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4Dipartimento di Fisica, Università degli Studi di Milano, I-20133 Milano, Italy
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In recent years the paradigm based on entanglement as the unique measure of quantum correlations has been
challenged by the rise of new correlation concepts, such as quantum discord, able to reveal quantum correlations
that are present in separable states. It is in general difficult to compute quantum discord, because it involves a
minimization over all possible local measurements in a bipartition. In the realm of continuous-variable (CV)
systems, a Gaussian version of quantum discord has been put forward upon restricting to Gaussian measurements.
It is natural to ask whether non-Gaussian measurements can lead to a stronger minimization than Gaussian ones.
Here we focus on two relevant classes of two-mode Gaussian states: squeezed thermal states and mixed thermal
states, and allow for a range of experimentally feasible non-Gaussian measurements, comparing the results with
the case of Gaussian measurements. We provide evidence that Gaussian measurements are optimal for Gaussian
states.
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I. INTRODUCTION

In recent years the paradigm based on entanglement [1] as
the unique genuine measure of quantum correlations has been
challenged by the argument that the notion of nonseparability
may be insufficient to encompass all correlations that can be
fairly regarded as quantum, or nonclassical. This has spurred
the development of conceptually new correlation measures,
such as quantum discord [2–4], based on local measurements
and able to reveal quantum correlations that are present even
in separable states. These correlations can be interpreted as an
extra amount of information that only coherent operations can
unlock [5]. In fact, there are several indications suggesting that
general quantum correlations might be exploited in quantum
protocols [6], including mixed state quantum computation [7]
and remote state preparation [8]. Therefore, a more complete
theoretical and experimental investigation thereof is now a
central issue in quantum science and technology [5,9–11].

The definition of discord involves an optimization over
all possible local measurements in a bipartition, the optimal
measurement leading to a minimal value of quantum discord.
To perform the optimization is remarkably difficult, which
hampers analytical progress in the area. This fact has led
to the definition of other correlation measures which are
conceptually similar but easier to compute, such as the
geometric discord [12]. In the realm of finite-dimensional
systems, where the concept of discord was first introduced,
analytic results for quantum (geometric) discord have been
obtained for pairs of qubits when the global state is in X form
(in arbitrary form) [12,13].

In the realm of continuous-variable (CV) systems, initial
research efforts on quantum discord have focused on Gaussian
measurements. The Gaussian quantum discord, proposed in
[14,15], is defined by restricting the minimization involved
in the definition of discord to the set of Gaussian positive
operator-valued measures (POVMs) [16] and it can be ana-
lytically computed for Gaussian states. Its behavior in noisy

channels has been studied in Ref. [17], where it was shown
that it is more robust than entanglement to the decorrelating
effect of independent baths and more likely to yield non-zero
asymptotic values in the case of a common bath; while its re-
lation to the synchronization properties of detuned, correlated
oscillators has been analyzed in Ref. [18]. An experimental
investigation of Gaussian discord was performed in Ref. [5].

It is natural to investigate CV quantum discord beyond
Gaussian measurements: non-Gaussian ones may indeed allow
for a stronger minimization of discord, and in this case the
Gaussian discord would be an overestimation of the true
discord. Here we focus on Gaussian states and ask whether
Gaussian measurements are optimal in this case, i.e., whether
the Gaussian discord is the true discord for Gaussian states.
This question is relevant for two main reasons: First, if
discord is a truly useful resource for quantum information
protocols [5,6], then it is crucial to have a reliable estimate of
its actual value. Second, from a fundamental point of view it
is important to establish how different kinds of measurements
can affect correlations in quantum states. A further motivation
comes from the fact that indeed for some non-Gaussian states,
e.g., CV Werner states, non-Gaussian measurements such
as photon counting have been proven to lead to a better
minimization [19].

The optimality of Gaussian measurements has already been
proven analytically for two-mode Gaussian states having one
vacuum normal mode [15], by use of the so-called Koashi-
Winter relation [20], but no analytic argument is available in
the general case. We address the question numerically, for
the case of two-modes, upon considering two large classes
of Gaussian states, the squeezed thermal states (STS) and
the mixed thermal states (MTS), and allowing for a range
of experimentally feasible non-Gaussian measurements based
on orthogonal bases: the number basis, the squeezed number
basis, and the displaced number basis. As a result, we provide
evidence that Gaussian quantum discord is indeed optimal for

052328-11050-2947/2012/86(5)/052328(12) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.052328


PAOLO GIORDA, MICHELE ALLEGRA, AND MATTEO G. A. PARIS PHYSICAL REVIEW A 86, 052328 (2012)

the states under study. In addition, we also investigate the CV
geometric discord [21], comparing the case of Gaussian and
non-Gaussian measurements.

This work is structured as follows. In Sec. II we review
quantum discord and the Gaussian version of it; in Sec. III
we thoroughly describe the basic question we want to address
in this work and introduce non-Gaussian measurements and
non-Gaussian discord; in Secs. IV–VI, we present our key
results concerning non-Gaussian discord upon measurements
in the number basis, squeezed number basis, and displaced
number basis; in Sec. VII we discuss the behavior of non-
Gaussian geometric discord; finally, Sec. VII closes the paper
discussing our main conclusions.

II. QUANTUM DISCORD AND GAUSSIAN DISCORD

Starting from the seminal works by Ollivier and Zurek [2]
and Henderson and Vedral [3], various measures of quantum
correlations which go beyond the traditional entanglement
picture have been defined [4]. The most common measure
of such correlations is the quantum discord [2,3]. Let us
consider a bipartite system composed of subsystems A and
B. The total correlations in the global state are measured by
the mutual information I (A : B) = S(�A) + S(�B) − S(�AB).
Whenever I (A : B) > 0, the subsystems are correlated and
we can gain some information about A by measurements
on B only. However, there is no unique way of locally
probing the state of B: to do it, we can perform different
local measurements or POVMs. Any such local POVM �B

is specified by a set of positive operators {�x
B = Mx

BM
x†
B }

on subsystem B summing up to the identity
∑

x �x
B = I.

