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Topology and energy transport in networks of interacting photosynthetic complexes
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We address the role of topology in the energy transport process that occurs in networks of photosynthetic
complexes. We take inspiration from light-harvesting networks present in purple bacteria and simulate an
incoherent dissipative energy transport process on more general and abstract networks, considering both regular
structures (Cayley trees and hyperbranched fractals) and randomly generated ones. We focus on the the two
primary light-harvesting complexes of purple bacteria, i.e., the LH1 and LH2, and we use network-theoretical
centrality measures in order to select different LH1 arrangements. We show that different choices cause significant
differences in the transport efficiencies, and that for regular networks, centrality measures allow us to identify
arrangements that ensure transport efficiencies which are better than those obtained with a random disposition of
the complexes. The optimal arrangements strongly depend on the dissipative nature of the dynamics and on the
topological properties of the networks considered, and depending on the latter, they are achieved by using global
versus local centrality measures. For randomly generated networks, a random arrangement of the complexes
already provides efficient transport, and this suggests the process is strong with respect to limited amount of
control in the structure design and to the disorder inherent in the construction of randomly assembled structures.
Finally, we compare the networks considered with the real biological networks and find that the latter have in
general better performances, due to their higher connectivity, but the former with optimal arrangements can
mimic the real networks’ behavior for a specific range of transport parameters. These results show that the use
of network-theoretical concepts can be crucial for the characterization and design of efficient artificial energy
transport networks.
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I. INTRODUCTION

Although research on energy transfer in photosynthesis
has a very long history [1], the refinement of experimental
techniques in the last decade has dramatically enlarged the
range of possible observations at the molecular level [2], thus
boosting new interest in the field. Recent progress in this con-
text includes new experimental results aimed at characterizing
on one hand the structure of light-harvesting systems in other
biological organisms [3] and, on the other hand, the presence
and relevance of quantum effects in the energy transport
process [4,5]. These results are of fundamental interest since
they allow us to shed light onto the mechanisms at the
basis of energy transfer processes, which, owing to the long
course of natural selection, are likely to be optimally efficient.
Therefore, a more complete understanding of their features
has also a potential technological impact in providing useful
benchmarks on how to engineer artificial light-harvesting
systems.

Purple bacteria are among the most important organisms
whose photosynthetic apparatus is currently studied. The basic
actors in the energy transfer process within these membranes
are two kinds of molecular photosynthetic complexes, called
the LH1 and the LH2. The latter play the role of antennas,
capturing the incoming photons and funneling the resulting
excitons to the former, which also act as antennas and
furthermore contain the reaction centers (RCs) where charge
separation is eventually induced [6].

The global dynamics in these models is highly dependent
on the membrane architecture. In particular, recent studies
have revealed the peculiar capability of these bacteria to adapt

the structure of their photosynthetic membranes to the illu-
mination conditions characterizing their growth process [7].
While theoretical models of the transport process taking place
in purple bacteria membranes have already been proposed
[6,8,9] and they are based on classical, Markovian master
equations, so far only some basic model architectures were
considered [10] and a comprehensive study of the relevance
of the membrane topology for efficient energy transfer has yet
to be developed. This may be very important for applications:
Current techniques such as nanoimprint lithography already
allow us to form regular patterns of optically active LH2
complexes [11], and future developments in this direction
might allow us to arrange also other complexes, according
to more complex designs.

In this context, a basic and general question is the
following: how is the transport process affected by the
topological properties of the underlying structures? Are there
design principles allowing us to select the most efficient
topologies? In this work, we propose a framework in order
to address these questions. We take inspiration from the
real biological membranes and simulate the energy transport
process [8,9] on more general networks in order to relate the
dynamics to different topological properties.

Indeed, light-harvesting membranes can be regarded as
networks [12] where the different photosynthetic complexes,
such as LH1-LH2, play the role of nodes, and links rep-
resent the physical interactions (exciton hopping) between
neighboring complexes. One can thus vary the topological
properties of the system by choosing different network
architectures and by choosing different arrangements of the
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complexes on them. As for the architectures, we will focus
on well-known regular structures such as Cayley trees and
regular hyperbranched fractals [13–17] as well as randomly
generated ones (representing, respectively, presence or lack
of control over the networks assemblage). Once a specific
architecture is selected, one has to address the problem of
selecting specific arrangements of LH1-LH2 complexes on it.
In this work, we propose to use some of the most common
network-theoretical tools used in the description of dynamical
processes on complex networks: centrality measures. The
latter allow us to rank the nodes of a network on the basis
of their centrality with respect to it and we will therefore
use them as guiding principles for the choice of different
arrangements.

The results of our analysis show that the topology has a
remarkable influence on the dynamics. In particular, for the
selected structures, there is a high sensitivity of the efficiency
of the energy transport with respect to the choice of the ar-
rangement of photosynthetic complexes. The use of centrality
measures, in particular for regular structures, allows us to
highlight specific arrangements that ensure a better efficiency
with respect to a random arrangement; we benchmark these
results by comparing them with those obtainable by using an
optimization algorithm and with those pertaining to the real
biological networks. As for random structures, the efficiency
corresponding to a random arrangement is comparable with
that achievable with the use of centrality measures; this
highlights the robustness of the dynamical process with respect
to the lack of control over LH1-LH2 arrangement in randomly
assembled structures.

This work is structured as follows: In Sec. II, we intro-
duce the basic notions on purple bacteria’s light-harvesting
membranes and the energy transport model used in the paper.
In Sec. III, we introduce the types of networks and the main
network-theoretical tools used in this work. In Sec. IV, we
discuss our main results on the relation between network
topology and efficiency. Section V closes the paper with some
final remarks.

II. PHOTOSYNTHETIC ENERGY TRANSFER
IN PURPLE BACTERIA

A. Structure of the membranes

The starting point of our analysis is the energy transport
process that occurs in biological organisms such as purple
bacteria. By virtue of techniques such as x-ray crystallography
and atomic force microscopy, the structure of photosynthetic
membranes of purple bacteria has been described with high
precision [2]; moreover, the main dynamical time scales
governing the exciton dynamics have been measured or
calculated [18,19]. The energy transport process is based
on two different kinds of pigment-protein photosynthetic
complexes called LH1 and LH2, which grow in the membranes.
The LH2 play the role of antennas, absorbing incoming
photons and transferring the resulting electronic exciton to
the LH1. The LH1 complexes are also effective in absorbing
light, at a different wavelength, and they contain the reaction
centers (RCs) where the exciton is absorbed by a special

pair of chlorophylls, inducing ionization of the pair (charge
separation) and triggering a chemical reaction (the reduction
of quinone to quinol [6]).

