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We address the degradation of continuous variable (CV) entanglement in a noisy channel focusing on

the set of photon-number entangled states. We exploit several separability criteria and compare the

resulting separation times with the value of non-Gaussianity at any time, thus showing that in the low-

temperature regime: (i) non-Gaussianity is a bound for the relative entropy of entanglement and

(ii) Simon’s criterion provides a reliable estimate of the separation time also for non-Gaussian states.

We provide several evidences supporting the conjecture that Gaussian entanglement is the most robust

against noise, i.e., it survives longer than a non-Gaussian one, and that this may be a general feature for

CV systems in Markovian channels.
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Continuous variable (CV) quantum information has
been developed with Gaussian states and operations [1–
3]. However, in the recent years also the non-Gaussian
sector of the Hilbert space has been taken into considera-
tion. This interest is due to the potential role of non-
Gaussianity in enhancing long-distance quantum commu-
nication based on entanglement distillation [4,5] and swap-
ping, quantum memories [6], cloning [7] and teleportation
[8]. In turn, it has become of interest to analyze non-
Gaussian states in realistic conditions [9], where decoher-
ence due to dissipation and thermal noise unavoidably
leads to degradation of entanglement. Our work is indeed
motivated by the following general question: in case of
transmission through a noisy environment is there any
advantage in using non-Gaussian states? Do they lose
entanglement in a longer time? We provide evidence for
the answer to be negative, thus supporting the conjecture
that Gaussian entanglement is extremal in terms of robust-
ness against decoherence due to noise and dissipation.

In order to address the above questions, in this Letter we
consider a broad and meaningful class of CV bipartite
states endowed with perfect correlations in the number of
photons: photon-number entangled states (PNES). The
latter have Schmidt decomposition in the Fock basis, i.e.,

jc i ¼ X1
n¼0

c njnijni (1)

with real coefficients c n 2 R, c n > 0,
P1

n¼0 c
2
n ¼ 1. The

advantages of considering these states are twofold. They
are sufficiently simple for analytical study, and at the same
time meaningful since several experimental realizations
have been reported [10] and quantum communication
schemes involving PNES have been proposed [11].
Furthermore, the set of PNES contains mostly non-
Gaussian states but includes (as a subclass) two-mode
squeezed vacua, i.e., the basic Gaussian resource for CV

quantum information, thus allowing for a direct compari-
son between Gaussian and non-Gaussian states. Finally,
PNES are good candidates for long-distance quantum
communication, because they have been already proved
robust against some kind of noise, e.g., phase diffusion
[12]. We consider several special subclasses of PNES with
specific parametric dependence, as well as randomly gen-
erated [13] (truncated) PNES, in order to draw some gen-
eral conclusions about the typical behavior of
entanglement dynamics. In particular, we focus on random
PNES with decreasing profile (i.e., c n > c nþ1) and on the
following parametric subclasses (we omit normalization):
(i) the two-mode squeezed vacua or twin-beam states
(TWB) c n / xn0 � x < 1 which are the sole Gaussian
states within the PNES class and represent the preferred
(Gaussian) resources in protocols involving CV entangle-
ment; (ii) the photon subtracted (PSSV) [14] c n / ðnþ
1Þxnþ1 and the photon-added two-mode squeezed vacua
(PASV) [15] c n / nxn�1, which are obtained from the
TWB by the experimentally feasible operations of photon

subtraction % ! a1a2%a
y
1a

y
2 and addition % !

ay1a
y
2%a1a2 respectively [16]; (iii) the pair-coherent or

two-mode coherently correlated states (TMC) [17] with
Poissonian profile c n / �n

n! , � 2 R. The mean energy of

PNES is hc jay1a1 þ ay2a2jc i ¼ 2N, where N ¼P1
n¼0 jc nj2n, whereas correlations between the modes

can be quantified by C ¼ Re
P1

n¼0 c
�
nc nþ1ðnþ 1Þ and

entanglement is given by the Von Neumann entropy of
the partial traces �0 ¼ �P

nc
2
n logc

2
n. In turn, the covari-

ance matrix (CM) of a PNES equals that of a symmetric
Gaussian state in standard form, with diagonal elements
equal to N þ 1