When measurement result x is obtained, the state of A is
projected onto �x

A = TrB[Mx
B�ABM

x†
B ]. The uncertainty on

the state of A before the measurement on B is given by
S(�A), while the average uncertainty on the state of A after
the measurement is given by the average conditional entropy
S�(A|B) = ∑

x pxS(�x
A). Their difference

S(�A) − S�(A|B) = S(�A) −
∑

x

pxS
(
�x

A

)
represents the average gain of information about the state of
A acquired through a local measurement on B. The maximal
gain of information that can be obtained with a POVM,

C(A : B) = max
{�∈POVM}

[S(�A) − S�(A|B)]

= S(�A) − min
{�∈POVM}

[S�(A|B)], (1)

coincides with the measure of classical correlations originally
derived in [3] under some basic and natural requirements
for such a measure. Quantum discord is then defined as the
difference between the mutual information and the classical
correlations:

D(A : B) = I (A : B) − C(A : B) (2)

and measures the part of the total correlations that cannot be
exploited to gain information on A by a local measurement on
B, i.e., measures the additional quantum correlations beyond
the classical ones. As discussed in [22], the minimization in
Eq. (1) is always achieved by rank-one POVMs.

It can be verified (see, e.g., [12]) that we have S(�A) −
S�(A|B) = I�(A : B) = S(��

A ) + S(��
B ) − S(��

AB) for all
rank-one POVMs, where the unconditional postmeasure-
ment states are given by ��

AB = ∑
x Mx

B�ABM
x†
B , ��

A =
TrB[

∑
x Mx

B�ABM
x†
B ], ��

B = TrA[
∑

x Mx
B�ABM

x†
B ]. There-

fore, the classical correlations coincide with the mutual
information in the system after the measurement, maximized
over all possible (rank-one) POVMs:

C(A : B) = max
{�∈POVM}

I�(A : B), (3)

and the quantum discord coincides with the difference between
the mutual information before and after the measurement,
minimized over all possible POVMs:

D(A : B) = min
{�∈POVM}

[I (A : B) − I�(A : B)]. (4)

From the previous considerations, it is clear that D(A : B) = 0
if and only if there is a local rank-one POVM �B which leaves
the global state of the system unaffected: ∃ �, �AB = ��

AB .
Such states are called quantum-classical states and are in the
form

χAB =
∑

i

pi�A,i ⊗ |i〉〈i|, (5)

where pi is a probability distribution and {|i〉} is a basis for
the Hilbert space of subsystem B. For such states, there exists
at least one local measurement that leaves the state invariant
and we have I (A : B) = C(A : B), which means that we can
obtain maximal information about subsystem A by a local
measurement on B without altering the correlations with the
rest of the system.

In the realm of continuous-variable systems, the Gaussian
discord [14,15] is defined by restricting the set of possible
measurements in Eq. (1) to the set of Gaussian POVMs [16],
and minimizing only over this set. The Gaussian discord can
be analytically evaluated for two-mode Gaussian states, where
one mode is probed through (single-mode) Gaussian POVMs.
The latter can be written in general as

�B(η) = π−1DB(η)�MD
†
B(η),

where DB(η) = exp(ηb† − η∗b) is the displacement operator,
and �M is a single-mode Gaussian state with zero mean and
covariance matrix σM = ( α γ

γ β ). Two-mode Gaussian states can

be characterized by their covariance matrix σAB = ( A C
CT B ). By

means of local unitaries that preserve the Gaussian character
of the state, i.e., local symplectic operations, σAB may be
brought to the so-called standard form, i.e., A = diag(a,a),
B = diag(b,b), C = diag(c1,c2). The quantities I1 = det A,
I2 = det B, I3 = det C, and I4 = det σAB are left unchanged
by the transformations, and are thus referred to as symplectic
invariants. The local invariance of the discord has therefore two
main consequences: (i) correlation measures may be written
in terms of symplectic invariants only, and (ii) we can restrict
to states with σ already in the standard form. Before the
measurement we have

S(�AB) = h(d+) + h(d−), (6)

S(�A) = h(
√

I1), S(�B) = h(
√

I2), (7)
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where h[x] = (x+1/2) ln(x+1/2)−(x − 1/2) ln(x − 1/2)
and d± are the symplectic eigenvalues of �AB expressed by
d2

± = 1/2[� ±
√

�2 − 4I4], � = I1 + I2 + 2I3. After the
measurement, the (conditional) post-measurement state of
mode A is a Gaussian state with covariance matrix σP that
is independent of the measurement outcome and is given
by the Schur complement σP = A − C(B + σM )−1CT . The
Gaussian discord is therefore expressed by

DG(A : B) = h(
√

I2) − h(d−) − h(d+) + min
σM

h(det
√

σP ),

(8)

where we use two key properties: (i) the entropy of a Gaussian
state depends only on the covariance matrix, and (ii) the
covariance matrix σP of the conditional state does not depend
on the outcome of the measurement. The minimization over
σM can be done analytically. For the relevant case of states
with C = diag(c,±c), including STS and MTS (see below),
the minimum is obtained for α = β = 1/2 and γ = 0, i.e.,
when the covariance matrix of the measurement is the identity.
This corresponds to the coherent state POVM, i.e., to the
joint measurement of canonical operators, say position and
momentum, which may be realized on the radiation field
by means of heterodyne detection. For separable states the
Gaussian discord grows with the total energy of the state and
it is bounded, D � 1; furthermore, we have D = 0 if and only
if the Gaussian state is in product form �AB = �A ⊗ �B .

III. NON-GAUSSIAN DISCORD

In this work we consider Gaussian states, and ask whether
non-Gaussian measurements can allow for a better extraction
of information than Gaussian ones, hence leading to lower
values of discord. The optimality of Gaussian measurements
has been already proven for a special case [15], that of
two-mode Gaussian states having one vacuum normal mode.
Indeed any bipartite state �AB can be purified, �AB =⇒
|ψ〉ABC ; then, the Koashi-Winter relation [20]

D(A : B) = Ef (A : C) + S(�B) − S(�AB) (9)

relates the quantum discord D and the entanglement of
formation Ef of reduced states �AB and �AC respectively.
Given a (mixed) two-mode Gaussian state �AB , there exists a
Gaussian purification |ψ〉ABC . In general, the purification of
�AB requires two additional modes, so that �AC is a three-mode
Gaussian state. In the special case when one normal mode is
the vacuum, the purification requires one mode only. In this
case, �AC represents a symmetric two-mode Gaussian state, as
was shown in [15]. Hence, Ef (A : C) can be evaluated from
Ref. [23] where an analytical formula for the entanglement of
formation of symmetric two-mode Gaussian states is given.
From Ef (A : C), by means of Eq. (9) of Ref. [20], one can
obtain D(A : B) (the exact discord) and a comparison with
DG(A : B) proves that D(A : B) = DG(A : B).