LH2 complexes are always more abundant than LH1
ones. However, the stoichiometry s = N2/N1, i.e., the ratio
between the number of LH2 (N2) and the number of LH1
(N1), varies depending on environmental conditions. The
membranes have a remarkable ability to adapt to the intensity
of the illumination during their growth: Bacteria grown under
low light intensity (LLI) conditions have a stoichiometry
sLLI ≈ 7–9, while those grown under high light intensity
(HLI) conditions have a stoichiometry sHLI ≈ 3.5–5. As for
photon capture, the membranes’ total cross section is σ =
σ1N1 + σ2N2: since σ2 = 116 Å2 > σ1 = 67.29 Å

2
, the higher

the stoichiometric ratio, the higher the total cross section.
The rate of photon capture R is proportional to σ : R =
Iσ/hν, where I is the incoming light intensity at the relevant
wavelength. As a consequence, under a given illumination
intensity I , LLI membranes are able to capture more photons
than HLI ones, which enables them to survive in scarcer
illumination.

B. Model of energy transfer

Excitations are initially created on one complex via photon
absorption and can hop to neighboring complexes through a
Förster resonance mechanism [6], until they either dissipate
(with typical dissipation time tdiss) or lead to charge separation
in a RC (with typical time tcs). A schematic depiction of
the process and the basic components is given in Fig. 1.
A crucial feature of the energy transport process is the
fact that when an exciton leads to charge separation within
a RC, the latter features a “busy” time interval, during
which quinol is produced, removed, and then a new quinone
becomes available. Therefore, the RC is closed for a time
interval tblock, called recycling time, during which it can
not exploit incoming excitons. Furthermore, the RC in the
closed state becomes a quencher for excitons, i.e., increases
its dissipation rate (tRCc

diss � tdiss). The time scales for energy
capture, exciton lifetime, and RC reopening are roughly

FIG. 1. (Color online) Schematic depiction of basic photosyn-
thetic complexes of purple bacteria LH2 and LH1; they both play
the role of antennas, capturing the incoming photons. The LH1s also
contain the reaction centers (RC) where charge separation eventually
occurs.
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TABLE I. Relevant scale parameters for HLI and LLI networks: stoichiometric ratio, absorption cross section, and dynamic time scales.

I NLH2/NLH1 σ R−1 tdiss tRCc

diss tcs

HLI 100 w/m2 4.64 ≈12 Å
2

0.02 ms 1 ns 30 ps 3 ps

LLI 10 w/m2 7 ≈14 Å
2

0.16 ms 1 ns 30 ps 3 ps

R−1 ∼ 10−1–10−2 ms, tdiss = k−1
diss ∼ 1 ns, tblock ∼ 1 ms, re-

spectively. The recycling time tblock can differ significantly
depending on the specific kind of bacterion analyzed (1–
30 ms). As a consequence of RC closure, at any time only some
of the RCs are available for producing charge separations. The
number of available RCs decreases with increasing tblock, i.e.,
as the RCs remain closed for a longer time, and the overall
transport process passes from an active regime in which all
RCs are open to a saturated regime in which all RCs are
closed.

In Tables I and II, we report the values of the relevant dy-
namical parameters of the LLI- and HLI- adapted membranes
[8,9,18]. The problem of modeling energy transfer processes in
biological and artificial systems has been thoroughly studied in
the past decades, and models of the exciton transport dynamics
in light-harvesting membranes have been developed in order
to take into account both incoherent and coherent phenomena
[20]. Here, we focus on a simple classical, Markovian model
developed in [8,9] to model energy transfer in purple bacteria
membranes. Since exciton transfer between complexes in such
membranes arises through the Coulomb interaction on the ps
time scale, while vibrational dephasing destroys coherences
within a few hundred fs, coherent effects in the energy transfer
between complexes are expected to be very weak and are
therefore neglected in these models.1

Since tdiss � R−1, simultaneous occurrence of two excitons
in the membrane is very unlikely, therefore, the system can be
modeled as if a single exciton were present at each time t . The
dynamics is described by a Markovian master equation (see
Appendix B for details) and thus can be numerically simulated
by standard random walk methods [8,9]. In the following, we
will always base our analyses on random walk simulations.

Excitons are created at random times {ti} determined in
advance by using a Poissonian distribution. At each time ti , a
single exciton is randomly created in a LH1 (LH2) site with
probability p1 = N1σ1

N1σ1+N2σ2
(p2 = 1 − p1). The exciton then

follows a random walk, and the probability of jumping from
a site j in a given time step δt is given by p

j

jump(δt) = Kjδt

1While it might be of interest to investigate the possible role of weak
quantum effects, we neglect this issue since the focus of our paper
is on the relation between transport and topology, and a comparison
between quantum and classical transport models is beyond its scope.
While noiseless quantum models on dendrimers exhibit the tendency
to localization of the exciton on some specific (outermost) nodes of the
network (see, e.g., [17]), in more realistic quantum models one should
take into account the role of dephasing and/or dissipation, allowing
for the appearance of delocalization of the exciton and environment
assisted energy transport.

with

Kj =
∑
i �=j

Wij + kdiss(1 − δj,RCc ) + k∗
dissδj,RCc + kcsδj,RCo , (1)

where kdiss = t−1
diss, k∗

diss = t−1
RCc

diss
, kcs = t−1

cs , and the exciton
transfer rates Wij are zero if the nodes are not linked, otherwise
they are taken as the inverse of the typical exciton transfer times
tX→Y . The values of all time scales are the same as in Tables I
and II. The excitons remain on the same site or jump to a
neighboring one according to different probabilities, until they
dissipate or lead to charge separation in a RC. When charge
separation occurs in a RC, the latter remains closed for time
tblock in the simulation and its dissipation rate is increased. Our
simulations cover a long time of ∼1 s, so that the histories of
Nabs = 105 excitons are simulated [21].

