐼| | > 1
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Where, is the mean distance between and all the other data points belonging to the𝑎(𝑖) 𝑖
same cluster, while is the smallest mean distance between and all the data points𝑏(𝑖) 𝑖
belonging to other clusters.Additionally, the clustering procedure associated each sliding
window to a specific DFS, so that for each subject we had a discrete time series (with n𝑥(𝑛)
ranging from 1 to 746), where each value represented the active Dynamic Functional State
for that time window. These time courses allowed us to evaluate three dynamical measures
for each state, namely: fraction time , being the percentage of times during which a state is𝑓

𝑘

active:

𝑓
𝑘

= #(𝑥(𝑛)=𝑘)
746 , 𝑘 = 1,..., 𝐾

where stands for the number of occurrences of the condition . The dwell time , being#(𝑎) 𝑎 𝑙
𝑘

the average length of periods in which each state remains continuously active:

𝑙
𝑘

= 1
𝐿

𝑘| | 𝑖=1

𝐿
𝑘| |

∑ 𝐿
𝑘
[𝑖]

where is the set having cardinality , with each element representing the length of𝐿
𝑘

𝐿
𝑘| | 𝐿

𝑘
[𝑖] 

a period of continuous activity of state . The transition probability , from to𝑘 𝐷𝐹𝑆
𝑖

> 𝐷𝐹𝑆
𝑗

𝐷𝐹𝑆
𝑖

, where:𝐷𝐹𝑆
𝑗

𝐷𝐹𝑆
𝑖

> 𝑗 = #(𝑥(𝑛=𝑖)∧𝑥(𝑛+1)=𝑗)
#(𝑥(𝑛)≠𝑥(𝑛+1))

being the ratio between the number of jumps from to over the total amount of𝐷𝐹𝑆
𝑖
 𝐷𝐹𝑆

𝑗

jumps.

Phase randomization

Phase randomization (PR) is a common framework for generating null data extensively
employed in physics74. Recently, it has also been applied to fMRI data for studying dynamic
FC75,76. The PR procedure performs a Discrete Fourier Transform (DFT) of the original time
series, adds a uniformly distributed random phase to each frequency, and then performs the
inverse DFT to create surrogate data. Crucially, the random phases are created individually
for each frequency, but they remain consistent across various regions of the brain. Adding
the same random phase to the same frequency components of the RSNs preserves the
static FC and the lagged cross-covariance structure in the surrogates (in addition, also the
mean, variance and power spectrum of the signals are preserved). This class of surrogates
correspond to the null hypothesis that time series are generated by a linear, stationary
Gaussian process25.

Behavioral analysis

The HCP provides a large array of subject measures (SMs; i.e. individual measures for each
participant), covering demographic, psychometric and behavioral information. The full list of
SMs with a detailed description can be found in the HCP 1200 Manual. SMs comprise
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demographics (e.g., education, employment, income); physical and mental health history,
present and past use of tobacco, alcohol, marijuana, and other drugs; Symptoms/history of
eating disorders, depression, psychosis, antisocial personality, obsessive-compulsive
disorder, post-traumatic stress, social phobia, panic attack; Folstein MiniMental State Exam;
Pittsburgh Sleep Quality Index; Parental Psychiatric and neurologic history; Handedness
assessment; Menstrual cycle and other endocrine information in females; Urine drug
assessment, breathalyzer test, Blood test; NIH Toolbox behavioral tests (which includes 19
sub-domains within the broad domains of cognitive, motor, emotional and sensory functions);
Non-NIH Toolbox behavioral tests (color vision, contrast sensitivity, personality, attention,
episodic memory, fluid intelligence, emotion processing, spatial processing, and delay
discounting)
Starting from a subset of 158 of such SMs, Smith et al.26 performed a canonical correlation
analysis (CCA) linking the SMs with the individual static FC matrices, which resulted in a
principal axis of FC-SM co-variation. They list 59 SMs (listed in Supp. Inf.) with a large
loading onto the principal axis. We replicated the analysis by Smith et al.26 using the same
methodology. However, we used a larger cohort of subjects from the HCP database (i.e.
1206 vs 461 HCP subjects), and we computed connectivity matrices in the Schaefer100 +
Freesurfer cortico-subcortical parcellation (while Smith et al.26 used a customized functional
parcellation with 200 regions). The raw behavioral measures for the selected 158 SMs were
initially subject to a rank-based inverse Gaussian transformation to enforce Gaussianity,
avoiding the influence of potential outliers. Additionally, 17 potential confound SMs (including
head motion) were regressed out from the behavioral data (for a complete list see Smith et
al.26). To account for missing data, a subjects x subjects covariance matrix was estimated by
ignoring missing values for either subject, which was then projected onto the nearest valid
positive-definite covariance matrix. Finally, the eigenvalue decomposition was computed
onto the resulting covariance matrix, and the first 100 eigenvectors were kept. Regarding
connectivity data (referred as ), we computed subject-wise partial temporal correlation𝑁
between the time series of each region keeping only the upper-triangular part of each
correlation matrix. The resulting vectors were concatenated across subjects and the Pearson
correlation values transformed into z statistics with Fisher’s transformation. Then, this
connectivity matrix was demeaned column-wise, globally variance-normalized and the same
confounds SMs were regressed out. Lastly, a principal component analysis was computed
on , keeping the first 100 components. The fully preprocessed behavioral and connectivity𝑁
matrices ( and respectively) were ultimately fed into a CCA, identifying 100 components𝑆 𝑁
aiming to optimize de-mixing matrices and to ensure that the resulting matrices𝐴 𝐵