In the general case, there is no straightforward analytical
way to prove that Gaussian discord is optimal. Therefore, we
perform a numerical study. Since taking into account the most
general set of non-Gaussian measurements is an extremely
challenging task, one can rather focus on a restricted subset. We
choose to focus on a class of measurements that are realizable

with current or foreseeable quantum optical technology. These
are the the projective POVMs, � = {�n}, represented by the
following orthogonal measurement bases:

�n = D(α)S(r)|n〉〈n|S(r)†D(α)†, n = 0, . . . ,∞, (10)

where S(r) = exp (−r∗ a2

2 − r (a†)2

2 ) and D(α) = exp(αa† −
α∗a) are, respectively, the single-mode squeezing and dis-
placement operators [24]. The set of projectors in Eq. (10)
is a POVM for any fixed value of α and r . If α = r = 0 we
have the spectral measure of the number operator, describing
ideal photon counting �n = |n〉〈n|. If α > 0,r = 0 we are
projecting onto displaced number states [25], if α = 0,r > 0
onto squeezed number states [26–29]. The class (10) encom-
passes some of the most relevant measurements that can be
realistically accessed in experiments [30].

In the following, we will evaluate the non-Gaussian
quantum discord defined by

DNG(A : B) = h(
√

I2) − h(d−) − h(d+) + S�,NG(A|B),

(11)

where the non-Gaussian measurements are given by Eq. (10)
above. For the non-Gaussian conditional entropy we have

S�,NG(A|B) =
∑

n

pnS(�A,n) ,

�A,n = 1

pn

TrB[�n�AB�n] , (12)

pn = TrAB[�n�AB�n].

In the following we consider two classes of Gaussian states in
order to assess the performances of the above measurements.
These are the two-mode squeezed thermal states (STS) [31–33]

� = S(λ)ν1(N1) ⊗ ν1(N2)S(λ)†, (13)

and the two-mode mixed thermal states (MTS) [34]

ρ = U (φ)ν1(N1) ⊗ ν1(N2)U (φ)†, (14)

where νi(Ni) are one-mode thermal states with thermal photon
number Ni ; S(λ) = exp{λ(a†

1a
†
2 − a1a2)} is the two-mode

squeezing operator (usually realized on optical modes through
parametric down-conversion in a nonlinear crystal); and
U (φ) = exp{φ(a†

1a2 − a1a
†
2)} is the two-mode mixing operator

(usually realized on optical modes through a beam splitter).
Notice that the STS and MTS correspond respectively to
c1 = −c2 and c1 = c2 in the standard form of the covariance
matrix given in Sec. II. Furthermore, the MTS are always
separable since mixing two thermal states cannot create
entanglement [35].

In particular, in the following we will focus on the simplest
case of symmetric STS with N1 = N2 ∈ [10−5,1] λ ∈ [0,0.5].
As for MTS, we cannot consider the symmetric case (since
if N1 = N2 then the mutual information vanishes and there
are no correlations in the system), therefore we consider
the unbalanced case and focus on φ ∈ [0,π/2] and N1,N2 ∈
[10−5,1].
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IV. NUMBER BASIS

Let �n = |n〉〈n|. In this case, the postmeasurement state is

�A
n ⊗ |n〉〈n| =

(∑
h,k

�(h,k),(n,n)|h〉〈k|
)

⊗ |n〉〈n|, (15)

and we have the following expression for the density matrix
elements

�(h,k),(n,n) =
∑
s,t

pth
s (N1)pth

t (N2)Ohn(st)O∗
kn(st), (16)

where pth
s (N ) = Ns(1 + N )−(s+1) and Ohn(st) = 〈hn|O|st〉

with O = S(λ),U (φ) for STS and MTS, respectively. The
postmeasurement state �A

n is diagonal (see Appendix A),

〈h|�A
n |k〉 = δhk �(h,h),(n,n). (17)

As a consequence, the entropy of the postmeasure-
ment state can be expressed as S(�A

n ) = H ({�(h,h),(n,n)}) =
H ( �p(A|B = n)), where H is the Shannon entropy of the con-
ditional probability �p(A|B = n) = (p(0,n),p(1,n), · · · )/pn,
and therefore the overall conditional entropy can be simply
expressed in terms of the photon number statistics:

S(A|{�n}) =
∑

n

pnH ( �p(A|B = n))

= H ( �p(A,B)) − H ( �p(B)), (18)

with �p(A,B) = {p(A = n,B = m)} and �p(B) = {p(B = n)}.
In view of this relation, the only elements of the number basis
representation of the density matrix � that are needed are the
diagonal ones, i.e., one has to determine the photon number
statistics for the two-mode STS or MTS. The required matrix
elements can be obtained in terms of the elements of the two-
mode squeezing and mixing operators (see Appendix A). One
has of course to define a cutoff on the dimension of the density
matrix. This can be done upon requiring that the error on
the trace of each state considered be sufficiently small: 1 −
Tr�trunc < εerr. This implies that the truncated density matrix
�trunc is very close to the actual one (notice that Tr[� − �trunc] <

εerr implies ||� − �trunc||1 < 3
√

εerr [36]).
We have compared Gaussian and non-Gaussian quantum

discord (with the non-Gaussian measurements corresponding
to photon number measurements) for STS and MTS with a
wide range of squeezing, mixing and thermal parameters.
In Fig. 1 we show results for STS with varying λ and
N1 = N2 = 10−2, N1 = N2 = 1. The key result is that the
non-Gaussian quantum discord is always greater than its
Gaussian counterpart for all values of N1 and λ. The gap
grows with increasing N1 and λ. In Fig. 2 we show results for
MTS N1 = {0.1,1} and q = N2/N1 = {0,0.1,0.4,0.5}. Also
in this case, the non-Gaussian discord is always higher than
the Gaussian one.