The optimality and robustness of energy transfer are
characterized by performance measures: The most relevant
is the efficiency of the transport process η, i.e, the probability
that an exciton lead to a charge separation, while 1 − η is the
probability that it dissipate. In the random walk, we evaluate
the ratio η = Ncs/Nabs, where Ncs is the number of photons
that are used for charge separation in RCs and Nabs the total
number of photons absorbed by the network.

III. BIOLOGICALLY INSPIRED NETWORKS AND
NETWORK-THEORETICAL TOOLS

In order to study the role of topology for the biologically
inspired transport process described in the previous section, we
will consider different kinds of regular and randomly generated
networks. The structures that we are going to use are based
on a pair {�,A} composed by a graph � = (E,V ), with set of
vertices V and edges E, together with an arrangement A =
(V1,V2) i.e., a subdivision of the vertices in two disjoint subsets
V1,V2 ⊂ V that identify the nodes that are occupied by LH1
and LH2, respectively. The complete structure is obtained by
adding to � one node for each element of V1, representing a RC
directly linked only to the respective LH1 complex. We have
|V1| = N1 and |V2| = N2, where the number of the different
complexes is determined by the stoichiometry s. We will
investigate two different settings, representing specific high
light intensity (HLI) and low light intensity (LLI) conditions.
The stoichiometric ratios are those found in real networks:
N2/N1 = 4.64 for for HLI, N2/N1 = 7.04 for LLI.

TABLE II. Typical transfer times between different photosyn-
thetic complexes.

tLH1→ LH1 tLH2→ LH2 tLH2→ LH1 tLH1→ LH2 tLH1→RC tRC→LH1

20 ps 10 ps 3.3 ps 15.5 ps 25 ps 8 ps
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In general, the transport process properties will be de-
termined both by the topological features of the graphs �

and by choice of the arrangement A, i.e, how the LH1-LH2
complexes are placed on �. The different arrangements A
will be chosen following criteria based on tools developed in
complex networks theory (centrality measures). The selected
structures will be compared with the real networks describing
purple bacteria membranes, from the point of view of energy
transfer properties.

A. Networks

The regular networks we will focus on are well-known
regular structures which have been considered [14–16] in
models of energy transport: (i) Cayley trees (CT) and
(ii) regular hyperbranched fractals (RHF). The CT are con-
structed as follows. The nth generation d-Cayley tree is a tree
of n levels in which all vertices on the interior have degree
d, while vertices on the outermost layer have degree 1. In
our simulations, we use d = 4,n = 4 (see Fig. 2) and a total
number of nodes is 161. The RHF instead are constructed
as follows. A first generation (RHF) (as shown in Fig. 2) of
functionality f is a star graph consisting of a central vertex
connected through f edges to f surface vertices. To construct
a second generation RHF, f copies of the first generation
RHF are connected to the core first generation RHF through a
single leaf-leaf edge. This procedure is repeated n times for an
nth generation RHF. In our simulations, we use f = 5,n = 3

FIG. 2. (Color online) Regular graphs, generated according to the
procedure in Sec. III A: (top) Cayley tree with d = 4, n = 4; (bottom)
RHF with f = 5, n = 3. In both graphs, nodes of different shapes
and colors belong to different generations: 0 (yellow diamond), 1 (red
square), 2 (green triangle), 3 (blue circle), and 4 (black ellipse).

FIG. 3. (Color online) Random network generated according to
the procedure in Sec. III A.

and the total number of nodes is 216. Both CT and RHF are
depicted in Fig. 2.

In addition to regular structures, we also investigate
randomly generated ones. This allows us to compare the
efficiency of transport achieved in two very different cases: the
case where one has global control over the network topology �

and the case where one has no control on it; this might happen,
for instance, if the network is randomly assembled. A natural
way to generate planar structures that are possible realizations
of light-harvesting networks is to consider for example
randomly decimated hexagonal networks (RN). These are
obtained according to the following prescription: We consider
a hexagonal lattice of Ntot = 256 sites and remove m randomly
chosen links such that the connectedness of the network is
preserved. In our simulations, m = 193 and m = 321 so that
the average degree becomes ∼4 and ∼3, respectively. For
both values of m we generate an ensemble of M = 100 RNs
(a particular element of the ensemble is depicted in Fig. 3).

Finally, we consider the real, biological networks studied
by Fassioli et al. [8], which are based on studies of the Rsp.
photometricum membranes [7]. The global membrane struc-
ture is known in great detail since atomic force microscopy
has provided high-resolution images of the membranes of the
purple bacterium Rsp. photometricum [7]. The membranes
have a planar structure where complexes are densely packed,
and the cores are surrounded by LH2 complexes (5–7 on
average) [7]. A simplified depiction of a typical HLI membrane
in terms of the constituent complexes is given in Fig. 4; in
the network model, links are present between neighboring
complexes. Notice that we consider a single realization of
real network for HLI and LLI, i.e., in both cases � and A as
fixed and correspond to the networks in Ref. [8]. Furthermore,
LLI and HLI membranes, considered as networks, have a
different topology: since LH1 have on average more links
to neighboring complexes than LH2, HLI structures have a
higher average connectivity. The total number of nodes are
168 (HLI) and 193 (LLI).

The parameters defining all the above networks have been
chosen in order to have structures with approximately the same
size, i.e., the same number of nodes |V |.
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FIG. 4. (Color online) Simplified depiction of a typical HLI
photosynthetic membrane of purple bacteria. Big (small) circles
represent LH1 (LH2).

B. Choosing different arrangements: Centrality measures

Once a specific network � is chosen, another step is
needed in order to completely specify the topology of the
transport network. Indeed, different arrangements A of the
LH1-LH2 complexes are possible and one has therefore
to identify guiding principles allowing for the selection of
different inequivalent arrangements. In this sense, a possi-
bility is given by the study of the relevance of the nodes
within a network. Great efforts in the development of the
theory of complex networks have been devoted to this task,
and in this context several centrality measures have been
proposed [22]. The usefulness of a given measure depends
strongly on the specific problem at hand since the latter
determines which nodes are more relevant from case to
case.