and were highly similar to each other.𝑈 = 𝑁 * 𝐴 𝑉 = 𝑆 * 𝐵
Granziol and Cona27 analyzed 38 SMs reflecting cognitive and processing aspects, mental
health and behavioral problems, personality characteristics, and substance use frequencies
(the list of the 38 SMs is reported in Supp. Inf.). Exploratory Graph Analysis77 (EGA) was
used to cluster these SMs into “communities” or clusters of SMs characterized by high
correlation. Briefly, EGA works with the following steps: i) the graphical LASSO algorithm78

was used to find partial correlations between the 38 SMs ii) the walktrap community
detection algorithm79 is applied to find clusters/communities. Seven domains were identified
(mental health, substance abuse, low cognitive functions, high cognitive functions, pain,
delay discounting and externalizing problems).
We replicated the analysis by Granziol and Cona27 using the graphical LASSO algorithm with
sparsity 0.5, as implemented in the R package ‘glasso’; we then applied the walktrap
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community detection as implemented in the R ‘igraph’ package. We computed network
loadings for each measure as follows80: starting from the partial correlation matrix , where𝑊

𝑖𝑗

, we considered all SMs assigned to factor and computed loading as𝑖, 𝑗 = 1, ···, 𝑁
𝑆𝑀

𝑐

and then we normalized loadings as . Given the set of SMs for all𝐿
𝑖𝑐

=
𝑖∈𝑐
∑ |𝑊

𝑖𝑗
| 𝑧

𝑖𝑐
=

𝐿
𝑖𝑐

∑
𝑗

𝐿
𝑗𝑐

subjects, where , we computed community/cluster scores for each𝑋
𝑖𝑘

𝑘 = 1, ···, 𝑁
𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠

subject as .𝑆
𝑐𝑘

=
𝑖

∑ 𝑧
𝑖𝑐

𝑋
𝑖𝑘

Ultimately, we assessed the impact of variability in dFC patterns via a Generalized Linear
Model (GLM) in an exploratory analysis considering different predictors (fraction times, dwell
times, and individual DFSs) and the two behavioral scores described𝑃𝑗𝑢𝑚𝑝(𝑅𝑆𝑁1|𝑅𝑆𝑁2)
above (i.e. Smith’s behavioral mode and Granziol’s 7 communities scores) as alternative
dependent variables.