Both results indicate that the Gaussian (heterodyne) mea-
surement is optimal for STS and MTS, at least compared
to photon counting, in the sense that it allows for a better
extraction of information on mode A by a measurement on
mode B.
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FIG. 1. (Color online) Gaussian and non-Gaussian quantum
discord for STS as a function of λ, for different values of N1 = N2.

V. SQUEEZED NUMBER BASIS

We now analyze the case of non-Gaussian measure-
ments represented by the squeezed number basis |nr〉〈nr | =
S(r)|n〉〈n|S(r)†, where S(r) = exp (−r∗ a2

2 − r (a†)2

2 ) is the
single-mode squeezing operator. A local measurement in the
squeezed number basis is equivalent to a measurement in
the number basis, performed on a locally squeezed state. In

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

G, Ν1 = 0.1, θ = 0
nG, Ν1 = 0.1, θ = 0
G, Ν1 = 0.1, θ = 0.5

nG, Ν1 = 0.1, θ = 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1 1.2 1.4

G, Ν1 = 1, θ = 0
nG, Ν1 = 1, θ = 0

G, Ν1 = 1, θ = 0.5
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FIG. 2. (Color online) Gaussian and non-Gaussian quantum
discord for MTS as a function of φ for different values of N1 and
q = N2/N1.

052328-4



QUANTUM DISCORD FOR GAUSSIAN STATES WITH NON- . . . PHYSICAL REVIEW A 86, 052328 (2012)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5

G
nG, r = 0

nG, r = 0.5

FIG. 3. (Color online) Gaussian and non-Gaussian quantum
discord for STS with N1 = 1 as a function of λ and for different
values of local squeezing r .

formulas, the probability of measuring nr on one subsystem
for state � is given by

p�(nr ) = Tr(1 ⊗ |nr〉〈nr |�) = Tr[1 ⊗ |n〉〈n|S†(r)�S(r)]

= Tr(1 ⊗ |n〉〈n|�r ) = p�r
(n), (19)

i.e., it is equal to the probability of measuring n on the locally
squeezed state �r = S(r)�S(r)†, and the relative postmeasure-
ment state is

�A
nr

= TrB[1 ⊗ |nr〉〈nr |�1 ⊗ |nr〉〈nr |]/p�(nr )

= TrB[1 ⊗ |n〉〈n|�r1 ⊗ |n〉〈n|]/pr
�(n) = �A

rn
. (20)

The general idea is that measurements on a state � in a basis that
is obtained by performing a unitary (Gaussian) operation V on
the number basis |n〉〈n| can be represented as measurements
on the number basis of a modified state �V = V �V † on which
the local unitary operation acts.

In the case of the squeezed number basis, the postmea-
surement state is not diagonal, therefore the reasoning leading
to Eq. (18) does not hold. The postmeasurement state matrix
elements (�A

rn
)h,k = �(h,k),(n,n) can be obtained directly by eval-

uating the expression (16) where now the expression Ohk(st) =
〈hk|O|st〉 [where O = S(λ),U (φ)] must be substituted with
O ′

hk(st) = 〈hk|S(r)O|st〉 = ∑
q〈k|S(r)|q〉〈hq|O|st〉, and the

elements of the single-mode squeezing operator are given
in [37] (Eq. 20) or in [27] (Eq. 5.1).

We have evaluated the Gaussian and non-Gaussian quantum
discord for STS and MTS with a wide range of two-mode
squeezing and thermal parameters. Non-Gaussian measure-
ments are done in the squeezed photon number basis, �n =
S(r)|n〉〈n|S(r)† with variable r ∈ [0,0.5]. The effect of local
squeezing on non-Gaussian quantum discord is negligible in
the whole parameter range under consideration: we compare
the non-Gaussian discord for different values of r and find
that all curves collapse. This can be seen in Figs. 3 and 4,
which plot the behavior for N1 = N2 = 0.01 (STS) and
N1 = 1,N2 = 0 (MTS). The same behavior is observed in the
whole parameter range under investigation. We have verified
numerically that the postmeasurement states of mode A�A

rn

are not equal as r varies (i.e., the postmeasurement states
corresponding to measurement result nr change with r), yet

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1 1.2 1.4

G
nG, r = 0

nG, r = 0.5

FIG. 4. (Color online) Gaussian and non-Gaussian quantum
discord for MTS for N1 = 1, N2 = 0 as a function of φ and for
different values of local squeezing r .

the sum
∑

n pnS(�A
rn

) is equal for all values of r under
investigation. Therefore, the squeezing in the measurement
basis has no effect on the discord, at least for the values of
squeezing considered: in particular, it cannot afford a deeper
minimization than that obtained without local squeezing. This
indicates that the heterodyne measurement remains optimal
also with respect to measurement in the squeezed number
basis.

VI. DISPLACED NUMBER BASIS

We finally analyze the case of non-Gaussian measure-
ments represented by the displaced number basis |nα〉〈nα| =
D(α)|n〉〈n|D(α)†, where D(α) = exp(αa† − α∗a) is the
single-mode displacement operator. According to the general
considerations above, a local measurement in the displaced
number basis is equivalent to a measurement in the number
basis, performed on a locally displaced state �α . As in the
case of the squeezed number basis, the postmeasurement state
is not diagonal and we need all matrix elements (�A

αn
)h,k =

�(h,k),(n,n). They can be obtained directly by evaluating the
expression (16) where the expression Ohk(st) = 〈hk|S(λ)|st〉
[where O = S(λ),U (φ)] must be substituted with O ′

hk(st) =
〈hk|D(α)O|st〉 = ∑

q〈k|D(α)|q〉〈hq|O|st〉, and the elements
of the single-mode displacement operator are given in [38]
(Eq. 1.46).

The evaluation of the non-Gaussian quantum discord can
be simplified by first noticing that one can consider real values
of α only. Indeed, the quantum discord only depends on
the modulus |α|. This is shown in detail in Appendix B by
using the characteristic function formalism. Consider �A

nα
, the

postmeasurement state of mode A after measurement result nα

is obtained on B. If we change the phase of α, α → α′ ≡ eiθα,
we find that

�A
nα′ = U�A

nα
U †, (21)

where U is a unitary operation corresponding to a simple
quadrature rotation

a1 → a1e
iθ , a

†
1 → a

†
1e

−iθ . (22)
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FIG. 5. (Color online) Gaussian and non-Gaussian quantum
discord for STS with N1 = 1 as a function of λ and for different
values of local displacement α.