Two common families of centrality measures are the set of
degreelike and the set of betweennesslike centrality measures.
Degreelike measures are essentially based on counting the
number of paths emanating from the node. Different measures
are obtained considering different path lengths and different
kinds of paths (edge, of node, disjoint, geodesic, etc.). The
simplest of such measures is the degree (DEG) [23]: The
degree k of a node is simply the number of nodes to which it
is connected (i.e., the number of paths of length 1 emanating
from the node). Betweennesslike measures instead are based
on counting the number of paths that pass through a given
node k. Again, different measures are obtained considering
different path lengths and different kinds of paths. The most
common of such measures is the shortest path betweenness
centrality (SPB) [24]; here the basic objects are the shortest
paths connecting two nodes i,j (a path is given by a sequence
of edges connecting the two nodes); in general, there are many
different paths of minimal length (sequences with minimal
number of edges) between two nodes. The SPB of a node k

is defined as Bk = ∑
ij

gijk

gij
where gij is the total number of

shortest paths from node i to node j , while gijk is the subset of
such paths passing through node k. While the degree is a local
measure of node centrality, depending only on the structure of
the network in the immediate neighborhood of a given node,
the shortest path betweenness is a global measure of node

centrality since it takes into account the structure of the whole
network.

By means of the above measures, one can identify different
inequivalent arrangements A in the following way. For each �,
we evaluate the DEG, SPB of all nodes (a full characterization
of �CT,�RHF, and �RN in terms of these measures is presented
in Appendix A). An arrangement A is identified by choosing
the subset V1 as the set of N1 nodes satisfying one of the
following criteria:2

(i) nodes with maximal SPB, or DEG,
(ii) nodes with minimal SPB, or DEG,

(iii) nodes chosen at random.
While other choices are possible, these are the basic and natural
ones that allow us to test how the transport efficiency can
be affected by different arrangements of the RCs on a given
network. As in the case of random topology, the random
arrangement represents the case when no control over the
LH1-LH2 arrangement is possible.

IV. ENERGY TRANSPORT IN BIOLOGICALLY
INSPIRED NETWORKS

In the following, we give a detailed description of the dy-
namics and then we discuss the relation between the dynamics
and the topological features of the selected structures. In order
to describe the dynamics, we introduce the following functions
of the recycling time tblock:

(i) the efficiency η = Ncs/Nabs;
(ii) the average fraction of closed RCs 〈nc

RC〉 =
〈Nc

RC/NRC〉;
(iii) the average lifetime 〈τ 〉cs of successful excitons, i.e.,

those that reach a RC and induce a charge separation;
(iv) the average maximal distance 〈d〉cs of successful

excitons, i.e., the distance, in steps, between the initial site
and the most distant site reached during the random walk;

(v) the average exploration parameter 〈x〉cs of successful
excitons, i.e., the fraction of network sites visited.
In particular, 〈d〉cs and 〈x〉cs characterize the diffusion of
excitons over the network.

For each choice of � and A, and for any fixed value of
tblock, we realize the random walk dynamics corresponding
to Nabs = 105 excitons. The above averages are taken over
the Nabs histories (η,〈nc

RC〉) or over the histories of the Ncs

successful excitons (〈τ 〉cs,〈d〉cs,〈x〉cs). In the case of random
networks or arrangements, the functionals are the results of
a further average over the elements of a given ensemble of
networks and/or arrangements. Finally, we let tblock varying
over a large range of values (10−3 ms–103 ms).

A. Cayley trees

We now show how the introduced functionals allow us to
characterize the dynamics and its relation with the topology
of the LH1-RC arrangement. We shall first focus on CTs,

2If a given criterion does not allow us to univocally identify the core
position on the network, we randomize the corresponding possible
choices.
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and then analyze results for the remaining network topologies
(RHF, RN).

Different transport regimes. As a first general comment,
we note that the dynamics is characterized by three main time
scales, given by the absorption rate R−1, the typical dissipation
time tdiss, and the recycling time tblock. In particular, there
are two distinct regimes: the active regime, characterized by
tblock < R−1 � tdiss, i.e., by a recycling time smaller than
the absorption rate; and the saturated regime, characterized
by R−1 < tblock � tdiss, i.e., by a recycling time greater than
the absorption rate. The transition between the two regimes
occurs at R−1 ≈ tblock.

In Fig. 5 (upper panel), we show η for CTs for all different
LH1 arrangements in LLI conditions. The behavior for HLI
networks (not shown) is analogous; since R−1

HLI ≈ 10−1R−1
LLI,

the transition between the two regimes occurs in HLI networks
earlier than in LLI ones. Each absorbed photon moves in a
network which is characterized not only by the stoichiometric
ratio, but also by the number of closed RCs. In Fig. 5
(lower panel), both η and nc

RC are plotted together for the
different LH1-RC arrangements. On one side, for any given

0
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FIG. 5. (Color online) (a) Efficiency η of exciton transport for
CT as a function of tblock in LLI conditions, under different LH1
arrangements. One can clearly identify the active and saturated
regimes. The transition occurs at tblock ∼ R−1 ∼ 0.1 ms. (b) η and
RC occupation nc

RC for CT as a function of tblock in LLI conditions.
η sinks and nc

RC grows when tblock is increased. For any fixed tblock,
efficient arrangements correspond to higher values of both η and nc

RC.

arrangement, nc
RC grows with increasing tblock, while η sinks.

On the other side, if we compare different arrangements at a
fixed value of tblock, we notice that more efficient arrangements
have a larger fraction of closed RC: excitons are more likely
to be absorbed, so that on average more RCs are closed and,
consequently, the ordering of the efficiency curves is the same
as the RC-closure curves.

As for the other functionals 〈τ 〉cs,〈d〉cs,〈x〉cs, we note that
they all display the same behavior with tblock: they remain
essentially constant in the active regime and they grow
throughout the transition region. Indeed, when many RCs are
closed, excitons are expected to travel further away from their
initial site and explore a larger fraction of nodes in order to
find open RCs. A maximum is reached when nc

RC ∼ 90%.
Thereafter, unless one of the very few open RCs is found in
the vicinity of the initial exciton site, the excitons are dissipated
before reaching any RC and thus all quantities undergo a slight
decrease after this threshold.

The concentration of RCs is also at the basis of the
difference between LLI and HLI networks. Indeed, the values
of 〈τ 〉cs,〈d〉cs, and 〈x〉cs are higher in the former case; due to
lower stoichiometric ratio, the excitons have to explore a bigger
fraction of the network; for instance, in the active photosynthe-
sis regime, one has that for LLI 〈τ 〉cs ∈ [90 ps,180 ps], while
for 〈τcs〉 ∈ [80 ps,120 ps] for HLI networks.