2 and off-diagonal blocks given by C ¼
diagðC;�CÞ.
The propagation in noisy channels can be modeled as the

interaction of the two modes with two independent thermal

PRL 105, 100503 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

3 SEPTEMBER 2010

0031-9007=10=105(10)=100503(4) 100503-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.100503


baths of oscillators. The resulting dynamics is a Gaussian
channel, governed by the two–mode Master equation (ME)
_% ¼ P

j¼1;2
�
2NjL½ayj �%þ �

2 ðNj þ 1ÞL½aj�% describing

losses and thermal hopping in presence of (local) non–
classical fluctuations of the environment. Dot stands for
time-derivative and the Lindblad superoperator is defined
by L½O�% � 2O%Oy �OyO%� %OyO. � is a loss coef-
ficient and Nj are the mean photon numbers in the sta-

tionary state, which is a thermal state. We consider baths
at equal temperature N1 ¼ N2 ¼ NT . The above ME
admits the operator solution [18]: %ðtÞ ¼ �t%ð0Þ ¼
Tr34½Utð%ð0Þ � �34ÞUt�, where �t denotes the evolution
map corresponding to the noisy channel; 3,4 are two addi-
tional fictitious modes in a thermal state �34 ¼ �3 � �4;

Ut ¼ U13ð�tÞ �U24ð�tÞ and Uijð�tÞ ¼ expð�tayi aj �
��t a

y
j aiÞ is the two-mode mixing operator, with �t ¼

arctanðe�t � 1Þ1=2. Using this solution, the evolved den-
sity matrix %t can be computed numerically from the
initial state %0 upon truncating the Hilbert space di-
mension. In our study we consider states with total energy
0 � 2N � 10 and dimension D ¼ 20. In this range of
energies, and for all subclasses of states, the adopted
truncation results in a negligible error. We emphasize
that the map �t, being the product of two local maps,
can only disrupt quantum correlations: for any NT � 0
we have a complete loss of entanglement within a finite,
state dependent, time tS ¼ tSð%Þ which we refer to as the
separation time.

In order to estimate tS for non-Gaussian states subjected
to the action of �t we make use of several entanglement
criteria and this also enables a comparison of their perfor-
mances in detecting entanglement. As it is well known, in
the CV case a necessary-and-sufficient separability crite-
rion exists only for Gaussian states [19]: Simon’s criterion
(SI) for separability is equivalent to the positivity of the
partial transpose density matrix and says that a Gaussian

state is separable iff ~d� < 1=2, where ~d� is the least
symplectic eigenvalue of the CM of the partial-transposed
state. When dealing with CV non-Gaussian states, Simon’s
criterion (which is equivalent to the separability of a
Gaussian state having the same CM as the given state) is
only sufficient for entanglement. This actually holds for
any available criterion: if the state is entangled, a given test
may or not detect its entanglement; in turn, if no test
detects entanglement, we can not conclude separability
of the state. The Simon separation time tSI can be com-
puted analytically. At the level of CM, the map �t induces
the evolution �t ¼ �0e

��t þ �1ð1� e��tÞ, where �1 ¼
diagðNT þ 1=2; . . . ; NT þ 1=2Þ is the asymptotic thermal
state CM. The CM of the partial-transposed state is given
by ��t�, where � ¼ diagð1; 1; 1;�1Þ [19], and we have
~d� ¼ ðNT þ 1=2Þð1� e��tÞ þ ðN þ 1=2Þe��t � jCje��t.
Therefore, for NT ¼ 0 PNES are entangled at any time,
whereas for NT � 0 we have a lower bound to separability

tSI ¼ 1
� logð1þ jCj�N

NT
Þ.

Besides Simon’s criterion, we will make use of three
different criteria which provide independent separability
conditions. The first is the extension of SI given by
Shchukin and Vogel [20] (SH) based on the evaluation of
a series of M�M matrices whose entries are moments up
to a given order: non-positive definiteness of any finite
submatrix is a sufficient condition for entanglement. By
considering the minor defined by the first and second-order
moments only (M ¼ 5) we obtain a condition which is
equivalent to SI. If we consider larger minors, moments of
higher order are involved and we get a stronger condition.
Here we consider moments up to order 8. The second
criterion has been introduced by Sperling and Vogel (SP)
[21] and it is based on linear entanglement witnesses. A
state % is entangled if h�j%j�i>maxnfjmnj2g, where j�i
is a pure entangled state with Schmidt coefficients fmng.
We test this condition by using 104 randomly generated
witnesses of the form j�i ¼ P