Therefore, we have �A
α′

n
�= �A

αn
, but �A

α′
n

and �A
αn

have the same
spectrum, since they are related by a unitary. Therefore, the
entropy of the reduced postmeasurement state �A

α does not
depend on the phase of α but just on |α|. If follows that the
non-Gaussian quantum discord of �α does not depend on the
phase of α.

We have evaluated the Gaussian and non-Gaussian quantum
discord for STS and MTS with a wide range of two-mode
squeezing and thermal parameters. Non-Gaussian measure-
ments are done in the displaced photon number basis, �n =
D(α)|n〉〈n|D(α)† with variable α ∈ [0,2.5]. In Figs. 5 and 6
we plot the Gaussian and non-Gaussian quantum discord. We
see that greater displacements lead to lower values of the non-
Gaussian quantum discord, but the decrease is insufficient to
match the Gaussian quantum discord, which remains optimal.
However, the non-Gaussian quantum discord approximates the
Gaussian one as α → ∞. This is analytically proven below in
Appendix C. There we find that for both STS and MTS,

�A
αn

→ �A
α0

as α → ∞, (23)

i.e, the conditional states �A
αn

becomes independent of n and
equal to the n = 0 result. As a consequence, the conditional
entropy in the displaced number basis is equal to the entropy
of the postmeasurement state for any measurement result, and,
in particular, for n = 0:

S�,NG(A|B) =
∑

n

pnS
(
�A

αn

) → S
(
�A

α0

)
as α → ∞.

(24)

But �A
α0

is just the postmeasurement state we obtain after a
heterodyne detection on mode B (equal for all measurement
result modulo a phase space translation which is irrelevant as
for the entropy). Therefore, we also have SG(A|B) = S(�A

α0
)

and the non-Gaussian discord DNG(A : B) in the displaced
number basis tends to the Gaussian discord DG(A : B) as
α → ∞.

Actually, we cannot prove that the DNG(A : B) is lower
bounded by DG(A : B), and we cannot rule out the possibility
that DNG(A : B) < DG(A : B) for intermediate values of α.
However, our numerical data do not support this possibility
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FIG. 6. (Color online) Gaussian and non-Gaussian quantum
discord for MTS for N1 = 1, N2 = 0 as a function of φ and for
different values of local displacement α.

since we never observe DNG(A : B) < DG(A : B) and we
expect that DNG(A : B) → DG(A : B) from above as α → ∞.
In conclusion, we have analytical and numerical evidence that
the heterodyne measurement remains optimal also with respect
to measurement in the displaced number basis.

VII. GEOMETRIC DISCORD

In this section, we briefly consider the recently introduced
measure of geometric discord and compare results with those
obtained for the quantum discord.

A. Definition and properties

Geometric discord [12] is defined as

DG(A : B) = min
{χAB∈C}

‖�AB − χAB‖2, (25)

and it measures the distance of a state from the set C
of quantum-classical states where ‖A‖2 = Tr[A†A] is the
Hilbert-Schmidt distance. Clearly DG = 0 if and only if
D = 0, since both measures vanish on the set of classically
correlated states. In particular, it has been be proven that DG

can be seen a measure of the discrepancy between a state
before and after a local measurement on subsystem B [39]:

DG(A : B) = min
{�∈POVM}

∥∥�AB − ��
AB

∥∥
2, (26)

where the unconditional postmeasurement state is given
by ��

AB = ∑
x Mx

B�ABM
x†
B . Notice that DG and D are not

monotonic functions of one another and the relation between
them is still an open question. However, in many cases DG is
much simpler to evaluate than D.

Analogous to the case of Gaussian discord, a Gaussian
version of the geometric discord can be defined by restricting
to Gaussian measurements [21]. Again, it can be analytically
computed for two-mode Gaussian states. With the same
reasoning used in Sec. II one easily obtains

DG
G(�AB) = min

σM

Tr[(�AB − �P ⊗ �M )2]. (27)
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Exploiting the property that Tr[�1�2] = 1/ det[(σ1 + σ2)/2],
for any two Gaussian states �1 and �2,

DG(A : B) = min
σM

{1/
√

det σAB + 1/
√

det(σP ⊕ σM )

− 2/
√

det[(σAB + σP ⊕ σM )/2]}. (28)

For for the relevant case of STS and MTS, the mini-
mum is obtained with the σM elements given by α =
β =

√
ab(

√
4ab−3c2+√

ab)
3a

, γ = 0. The least disturbing Gaussian
POVM for STS, according to the Hilbert-Schmidt distance,
is thus a (noisy) heterodyne detection, a result which is
analogous to what is found in the case of quantum discord.
If one constrains the mean energy per mode, the Gaussian
quantum discord gives upper and lower bounds to the
Gaussian geometric discord. In absence of such a constraint,
the geometric discord can vanish for arbitrarily strongly
nonclassical (entangled) Gaussian states; for instance, as
reported in Ref. [21], STSs with b = 1 + ε, c = √

(a + 1)ε
with 0 � ε � a − 1 have diverging discord and vanishing
geometric discord for a → ∞.

Also in this case, we may consider non-Gaussian measure-
ments and evaluate a non-Gaussian geometric discord:

DNG
G (A : B) = Tr

[(
�AB − ��

AB

)2]
. (29)

For measurement in the number basis, we can easily obtain

DNG
G = μ(�) +

∑
npq

|〈pn|�|qn〉|2, (30)

where μ(�) = 1
4
√

det(σ )
is the purity of the Gaussian state [38].

In the case of measurements in the squeezed or displaced
number basis, we have to use �r and �α instead of � in
Eq. (30). In general, to compute the geometric discord, we need
to compute matrix elements, and we use the same numerical
methods described above.