The plots of 〈x〉cs in Figs. 6(c) and 6(f) show that the
absorbed excitons do not explore the whole network, but only
a relatively small portion of it: only 5–10% of all sites are
visited by successful excitons. Furthermore, the ordering of
the 〈d〉cs and 〈τcs〉 curves is reversed with respect to the
η ones. We thus reach a first important conclusion: due to
dissipation effects, excitons can not explore the whole network,
and in efficient configurations, excitons find open RCs in
the vicinity of the initial site and reach it in the shortest
time.

Optimal arrangement criterion and topological properties
of the network. In the case of the Cayley tree, the LH1
arrangement criterion giving the highest efficiency is the
maximal SPB, and the corresponding subset V1 is composed
by the nodes clustered around the root of the network. This fact
can be explained by analyzing the topological properties of the
network �CT and the dynamical behavior. Indeed, in the active
photosynthesis region, the distance 〈d〉cs ≈ 4 is comparable
with a key topological property of the network, namely, the
average distance between two nodes of the network, which
is of 6.4 steps. This means that, although the exploration
parameter is relatively small, the exciton is able to move
across the network, e.g., from the periphery to the center of
the tree and vice versa. Therefore, it can take advantage of
the global character of the centrality of the nodes occupied
by the LH1-RCs. This is confirmed by the positive value of
the linear correlation coefficient between the SPB of each
node and the average time spent on it, which we find to
be approximately 0.7 in all regimes: excitons are likely to
reach the central region and to spend more time on the V1

nodes.
A general important feature highlighted by our analysis

is that both for LLI and HLI structures, the maximal SPB
criterion allows for a significant improvement with respect
to the random arrangement. This indicates that the chosen
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FIG. 6. (Color online) Lifetimes 〈τ 〉cs, average maximal distances
〈d〉cs, exploration parameter 〈x〉cs of successful excitons as a function
of the recycling time tblock for Cayley trees in HLI (left) and LLI
(right) conditions, under different LH1 arrangements: random (black
square), max DEG (red circle), max SPB (green upward triangle),
min DEG (blue downward triangle), min SPB (yellow diamond).
All quantities grow in the transition region due to the necessity of
longer paths in order to find open RCs, and have larger values for LLI
networks that have less RCs.

network-theoretical tools represent a useful guiding principle
for the identification of the most efficient configurations.

B. Regular hyperbranched fractals

In the case of RHF networks, the global behavior of all
functionals with tblock is analogous to the one described for the
CTs. However, some fundamental differences emerge. On one
hand, the range of the various functionals is much higher for the
RHF, and this is a clear indication that these networks are very
sensitive to the choice of the LH1 arrangement. For example,
in the active photosynthesis regime 〈τ 〉cs ∈ [100 ps,375 ps]
for LLI, while for HLI 〈τ 〉cs ∈ [70 ps,240 ps].

On the other hand, the criterion that allows for a maximal
efficiency is in this case the maximal DEG, i.e., a local measure
of centrality of the nodes, whereas the arrangement determined
by the maximal SPB criterion (Fig. 7, upper panel) has a
considerably low efficiency (60%). This result can again be
explained in terms of the topological features of the �RHF.
Indeed, the values of 〈d〉cs are in general small if compared to
the average distance between the nodes of the �RHF network,
which is 16.68 steps (for example, 〈d〉cs ∈ [4,6] for the
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FIG. 7. (Color online) (a) Efficiency curves for RHF at LLI under
different LH1 arrangements. The arrangement based on global SPB
is particularly inefficient. (b) Efficiency curves for RHF at HLI.
Arrangements are based on max SPB(d) (d = 2–6); efficiency grows
as an increasingly local structure of the network is considered.

LLI case in the active photosynthesis region). Therefore, the
dynamics can not exploit the global centrality of the nodes with
max SPB, i.e, those clustered around the root of the network.
This fact is again confirmed by the linear correlation coefficient
between the betweenness of each node and the average time
spent on it which is now negative and equal to −0.5 in the case
of max SPB arrangement.

The previous result suggests a general consideration: For
networks with high values of the average distance between
nodes and in the presence of a dissipative dynamics that does
not allow for high values of 〈d〉cs, optimal LH1 arrangements
can be found by considering local centrality measures, able to
characterize the centrality of the various nodes with respect to
the local surrounding network. In order to further test this fact,
we introduce a class of centrality measures which generalize
the concept of local betweenness centrality already introduced
in the context of search problems on complex networks [25].
For each node k of a given network �, one can fix a distance
d and consider the subnetwork composed by those nodes,
the distance from k of which is �d. One then evaluates the
shortest path betweenness of the given node in the selected
subnetwork. We shall denote such “d-local” betweenness
centrality measure as SPB(d) [26]. The latter coincides with
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the SPB for sufficiently high values of d. For each value of d,
the arrangement we consider corresponds to placing the LH1
complexes on the nodes with higher values of SPB(d). Let us
consider RHFs and compare the results obtained with the LH1
arrangement based on global SPB and that based on SPB(d) for
various values of d. In Fig. 7 (lower panel), we clearly see that
while the global SPB induces a very inefficient arrangement,
the local SPB(d) measures progressively induce more efficient
arrangements as d decreases and a increasingly local structure
of the network is considered [27]. Even though this precise
hierarchy is specific to the RHF, it is also a good qualitative
example of how local, rather than global, centrality measures
may be more appropriate for dissipative dynamics that take
place on networks with large average distance between sites.

We conclude our discussion by observing that also in the
case of RHF structures, the use of criteria based on centrality
measures allows us to identify optimal arrangements, the
efficiencies of which are significantly higher than those
obtained by randomly placing the various complexes.

C. Random networks

We now pass to examine the random networks generated
according to the procedure described in Sec. III. Notice that
in the following discussion and figures, we always consider
averaged quantities over an ensemble of M = 100 randomly
generated networks. In Fig. 8, we show the efficiency curves
for the LLI networks with m = 193 and 321 links eliminated
(average DEG = 3,4, respectively).

The efficiency η, as well as the other functionals, globally
follow the same behavior of the previously examined cases.
The main difference between the two cases m = 193 and 321
is the global connectivity, which is higher in the former case.
This allows for higher values of 〈d〉cs and 〈x〉cs and in general
for slightly higher values of efficiency.