D
n¼1 �njnijni with D ¼ 20,

i.e., the witnesses are themselves truncated random PNES.
This form is chosen since the bath does not create quantum
correlations but only destroys those originally present.
Finally, the realignment criterion [22] (RE) is based on
positivity of a linear contraction map: a state % is entangled
if k~%k> 1where kAk denotes the trace norm of operator A
and hmjh�j~%jnij�i ¼ hmjhnj%j�ij�i. Using these criteria,
we obtain lower bounds on separation times. Indeed, for
any given criterionK and state %, let us denote by tKð%Þ the
maximum time for which K proves that % is entangled:
clearly tKð%Þ is a lower bound for tS. Considering the best
bound we have tSð%Þ � tM ¼ maxKtKð%Þ.
The propagation in noisy channels, besides entangle-

ment, also destroys the non-Gaussian character of the
initial state, which unavoidably evolves towards the
asymptotic, Gaussian thermal state. We shall take into
account both processes (separation and Gaussification) in
parallel and explore the relations between them. The non-
Gaussian character of a state % is measured by �ð%Þ ¼
Sð	Þ � Sð%Þ i.e, the relative entropy between % and the
reference Gaussian state 	 having its same covariance
matrix [23]. In order to explore the effect of noise in a
wide range of conditions and initial states we consider
TWB, PSSV, PASV, TMC, and random PNES of different
energies and compute the evolved density matrix for 0 �
t � 15 in units of inverse loss 1=�. At any time t, entan-
glement is tested with all the above mentioned criteria and
the value of the non-Gaussianity � is computed. From
these data we evaluate tK, i.e., lower bounds to separation
times according to different criteria, and Gaussification
times tG, i.e., times for which non-Gaussianity � falls
below a fixed Gaussification threshold �G (we consider
different thresholds �G ¼ 0:1, 0.01, 0.001). The procedure
is then repeated for different values of the temperature T
corresponding to NT in the range ½10�5; 10�1�.
We start describing the results of our analysis by focus-

ing on TMC. In Fig. 1 we report tK for TMC and different
criteria as a function of N for the lowest (highest) tempera-
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ture considered NT ¼ 10�5 (10�1). It turns out that at any
temperature SI, SH, and RE criteria yield similar curves
whereas the SP criterion works only at low T. We point out
two general features: (i) �tK is a decreasing function of T,
i.e., entanglement is strongly corrupted as the temperature
increases; (ii) both at high and low T, tK rapidly increases
to an asymptotic value �tK which is reached at N 	 1=2 and
then remains almost constant. In Fig. 1 we also show
Gaussification times of TMC as a function of energy. We
see that the behavior of non-Gaussianity is only weakly
affected by the increase of T. Upon comparing separation
and Gaussification times we notice that at low T states
become nearly Gaussian well before they become sepa-
rable: tG < tK � tS. At high T, on the contrary,
Gaussification times are greater than our bounds on sepa-
ration times: tG > tK. The analysis of all other PNES
subclasses (TWB, PASV, PSSVand random PNES) reveals
the same qualitative behavior described for TMC for the
evolution of both entanglement and non-Gaussianity (with
the obvious exception of TWB, whose non-Gaussianity is
always zero). In summary, we have numerically proved
that for the whole class of states we have considered and at
any temperature SI, SH, and RE criteria yield qualitatively
the same results. In addition, Simon’s criterion, which
offers analytical advantages, is the optimal one.
Furthermore, the separation time decreases with T, and
the dependence on the energy can be appreciated only for
small N, while they quickly reach their asymptotic values
as N increases. As for the non-Gaussianity, we have tG <
tK � tS at low T and tG > tK at high T. This deserves
further consideration. Indeed, the relation tG < tK � tS
suggest that for low T the bounds provided by Simon’s
criterion properly estimate the actual PNES separation
times, i.e., tSI ’ tS. This can be understood by first noticing
that when t > tG the states are nearly Gaussian and there-
fore Simon’s criterion is expected to be very reliable.
Furthermore, at any t � tSI > tG the reference Gaussian

state is obviously separable and thus the non-Gaussianity
can be compared with a measure of entanglement: the
relative entropy [24] Eð%Þ ¼ min�2�½Sð%jj�Þ� that quan-
tifies the distance between % and the whole set of separable
states �. When t � tSI one has that