B. Results

We have compared the Gaussian and non-Gaussian geomet-
ric discord for STS and MTS in a wide range of parameters.
We have considered measurements in the number, squeezed
number, and displaced number basis for the same values of the
parameters given in the preceding sections. Results are plotted
in Figs. 7 and 8. In general, at variance with the results for
quantum discord, we find that non-Gaussian measurements
can provide lower values of geometric discord than Gaussian
ones. Among the class of non-Gaussian measurements we have
considered, the optimal one is provided by the number basis,
which gives values of geometric discord that are always lower
than those given by the optimal Gaussian measurement. The
non-Gaussian geometric discord increases for increasing r and
α, and it can become greater than its Gaussian counterpart.
These results are very different from the quantum discord
case: on one hand, the (non-Gaussian) geometric discord is
substantially affected by the local squeezing; on the other hand,
it does not approach the Gaussian one when the displacement
α → ∞, but it grows monotonically. Indeed if we increase
the squeezing or displacement in the measurement basis, the
postmeasurement state is more distant (in Hilbert-Schmidt
norm) from the original one. As already noticed, performing
the measurement in the squeezed (displaced) number basis
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FIG. 7. (Color online) Gaussian and non-Gaussian geometric
discord for STS with N1 = 1 as a function of λ and for different values
of local squeezing r (top); Gaussian and non-Gaussian geometric
discord for MTS for N1 = 1, N2 = 0 as a function of φ and for
different values of local squeezing r (bottom).

in equivalent to first squeezing (displacing) the state and
then measuring it in the number basis. The local squeezing
and displacement have the effect of increasing the energy of
the state, shifting the photon number distribution P (B = n)
towards greater values of n. This causes the overlap between
the postmeasurement state and the original state to decrease,
and therefore their distance to increase.

Let us further comment on the difference between the
quantum discord and the geometric discord cases. Quantum
discord and geometric discord both vanish for classical states,
but are not monotonic functions of one another, and thus
they are truly different quantities. Geometric discord, based
on the Hilbert-Schmidt distance, is a geometric measure of
how much a state is perturbed by a local measurement, while
quantum discord assesses to which extent correlations are
affected by a local measurement. While for quantum discord
well-defined operational and informational interpretations can
be found [5,6,40], for geometric discord the situation is more
problematic. Indeed, one can design protocols in which the
geometric discord can in some cases be related to the protocols’
performances [8,41]; however, recent discussions [42], show
that as consequence of the noninvariance of the Hilbert-
Schmidt norm under quantum evolutions, it is difficult to find a
conclusive argument about the relevance of geometric discord
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FIG. 8. (Color online) Gaussian and non-Gaussian geometric
discord for STS with N1 = 1 as a function of λ and for different
values of local displacement α (top); Gaussian and non-Gaussian
geometric discord for MTS for N1 = 1, N2 = 0 as a function of φ

and for different values of local displacement α (bottom).

as a measure of quantumness of correlations. Our data show
that non-Gaussian measurements can yield optimal values of
the geometric discord, contrary to the case of quantum discord.
Hence, the behavior of quantum discord and geometric discord
with respect to different types of measurements is different.
This is a further indication that geometric discord cannot be
used as a good benchmark for quantum discord and that the
degree of quantumness measured, if any, by such a quantity
has a fundamentally different nature.

VIII. DISCUSSION AND CONCLUSIONS

The definition of discord involves an optimization over
all possible local measurements (POVMs) on one of the
subsystems of a bipartite composite quantum system. In the
realm of continuous variables (CVs), initial research efforts
on quantum discord restricted the minimization to the set of
(one-mode) Gaussian measurements.

In this work we have investigated CV quantum discord
beyond this restriction. We have focused on Gaussian states,
asking whether Gaussian measurements are optimal in this
case, i.e., whether Gaussian discord is the true discord for
Gaussian states. While a positive answer to this question had

already been given for the special case of two-mode Gaussian
states having one vacuum normal mode (by means of an
analytical argument based on the Koashi-Winter formula),
no general result was available so far. We have addressed
our central question upon considering two large classes of
two-mode Gaussian states, the squeezed thermal states (STS)
and the mixed thermal states (MTS), and allowing for a wide
range of experimentally feasible non-Gaussian measurements
based on orthogonal bases: the photon number basis, squeezed
number basis, and displaced number basis. For both STS and
MTS, in the range of parameters considered, the Gaussian
measurements always provide optimal values of discord
compared to the non-Gaussian measurements under analysis.
Local squeezing of the measurement basis has no appreciable
effect on correlations, while local displacement leads to lower
values of the non-Gaussian discord, which approaches the
Gaussian one in the limit of infinite displacement.

Overall, for the explored range of states and measurements,
we have evidence that Gaussian discord is the ultimate quan-
tum discord for Gaussian states. We note that the optimality
of Gaussian measurements suggested by our analysis is a
property which holds only for Gaussian states. In the case
of non-Gaussian states, e.g., CV Werner states, non-Gaussian
measurements such as photon counting can lead to a better
minimization, as was recently proven in Ref. [19].

We also have investigated the CV geometric discord [21],
comparing the Gaussian and non-Gaussian cases. We have
shown that the behavior of geometric discord is completely
different from that of quantum discord. On the one hand,
non-Gaussian measurements can lead to lower values of the
geometric discord, the number basis measurement being the
optimal one; on the other hand, the effects of both local
squeezing and displacement are strong and consist in a
noteworthy increase in the non-Gaussian geometric discord.
The remarkable differences between quantum and geometric
discord imply that the latter cannot be used as a benchmark of
the former.

Both in the case of the discord and geometric discord a
definite answer on the optimal measurement minimizing the
respective formulas would require the extension of the set
of non-Gaussian measurements to possibly more exotic ones
and the application of those realizable in actual experiments
to a broader class of Gaussian and non-Gaussian states.
While we leave this task for future research, our results on
discord support the conjecture that Gaussian measurements
are optimal for Gaussian states and allow us to set, for
the class of states analyzed, a tighter upper bound on the
entanglement of formation for 1 × 2 mode Gaussian states,
via the Koashi-Winter relation.