In both cases, the criterion that gives the best efficiency
is a local one, i.e., the maximal DEG. As for the relation
between topology and arrangement criteria, we first focus on
the LLI case with m = 321, which are the networks that show
the maximal variation of the various functionals with respect
to the change of the arrangement. Here, the average maximal
distance traveled in the saturation regime is 〈d〉cs ∈ [5.8,6.5],
which has to be compared with the average distance between
pairs of sites which is ≈11. This is consistent with the fact that
the criterion giving the best efficiency is a local one, i.e., the
maximal DEG. However, for the case m = 193, the values of
〈d〉cs are in general higher than the m = 321 case, while the
average distance between pairs of sites is smaller (≈9), which
would suggest a global criterion such as max SPB. Therefore,
we have an indication that in the case of randomly generated
networks, these two parameters are not sufficient to identify
an optimal arrangement criterion.

Moreover, at variance with the case of regular networks,
for all values of tblock, the efficiency corresponding to the best
topological criterion (max DEG) is only slightly better than
that obtained with a random arrangement of the LH1s. This
result is very relevant since it suggests that the dynamical
process (originally modeled for purple bacteria membranes)
is a sense optimized to take into account the disorder inherent
in the construction of randomly assembled structures. In
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FIG. 8. (Color online) Efficiency for random networks at LLI
under different LH1 arrangements: (left) m = 193; (right) m = 321.
A lower connectivity leads to a slightly lower efficiency. The
best topological criterion (max DEG) has approximately the same
efficiency of the random arrangement.

particular, this should hold for the real biological structures, but
also for artificial structures where no control on the network
structure � is possible. Global optimization of the topology
is indeed a rather difficult task (biologically and artificially).
Therefore, on one hand, a dynamical process such as energy
transfer has to be strong with respect to limited amount of
control in the structure (�,A) design, in order to be successful.
On the other hand, if at least a local control in the topology of
the network is possible (this should be in principle an easier
task to accomplish), then the process could be devised in order
to take advantage of the max DEG arrangement.

D. Sensitivity of the efficiency to arrangement criteria
in different network topologies

As we have noticed, different LH1-RC arrangements can
cause significant differences in efficiencies, lifetimes, and
all other functionals. In the following, we shall focus on
η, which is by far the most important one, being the main
goal of biological and/or artificial optimization. In particular,
the basic feature we want to study is the sensitivity of the
efficiency of a given network with respect to the choice of
the LH1-RC arrangement. In order to quantify this sensitivity,
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FIG. 9. (Color online) δη vs tblock for the Cayley trees (left) and
RHF (right). In LLI networks, the LH1 fraction is lower, so networks
are more sensitive to LH1 arrangement.

we introduce the functional δη = |ηM − ηm|/ηM where, for
any fixed values of tblock, ηM (ηm) is the maximal (minimal)
efficiency corresponding to the optimal AM (worst Am)
arrangement.

In Fig. 9, the sensitivities of CTs and RHFs are shown
as a function of tblock. A first important feature is that the LLI
networks are in general more sensitive than the HLI ones. Thus,
for higher values of the stoichiometric ratio, the definition of
criteria for choosing RCs arrangements becomes crucial in
order to have efficient energy transport.

As for CTs, the sensitivity has some initial value (5–9%)
in the active regime, it grows to a maximum (≈12–14%)
approximately when tblock = t̄ ≈ 2R−1 and then falls off to
zero when tblock � R−1. It is therefore in the transition regime
that in general the energy transport is most affected by the
choice of RCs arrangement.

This feature is rooted in the ability of most efficient configu-
rations to ensure high value of efficiency and at the same time a
higher resilience to RCs closure. In order to clarify this point,
we focus on the absolute sensitivity �η = ηM − ηm (here,
M = maximum SPB, m = minimum degree), which mirrors
the behavior of δη, and on its derivative with respect to the
recycling time tblock; in the following, we define dη/dtblock

.=
η̇. In the initial part of the transition region (tblock < t̄), we have
that η̇m < η̇M < 0, i.e., the efficiency for the best arrangement
AM decreases less than that of the least efficient one Am

and therefore �η̇ > 0 (see Fig. 10). The derivative of the
efficiency with respect to tblock can be decomposed in the
product of two contributions η̇ = ṅc

RC dη/dnc
RC where nc

RC is
the number of RCs closed for a given arrangement. Since for
all tblock one has ṅc

RC,M > ṅc
RC,m > 0, the enhancement of the

absolute sensitivity must be traced back to the variation of the
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FIG. 10. (Color online) Relation between �η and nc
RC for Cayley

trees at LLI: (left) dη/dnc
RC; (right) ṅc

RC.

efficiency with respect to the number of closed RCs; indeed, for
tblock < t̄ we have dηm/dnc

RC < dηM/dnc
RC < 0. This relation

shows that, at least in the first part of the transition region (t̄
corresponds to nc

RC ∼ 50%), the maximum SPB configuration
is not only the most efficient, but it is also more resilient
to RCs closure. This feature no longer holds for t > t̄ , and
therefore when nc

RC � 50%, the sensitivity starts to decrease:
0 > dηm/dnc

RC > dηM/dnc
RC and �η̇ < 0.

As for the sensitivity of RHFs, we first notice that the initial
sensitivities are very high: 21% in the HLI case and 37% in
the LLI case, while the enhancement of the sensitivity in the
transition region is practically absent both in the HLI and LLI
cases. This is due to a lower resilience to RCs closure in the
case of the best arrangement (maximal DEG) and also has an
impact on the overall performance of RHFs. Indeed, a direct
comparison shows that the most efficient configuration for
RHF is much less resilient than for CT, i.e., |dηM/dnc

RC|RHF <

|dηM/dnc
RC|CT, and this causes the RHF to be the network

with the worst performance in the transition region (see also
Fig. 12 where artificial networks’ performances are compared
with those of the real biological networks).

We finally analyze the sensitivity of RNs. We have that δη

for LLI varies between 5–10% (see Fig. 11), and its behavior
with tblock is similar to the Cayley trees case. The parameters
that influence the sensitivity are both the stoichiometry and
the average connectivity determined by the number m of
links eliminated from the original hexagonal lattice. Indeed,
a smaller connectivity (m = 321) makes the choice of the
arrangement more crucial and therefore it enhances the
sensitivity of the network, and this is true in particular in the
transition region.