Eð%Þ � �ð%Þ 
 1 (2)

and this confirms that in this limit the states are very poorly
entangled (if they are) and SI allows to reliably estimate tS.
The fact that the other criteria provide very close bounds on
tS strengthens our conclusion. At high T Gaussification
times are greater than all tK and we cannot draw the same
conclusions. However, the agreement between different
criteria is still an indication that tK may represent a good
estimate of tS.
We now focus our attention on the dependence on tSI on

the initial non-Gaussianity �0. Indeed, we have �0 ¼
2fðd�Þ where fðxÞ ¼ ðxþ 1=2Þ logðxþ 1=2Þ � ðx�
1=2Þ logðx� 1=2Þ monotonically increases with x [3] and

d� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN þ 1=2Þ2 � jCj2p
is the least symplectic eigen-

value of the covariance matrix. Upon defining g ¼ f�1, tSI
can be written as

tSI ¼ 1

�
log

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN þ 1=2Þ2 � g2ð�0=2Þ
p � N

NT

�
; (3)

which shows that tSI is a decreasing function of �0 at any
fixed N, and it is maximized by TWB for which �0 ¼ 0.
In the left panel of Fig. 2 the separation times and the

initial non-Gaussianities of different PNES are plotted
against N (for tS we use tM ¼ maxKtKð%Þ): at any fixed
energy N, the states with higher �0 have shorter separation
times. This result holds 8T and it is related with the fact
that at any fixed N Gaussian states are maximally en-
tangled [3]. Let us now discuss the relation between sepa-
ration times, non-Gaussianity, and the initial entanglement
of the states. As shown in the right panel of Fig. 2, where
tM and �0 are plotted as a function of the initial entangle-
ment �0, the dependence is by no means universal.
However, we notice that also at fixed �0 states with higher
�0 show shorter tS: this trend is not represented by an exact
relation, but it represents a clear indication that non-
Gaussianity speeds up the loss of entanglement, making
Gaussian entanglement more robust than non-Gaussian
one. Therefore the robustness of Gaussian entanglement
may be conjectured to be a general feature of CV systems
evolving in noisy Markovian channels. In fact, within the
Markovian approximation, propagation in CV noisy chan-
nels corresponds to a ME in Linblad form, which induces a
Gaussian map and enforces Gaussification of any initial
state.
The results of our analysis, together with the above

discussions, naturally lead us to formulate the following
general conjecture: for any fixed value of the global energy
of a PNES, and for any given noisy Markovian evolution
with losses and thermal hopping, the Gaussian states are
those that have maximal separation times. Besides, from

FIG. 1 (color online). Separation and Gaussification times for
TMC as a function of the mean energy for low (NT ¼ 10�5, left)
and high (NT ¼ 10�1, right) temperature. In both plots we report
separation times according to different criteria: tRE (green,
circle), tSP (blue, square), tSH (red, triangle), tSI (purple, rhom-
bus), and Gaussification times for different thresholds: �G ¼
10�1 (solid black, triangle), �G ¼ 10�2 (dashed black, triangle),
�G ¼ 10�3 (dotted black, triangle).
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Fig. 2 we also extract another relevant feature: in the high-
energy limit there is an approximate universality in sepa-
ration times, i.e., tS are nearly constant and similar for all
classes of states, including randomly generated states,
independent of the non-Gaussianity: the effect of the de-
parture from Gaussianity is very small.

Let us summarize the results of our analysis. We have
considered a class of states (PNES) including Gaussian and
non-Gaussian subclasses and exploited several entangle-
ment criteria to estimate their separation times in a noisy
channel. The analysis shows that no criterion is able to give
better bounds than those provided by Simon’s criterion. At
low temperature, the estimate provided by Simon’s crite-
rion is very reliable since PNES Gaussify well before they
lose entanglement, whereas at high temperature it repre-
sents a lower bound on separation time. At any fixed
energy N, separation times decrease with the initial non-
Gaussianity �0, both at high and at low temperature,
whereas for any fixed initial entanglement �0 separation
time is longer for states with lower �0, i.e., Gaussian
entanglement is the most robust against noise. Finally, in
the high-energy limit and independently of the tempera-
ture, the differences among separation times of different
subclasses are small, non-Gaussian entanglement being
nearly as robust as Gaussian one.

In conclusion, we have provided several evidences sup-
porting the conjecture that at fixed energy Gaussian en-
tanglement is the most robust against noise in a Markovian
Gaussian channel. On the other hand, our analysis shows
that robustness of non-Gaussian states is comparable with
that of Gaussian states for sufficiently high energy of the
states. This implies that in these regimes non-Gaussian
resources can be exploited to improve quantum communi-
cation protocols approximately over the same distances.
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