Supplementary Data

List of the 59 subject measures (SMs) with significant loading onto the principal axis of Smith
et al. (2015), with their unique identifiers as provided by the HCP consortium:

PicVocab_Unadj, PicVocab_AgeAdj, PMAT24_A_CR, DDisc_AUC_200, SSAGA_Educ,
DDisc_SV_1yr_200, DDisc_SV_6mo_200, DDisc_SV_3yr_200, LifeSatisf_Unadj,
DDisc_SV_5yr_200, ListSort_AgeAdj, ReadEng_Unadj, SCPT_TN, SCPT_SPEC, ReadEng_AgeAdj,
ListSort_Unadj, DDisc_AUC_40K, DDisc_SV_10yr_200, DDisc_SV_5yr_40K, PicSeq_AgeAdj,
SSAGA_TB_Yrs_Since_Quit, PicSeq_Unadj, DDisc_SV_3yr_40K, DDisc_SV_1yr_40K,
SSAGA_Income, Dexterity_AgeAdj, DDisc_SV_10yr_40K, Dexterity_Unadj, DDisc_SV_6mo_40K,
DDisc_SV_1mo_200, FamHist_Fath_None, ProcSpeed_AgeAdj, Endurance_AgeAdj,
Endurance_Unadj, DDisc_SV_1mo_40K, SSAGA_TB_Age_1st_Cig, ASR_Rule_Pct,
ASR_Thot_Raw, EVA_Denom, SSAGA_TB_Still_Smoking, ASR_Thot_Pct, PercStress_Unadj,
Taste_AgeAdj, ASR_Rule_Raw, Taste_Unadj, AngAggr_Unadj, Times_Used_Any_Tobacco_Today,
PSQI_Score, Avg_Weekend_Cigarettes_7days, Avg_Weekend_Any_Tobacco_7days,
Total_Cigarettes_7days, Avg_Weekday_Cigarettes_7days, FamHist_Fath_DrgAlc,
Num_Days_Used_Any_Tobacco_7days, Total_Any_Tobacco_7days,
Avg_Weekday_Any_Tobacco_7days, SCPT_FP, THC, PMAT24_A_S

List of the 38 subject measures (SMs) investigated by Granziol and Cona (2023), with their
unique identifiers as provided by the HCP consortium:

AngHostil_Unadj, LifeSatisf_Unadj, PercReject_Unadj, PercStress_Unadj, SelfEff_Unadj,
PSQI_Score, ASR_Witd_T, ASR_Thot_T, DSM_Anxi_T, DSM_Depr_T, NEOFAC_C, NEOFAC_N,
NEOFAC_E, PainIntens_RawScore, PainInterf_Tscore, DDisc_AUC_200, DDisc_AUC_40K,
PicSeq_AgeAdj, PMAT24_A_CR, VSPLOT_TC, SCPT_SPEC, ListSort_AgeAdj, ER40_CR,
ReadEng_AgeAdj, Total_Drinks_7days, Total_Any_Tobacco_7days, SSAGA_Times_Used_Illicits,
SSAGA_Mj_Times_Used, AngAggr_Unadj, ASR_Rule_T, ASR_Extn_T, DSM_Antis_T,
DSM_Hype_Raw, NEOFAC_A, Flanker_AgeAdj, CardSort_AgeAdj, ProcSpeed_AgeAdj, NEOFAC_O
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Supplementary Figures