To sum up, the high values of the sensitivity by all
networks analyzed indicate that the analysis of the topology of
RCs arrangements becomes crucial in order to maximize the
transport efficiency for such kind of networks, in particular
for LLI networks. The behavior of the sensitivity with respect
to tblock is determined by the higher and lower resilience of
efficient configurations to RC closure.

E. Comparison with real networks and optimized arrangements

In order to evaluate the optimality of the arrangements
defined on the basis of centrality measures, we now compare
the efficiency of all structures considered (CT, RHF, and RNs)
on one hand with those structures describing real, biological
networks with a similar number of nodes, and on the other hand
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FIG. 11. (Color online) Sensitivity for random networks: (left)
m = 193; (right) m = 321. A lower connectivity enhances the
sensitivity.
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FIG. 12. (Color online) Efficiency δηreal vs tblock for different
networks HLI (right), LLI (left): RHF (black square), Cayley (red
circle), random m = 193 (blue upward triangle), random m = 321
(green downward triangle). The real biological networks have a
comparable (active region) or better (transition region) performance
than all other network topologies considered.

with the results that one can obtain by searching for optimal
arrangements by means of a numerical optimization method
(annealing).

To this aim, in Figs. 12 and 13 we plot δx = (ηx − ηM )/ηM

where x ={real, annealing} and ηM is the efficiency for the best
arrangement of a given network. A first relevant message of
these plots is that the real biological networks are optimal both
at LLI and HLI, in the sense that they have an equal or better
performance than all other network topologies considered, and
the main differences arise in the first part of the transition
region. The optimality of real networks has to be related to
their higher degree of connectivity with respect to the other
networks analyzed. In particular, they have a higher value
of the average degree (〈k〉 ∼ 5.75 for both HLI and LLI),
and smaller values of the average distance between pairs
of nodes (5.1 for HLI and 4.7 for LLI), and these features
allow the excitons to explore greater parts of the network
in search for an open RC; indeed, while for such networks
〈d〉cs ∈ [5.5,7] is comparable or slightly higher than in the
other cases, the exploration parameter reaches sensibly higher
values: 〈xcs〉 ∈ [0.16–0.29] for HLI and 〈xcs〉 ∈ [0.17–0.28]
for LLI, where the minimum corresponds to the active
photosynthesis region and the maximum to the transition
one.

Despite their lower connectivity, however, there are pairs
of artificial network topologies and RCs arrangements that
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FIG. 13. (Color online) Efficiency δηannealing vs tblock for different
networks HLI (right), LLI (left): RHF (black square), Cayley (red
circle), random m = 193 (blue upward triangle), random m = 321
(green downward triangle). For regular topologies, the best LHI-RC
arrangements based on centrality measures are optimal in that they
allow us to obtain approximately the same efficiencies obtained by
numerical optimization; as for RNs, the optimization procedure gives
only slightly better results.

allow for efficiencies that are comparable with those of the real
networks, at least in the active region; this in particular is true
for Cayley trees for LLI conditions with LH1-RC disposed
in nodes of maximal SPB and RHF for HLI conditions
and LH1-RC disposed in nodes of maximal degree. As for
the RNs, those that better approximate the efficiency of the
real ones are those with a higher degree of connectivity
(m = 193).

Our analysis of artificial networks allows us to identify the
optimal pairs {�,A} that ensure the realization of high efficient
energy transport in all regions: (Cayley trees, max SPB), (RHF,
max DEG), (random networks, max DEG). In order to further
test the optimality of such arrangements based on centrality
measures, we compare their efficiencies with those obtained
through an optimization method. For the latter, we have used
an optimization algorithm based on simulated annealing [28]
to search for the best A. The algorithm uses 1 − η as a cost
function, and evaluates it in the master equation approach
(see Appendix B) in the limit of no RC closed (tblock � R−1).
Starting from a random arrangement, LH1 and LH2 positions
are swapped until a minimum of the cost function is found.
The optimal arrangement Aannealing is then used for all values
of tblock.

The comparison (see Fig. 13) shows that, in particular
for regular topologies (CT for HLI and LLI, RHF for HLI),
the best LHI-RC arrangements based on centrality measures
are optimal in that they allow us to obtain in all regions
approximately the same efficiencies obtained by numerical
optimization, while in the case of RNs the optimization
procedure gives only slightly better results.

V. CONCLUSIONS

In our work, we have taken inspiration from biological light-
harvesting networks of purple bacteria and we have simulated
an incoherent dissipative energy transport model devised for
these systems on more general and abstract networks. Our
analysis has focused on the subtle interplay between the global
network structure and the arrangement of the two primary
light-harvesting complexes (LH1 and LH2) and their impact
on the transport efficiency η. We have investigated well-known
regular structures (Cayley trees and regular hyperbranched
fractals), as well as randomly generated ones, and we have
considered different network-theoretical centrality measures
in order to select different LH1 and LH2 arrangements on the
networks.

One can identify three transport regimes, depending on the
relation between the rate of photon capture and the recycling
time of the reaction centers (RC) which are placed in the center
of LH1 complexes: the active, the transition, and the saturated
regime, characterized by the increasing average number of
closed RCs found by an incoming exciton.

Our results clearly show that topology is crucial for
efficient transport in the systems under analysis: different
LH1-LH2 arrangements yield relative differences δη in the
transport efficiency, which can be as high as 37%. In
particular, the sensitivity of the efficiency to the LH1-LH2
arrangement δη is enhanced when the number of LH1 is
lower (low light illumination conditions) and typically in
the transition region, where 50% of the RCs are closed,
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making the LH1-LH2 arrangement even more relevant in this
region.

Furthermore, we are able to identify guiding principles
for optimal LH1-LH2 arrangement, given a global network
topology. While efficient configurations always correspond to
lower distances traveled by excitons to reach open RCs, the
optimal criteria to achieve this feature strongly depend on the
topological properties of the networks considered.

For regular structures, efficient configurations can be effec-
tively devised by means of centrality measures. Global (local)
centrality measures induce efficient arrangements for networks
with small (large) average distance between the nodes. Not
only are these arrangements much more efficient than a random
arrangement of complexes over the network, they are optimal,
in the sense that they can match the efficiency obtained through
a numerical optimization method. These results might be of use
in the construction of artificial light-harvesting networks where
global control over the network structure and the arrangement
of complexes is possible.