APPENDIX A: POSTMEASUREMENT STATE
IS DIAGONAL

We prove that the postmeasurement state

�A
n = TrB[1 ⊗ |n〉〈n| � 1 ⊗ |n〉〈n|]/pn (A1)

of STS and MTS after local measurement in the number
basis is diagonal [here, pn = Tr(�1 ⊗ |n〉〈n|)]. We have
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indeed

� =
∑
s,t

pth
s (N1)pth

t (N2)O|st〉〈st |O†

=
∑

(h,n),(k,m)

|hn〉〈km|
(∑

s,t

pth
s pth

t Ohn(st)O∗
km(st)

)
, (A2)

where pth
s (N ) = Ns (1 + N )−(s+1), where Ohn(st) =

〈hn|O|st〉 and O∗
km(st) = 〈st |O†|km〉 = 〈km|O|st〉∗, and

where O = S(λ), O = U (φ) for STS and MTS, respectively.
The postmeasurement states can be written as

�A
n ⊗ |n〉〈n| =

(∑
h,k

�(h,k),(n,n)|h〉〈k|
)

⊗ |n〉〈n|, (A3)

and therefore we need to evaluate the matrix elements

�(h,k),(n,n) =
∑
s,t

pth
s pth

t Ohn(st)O∗
kn(st). (A4)

The elements of the two-mode squeezing operator are given
in [29] [Eq. (22)]:

〈hn|S(λ)|st〉
= δt+h,s+nf

λ(h,n,s,t) = δt+h,s+n

×
min(s,t)∑

a=0

min(h,n)∑
b=0

(−1)a+b(sech λ)t+h−a−b−1μa−b+h−s

× (t + h − a − b)![s!t!h!n!]1/2

a!(t − a)!(s − a)!b!(n − b)!(h − b)!
, (A5)

where μ = eλ, while the elements of the two-mode mixing
operator

〈hn|U (φ)|st〉 = δh+n,s+t

min{h,s}∑
a=max{0,h−t}

Ast
a h−a

= δh+n,s+t

min{h,s}∑
a=max{0,h−t}

√
h!(s + t − h)!

s!t!
(−1)h−a

×
(

s

a

)(
t

h − a

)
sin φs+h−2a cos φt+2a−h.

(A6)

To evaluate Eq. (A4), we need Ohn(st)O∗
kn(st). Due to the δ’s

appearing in both Eqs. (A5) and (A6), the following relations
must be satisfied:

t − s = n − h, t − s = n − k for O = S(λ), (A7)

t + s = n + h, t + s = n + k for O = U (φ), (A8)

and both equations imply h = k; therefore the postmeasure-
ment state is diagonal in the number basis:(

�A
n

)
h,k

= δh,k

∑
s,t

pth
s (N1)pth

t (N2)|Ohk(st)|2. (A9)

APPENDIX B: DISCORD DOES NOT DEPEND
ON THE PHASE OF DISPLACEMENT

We show that the (non-Gaussian) discord in the displaced
number basis does not depend on the phase of displace-

ment for STS and MTS. The argument is best given in
the characteristic function representation of the states [38],
χ [�](λ) = Tr[�D(λ)]. The STS and MTS have a Gaussian
characteristic function χ [�](�) = exp(− 1

2�T σ�) where � =
1√
2
( Re λA, Im λA, Re λB, Im λB) and the covariance matrix is

given by

σ =
(

A C

CT B

)
=

⎛
⎜⎜⎜⎝

a 0 c 0

0 a 0 ±c

c 0 b 0

0 ±c 0 b

⎞
⎟⎟⎟⎠ , (B1)

where ±c is −c in the case of STS and +c in the case of MTS.
For STS we have

χ [�](λA,λB) = exp[−a|λA|2 − b|λB |2 + 2c Re (λAλB)],

(B2)

while for MTS the same expression holds upon changing
2c Re (λAλB) → 2c Re (λ∗

AλB). In the following, we shall
carry on the argument for STS, but the MTS case is fully
equivalent. If we perform a displacement on one mode, � →
D(α)�D†(α) ≡ �α , the effect on the characteristic function
is easy to evaluate. Using the relation D(α)D(λ)D†(α) =
D(λ) exp[−2i Im (λα∗)] [38] we obtain

χ [�α](λA,λB) = χ [�](λA,λB) exp[−2i Im (λBα∗)]. (B3)

Suppose we perform a measurement on mode B in the number
basis {�n = |n〉〈n|}. The postmeasurement state of mode A

is �A
α,n = 1

pn
TrB[�α�n] where pn = Tr[�α�n]. By use of the

trace formula [38]

Tr[O1O2] = 1

π

∫
Cm

d2mλ χ [O1](λ)χ [O2](−λ),

we obtain the characteristic function

χ
[
�A

αn

]
(λA) = 1

πpn

∫
C

d2λB χ [�n](λB) χ [�α](λA,−λB).

(B4)

Since χ [�n](λB) = e− 1
2 |λB |2Ln(|λB |2), where Ln is the

Laguerre polynomial Ln(|λB |2) = ∑n
i=0

(
n

n−i

) |λB |2i

i! , we have
explicitly

χ
[
�A

αn

]
(λA) = 1

πpn

∫
C

d2λB Ln(|λB |2)

× exp[−a|λA|2 − (b + 1/2)|λB |2
− 2c Re (λAλB) − 2i Im (λBα∗)]. (B5)

To see that this expression depends on |α| only, we can
implement the change α → α′ ≡ eiθα and we have

χ
[
�A

α′
n

]
(λA) = 1

πpn

∫
C

d2λB Ln(|λB |2)

× exp[−a|λA|2 − (b + 1/2)|λB |2
− 2c Re (λAλB) − 2i Im (λBα∗e−iθ )].

By changing variable λB → e−iθλB we see that

χ
[
�A

α′
n

]
(λA) = χ

[
�A

αn

]
(λAe−iθ ). (B6)
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Therefore, we have χ [�A
α′

n
] �= χ [�A

αn
], hence �A

α′
n
�= �A

αn
. How-

ever, �A
α′

n
and �A

αn
have the same spectrum. Indeed χ [�A

αn
(λA)]

and χ [�A
αn

(λAeiθ )] are related by a simple quadrature rotation

a1 → a1e
iθ , a

†
1 → a

†
1e

−iθ , (B7)

which means that

�A
α′

n
= U�A

αn
U †, (B8)

where U is the free evolution of mode A, U = eiθa
†
1a1 . Since �A

α′
n

and �A
αn

are related by a unitary, they have the same spectrum.
Therefore, the spectrum (hence the entropy) of the reduced
postmeasurement state �A

α does not depend on the phase of
α but just on |α|. It follows that the non-Gaussian quantum
discord of �α does not depend on the phase of α, Q.E.D.