Figure S1. Subcortical clusters for different parcellations. For each subcortical atlas, we
plotted the first principal component of the time evolution of the principal eigenvector
associated with the sliding-windows temporal correlation, concatenated across subjects.
Each of these vectors shows the competitive relationship between two different subcortical
clusters for alternative choices of subcortical parcellation (a) FreeSurfer subcortical atlas.
Labels: CER (cerebellum), THA (thalamus), CAU (caudate nucleus), PUT (putamen), GP
(globus pallidus), BST (brainstem), HIP (hippocampus), AMY (amygdala), NAc (nucleus
accumbens), DIE (ventral diencephalon). (b) Tian S1 parcellation. Labels: same as for
FreeSurfer, except aTHA (anterior thalamus), pTHA (posterior thalamus). (c) Tian S4
parcellation. Labels: THA-VAip (inferior ventroanterior thalamus, posterior division),
THA-VAia (inferior ventroanterior thalamus, anterior division), THA-VAs (superior
ventroanterior thalamus), THA-DAm (medial dorsal anterior thalamus), THA-DAl (lateral
dorsal anterior thalamus), THA-DP (dorsoposterior thalamus), THA-VPm (medial
ventroposterior thalamus), THA-VPl (lateral ventroposterior thalamus), CAU-VA (ventral
anterior caudate), CAU-DA (dostal anterior caudate), CAU-b (caudate body), CAU-t (caudate
tail), PUT-VA (ventral anterior putamen), PUT-DA (dorsal anterior putamen), PUT-VP (ventral
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posterior putamen), PUT-DP (dorsal posterior putamen), aGP (anterior globus pallidus), pGP
(posterior globus pallidus), HIP-hm1 (hippocampus head medial subdivision 1), HIP-hm2
(hippocampus head medial subdivision 2), HIP-hl (hippocampus head lateral subdivision),
HIP-b (hippocampus body), HIP-t (hippocampus tail), lAMY (lateral amygdala), mAMY
(medial amygdala), NAc-s (nucleus accumbens shell), NAc-c (nucleus accumbens core) (d)
Tian S1 + thalamic Morel parcellation. aTHA (anterior thalamus), lTHA (lateral thalamus),
mTHA (medial thalamus), pTHA (posterior thalamus), rnTHA (red nucleus), mttTHA
(mammillothalamic tract), SThTHA (subthalamic nucleus) (e) Tian S1 + cerebellar Bucker
parcellation.

Fig. S2. Preprocessing effects: Global Signal Regression (a) Dynamic Functional States
obtained without regressing the global signal. Importantly, the aspect of the DFSs
qualitatively affected by this methodological choice, which is consistent with the ongoing
debate in the literature about GSR. (b) This is also quantitatively assessed through these
confusion matrices that display correlation values between the centroids (left) and clusters’
assignment with and without GSR (right).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 4, 2024. ; https://doi.org/10.1101/2024.05.10.593351doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.10.593351


Fig. S3. Preprocessing effects: downsampling (a) Dynamic Functional States obtained
without downsampling the timeseries. Predictably, the qualitative aspect of the DFSs is not
evidently affected by this methodological choice. (b) This is also quantitatively assessed
through these confusion matrices that display correlation values between the centroids (left)
and clusters’ assignment with and without downsampling of the timeseries (right).
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Fig. S4. Phase randomization’s results (a) Matrix representation of the cluster centroids of
the K=5 dynamic functional states (DFS) found for the original HCP data (top) and for
phase-randomized data (bottom). The original and PR results are barely distinguishable . (b)
A confusion matrix with Pearson correlation values for each couple of DFS centroids
between the replication study (y axis) and PR-generated data (x axis). Original and PR
centroids match almost perfectly (c) Conditional probability matrices where we plot
conditional probabilities for each couple of networks, where and are the𝑃(𝑝

𝑖
|𝑝

𝑗
) 𝑝

𝑖
𝑝

𝑗

probabilities of a connectivity jump in the network and respectively. PR data qualitatively𝑖 𝑗
maintains the structure of conditional jump probabilities, but conditional probabilities are
generally larger (KS test, P<0.05).
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Fig. S5. Dynamical Functional States for K = 2, . . . , 6. DFSs obtained for different values
of K, from 2 to 6, with the GordonLaumann cortical atlas (and corresponding Silhouette
values). As appreciable from this figure, increasing the number of clusters led to the
inclusion of new states without altering the original set present for K=2.
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Fig. S6. Replication study. (a) The main features of the two datasets. (b) A confusion
matrix with Pearson correlation values for each couple of DFS centroids between the
replication study (HCP) and FA22 (WU). (c) The cluster centroids of the K=5 dynamic
functional states (DFSs) found in the HCP data set. Each centroid is shown in matrix form,𝑣

by plotting the matrix . (d) As in (c), but for the Washington dataset. The bottom row of𝑣 𝑥 𝑣𝑡

(c) and (d) is a zoom in of the cortico-subcortical interaction.
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Fig. S7. We show the cluster centroids of the K=2 dynamic functional states (DFSs) found in
the HCP data set for different choices of cortical and subcortical parcellations. Each centroid

is shown in matrix form, by plotting the matrix .𝑣 𝑣 𝑥 𝑣𝑡

Fig. S8. Subcortical static functional connectivity.
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