As for randomly generated structures, the arrangement
which ensures the best efficiency is given by a local criterion
(degree). However, it is not possible to devise arrangements
which are significantly more efficient than the random one,
neither through centrality measures nor through optimization.
This fact suggests that the transport process modeling purple
bacteria membranes is robust with respect to limited amount of
control in the structure design, and it is optimized to take into
account the disorder inherent in the construction of randomly
assembled structures.

Finally, real biological networks have in general equal or
better performance with respect to the other structures con-
sidered. While artificial structures with optimal arrangement
of LH1-LH2 can ensure a comparable efficiency in the active
region, a significant gap appears in the transition region where
real biological networks substantially benefit from their higher
level of connectivity.

The framework we have developed in our work can be
extended by comprising different centrality or analogous
measures, and it can be applied to the study of more general
processes of transport on complex networks with the presence
of dissipation, trapping, and congestion with the goal of
deriving general design principles for artificial light-harvesting
networks.
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APPENDIX A: CHARACTERIZATION OF THE
SELECTED NETWORKS

We report in the following figures (Figs. 14, 15, and 16)
the distribution of the network-theoretical measures (DEG,
SPB) for the selected networks. Notice that the distributions
shown for random RNs (Fig. 16) are an average over M = 100
networks with different topology.

As for the CTs, the DEG distribution is trivial, there are
d(d − 1)n−1 = 108 nodes with DEG = 1 (peripheral nodes)
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FIG. 14. (Color online) Distributions of DEG, SPB for CTs d =
4, n = 4 and for RHF f = 5, n = 3.

while all the others have DEG = d = 4; SPB is a strongly
decreasing function of the generation of the nodes (their
distance from the center). The number of nodes of generation
k scales as ∼dk , so most nodes (144) have a small SPB (<0.1),
while 12 nodes have SPB ∼ 0.2, 4 nodes have SPB ∼ 0.4, and
1 single node (the central one) has SPB ∼ 0.8. The DEG and
the SPB are poorly correlated (linear correlation coefficient
c = 0.57).
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FIG. 15. (Color online) Distributions of DEG, SPB for real HLI
and LLI networks.
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FIG. 16. (Color online) Distributions of DEG, SPB for random
networks.

As for the RHF, the DEG distribution is simple, a
number (f + 1)n−1 = 36 of the nodes (the central nodes of
the component star graphs) have DEG = f = 5, a number

(f n+1−1)
(f −1)(f +1)n = 26 have DEG = 2, and the remaining ones
have DEG = 1; SPB is again a decreasing function of the
distance from the central node, the majority of nodes (166)
have SPB < 0.1, while a smaller fraction has values SPB
in the range 0.2–0.4, and one node (the central one) has a
SPB ∼ 0.8. Again, the DEG and the SPB are poorly correlated
(c = 0.47).

As for the RNs, the DEG distribution is peaked around
DEG ∼ 4, DEG ∼ 3, corresponding to m = 197, m = 321
and it is skew, showing a tail for small (high) DEG m = 197,
m = 321; the SPB distribution is decreasing, all nodes have
small values of SPB (quite differently than in the case of CT
and RHF), values of SPB (∼0.2–0.3) are attained only for a few
nodes. The DEG and the SPB are poorly correlated (c = 0.60
for m = 197 and c = 0.55 for m = 321).

As for the real biological networks, the DEG distribu-
tion is sharply peaked around DEG ∼ 6; the SPB distri-
bution is irregular, all nodes have small values of SPB
(0.01–0.06), with most nodes having SPB ∼ 0.02. The
DEG and the SPB display a weak correlation for LLI
networks (c = 0.70) and a stronger one for HLI networks
(c = 0.82).

APPENDIX B: MASTER EQUATION APPROACH

Alternatively to performing random walk simulations, one
can evaluate many figures of merit directly from a master
equation approach. The single exciton transfer and trapping
can be described in terms of the random migration of a single

exciton in a membrane with an effective fraction of closed RC.
Indeed, for any fixed tblock, the number of closed RC rapidly
reaches its average value, so that each exciton sees an effective
fraction of closed RCs corresponding to this average value [8].
This allows for a master equation treatment of both active (all
RCs open) and saturated (most RCs closed) photosynthesis.
More precisely, the process is governed by different probability
rates and thus can be modeled by a (Markovian) master
equation (ME)

dpm

dt
=

∑
n

Kmnpn, (B1)

the solution of which is |p(t)〉 = eKt |p(0)〉. The N -
dimensional vector |p〉 is composed by the probabilities {pn}
that the excitons be in site n. The initial probabilities are given
by

|p(0)〉 = pn(0), pn(0) =
⎧⎨
⎩

σ1/σ if n = LH1,

σ2/σ if n = LH2,

0 if n = RC
(B2)

and transfer matrix K can be written as [8]

Kmn = Wmn − δmn

(∑
l

Wln + δn,RCokcs

)

= −δmn[kdiss(1 − δn,RCc ) + k∗
dissδn,RCc ], (B3)

where the exciton transfer rates Wmn are taken as the inverse
of the exciton transfer times given in Table II, kdiss = t−1

diss,
k∗

diss = t−1
RCc

diss
, kcs = t−1

cs . In the ME approach, the effect of
the recycling time of RCs can be taken into account by
keeping Nblock RCs closed, where Nblock is determined as the
average number of RCs closed at time t in a fixed illumination
condition. For each value of Nblock, some relevant functionals
[efficiency, exciton lifetime, etc. (see the following)] are
evaluated. The procedure is repeated a high number of
times, randomly choosing the RCs that are closed, and one
finally determines the average of the functionals for a given
Nblock.3

In the ME approach, η can be simply obtained from
the inverse transfer matrix K−1 [8]. Indeed, we have
η = ∫ ∞

0 ωcs(t)dt where ωcs(t) is the probability of an ex-
citon causing charge separation at time t and is given
by ωcs = kcs

∑
n∈RC pn(t) = kcs

∑
n∈RC〈n|eKt |p(0)〉 where

|n〉 is the probability vector corresponding to an ex-
citon being in site n with certainty. Therefore, η =
−kcs

∑
n∈RC〈n|K−1|p(0)〉. The results of the random walk

dynamics have been compared with those obtained in the
master equation approach, and the two methods show complete
agreement.

3The exact relation between Nblock and tblock is obtained by tblock

via tblock = hν·Nblock
η(Nblock)·I ·σ , where η(Nblock) is the quantum yield of the

process (see below) when Nblock RC are closed.
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