As for the non-Gaussian geometric discord, it is obtained
as

Tr[(�)2] −
∑

n

Tr
[
�A

αn
�A

αn
⊗ �B

n

] = Tr[(�)2] −
∑

n

Tr
[
�A

αn
�A

αn

]
.

By the same arguments as used before, leading to Eq. (B8),
we immediately see that the second trace does not depend on
the phase of α, hence the geometric discord does not either.

APPENDIX C: UNDERSTANDING THE BEHAVIOR
FOR GROWING α

Let us now consider in detail the behavior for growing α.
We will show that the non-Gaussian discord in the displaced
number basis tends to the Gaussian discord as the displacement
tends to infinity, DNG → DG as α → ∞. First, we will show
that

�A
αn

→ �A
α0

as α → ∞. (C1)

This is best shown in the characteristic function formalism.
The postmeasurement state of mode A has the characteristic
function (B5). Since the phase of α is irrelevant for the discord,
we will assume α ∈ R in the following. The postmeasurement
state characteristic function, Eq. (B5), is the Gaussian integral
of a polynomial. By using a well-known trick of Gaussian
integrals, we can rewrite

χ
[
�A

αn

]
(λA) = 1

πpn

e−a|λA|2
∫
C

d2λB Ln(d/dγ )

× exp{−γ |λB |2 + 2c Re λA Re λB

− [2c Im (λA) + 2iα] Im (λB)},
evaluated at γ = b + 1/2 and the formal expression Ln(d/dγ )
means

∑n
i=0

(
n

n−i

)
1
i!

dn

dγ n . This expression can now be moved
outside the integral, so that we are now left with a purely
Gaussian integral of the form∫

R
d2�B exp

(
−1

2
�T

BM�B + �T
BB

)
,

where M= diag{4γ,4γ }, B= (2c Re λA,−2c Im λA+
2iα), �B = (Re λB,Im λB). The integral gives

2π√
detM

exp( 1
2BTM−1B), so we finally get

χ
[
�A

αn

]
(λA) = 1

pn

exp

[
−1

2
a|λA|2

]
Ln(−d/dγ )

× 1

γ
exp

(
c2|λA|2 − α2 − 2iαc Im λA

2γ

)
. (C2)

Let us define x = c2|λA|2 − α2 − 2iαc Im λA. Then we have

Ln(−d/dγ )
1

γ
exp

(
c2|λA|2 − α2 − 2iαc Im λA

2γ

)

= Ln(−d/dγ )
1

γ
ex/2γ = Fn(γ,x)ex/2γ ,
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FIG. 9. (Color online) We show χ [�αA
n

](λ): Real part (full
symbols, green) and imaginary part (empty symbols, black), for n = 0
(circles), n = 1 (squares), n = 2 (triangles), and different values of α.
Here we have A = (NT + 1/2) cosh λ, C = (NT + 1/2) sinh λ, with
λ = 0.5, NT = 0.5.
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where Fn(γ,x) = ∑
k fk(γ )xk is necessarily a polynomial of

degree n in with γ -dependent coefficients fk(γ ). Therefore,

χ
[
�A

αn

]
(λA) = 1

pn

exp{−[a − c2(b + 1/2)−1]|λA|2}

× exp[−ic(b + 1/2)−1α Im λA]

× exp(−α2/2γ )Fn(γ,x). (C3)

The norm is

pn = exp{−[a − c2(b + 1/2)−1]|λA|2}
× exp[−ic(b + 1/2)−1α Im λA]

× exp(−α2/2γ )Fn(γ,x)|λA=0

= exp(−α2/2γ )Fn(−α2),

so that

χ
[
�A

αn

]
(λA) = exp{−[a − c2(b + 1/2)−1]|λA|2}

× exp[−ic(b + 1/2)−1α Im λA]
Fn(γ,x)

Fn(γ, − α2)
.

(C4)

This function is exponentially decaying as e−s|λA|2 where
s = a − c2/(b + 1/2), hence it is vanishing for |λA|2 � 1/s.
Therefore, we can consider values of |λA|2 in the region
λ2

A � 1/s. In this region, we have limα→∞ x = −α2 because
α � λA and thus

lim
α→∞

Fn(γ,x)

Fn(γ, − α2)
= fn(γ )α2n

fn(γ )α2n
= 1.

In conclusion, as α → ∞ we have

χ
[
�A

αn

]
(λA) → χ

[
�A

α0

]
, (C5)

which implies the desired result (C1), Q.E.D.
This result means that the conditional state of A is

independent of n and equal to the n = 0 result. In Fig. 9 we
show χ [�A

α0
],χ [�A

α1
],χ [�A

α2
] for growing values of α. The three

curves converge already for α ∼ 5. As a consequence of n

independence, we have

S�,NG(A|B) =
∑

n

pnS
(
�A

αn

) → S
(
�A

α0

)
. (C6)

But �A
α0

is just the postmeasurement state corresponding to the
POVM element D(α)|0〉〈0|D†(α) = |α〉〈α|, i.e, a Gaussian
state with covariance matrix σP = A − C(B + I/2)−1CT

(Schur complement), and mean μP = X(B + I/2)−1CT ,
where X = (α,0). On the other hand, from the discussion
in Sec. II we know that the optimal Gaussian POVM is a
heterodyne measurement {�β = D(β)|0〉〈0|D†(β) = |β〉〈β|}.
In this case, as already explained in Sec. II, the entropy
of the postmeasurement state �A

β is independent of the
measurement result β, hence the conditional entropy coincides
with the entropy of the β = α result. Therefore, we also
have SG(A|B) = S(�α0 ). Therefore, we conclude that the
non-Gaussian discord DNG(A : B) in the displaced number
basis tends to the Gaussian discord DG(A : B) as α → ∞,
Q.E.D.

To be rigorous, we did not prove that the DNG(A : B)
is lower bounded by DG(A : B), and we cannot rule out
the possibility that DNG(A : B) < DG(A : B) for intermediate
values of α. However, our numerical data do not support this
possibility since we never observe DNG(A : B) < DG(A : B)
and we expect that DNG(A : B) → DG(A : B) from above as
α → ∞.
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