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Abstract

Trait-based ecology aims to understand the processes that generate the overarch-

ing diversity of organismal traits and their influence on ecosystem functioning. 

Achieving this goal requires simplifying this complexity in synthetic axes defining 

a trait space and to cluster species based on their traits while identifying those with 

unique combinations of traits. However, so far, we know little about the dimen-

sionality, the robustness to trait omission and the structure of these trait spaces. 

Here, we propose a unified framework and a synthesis across 30 trait datasets rep-

resenting a broad variety of taxa, ecosystems and spatial scales to show that a 

common trade-off between trait space quality and operationality appears between 

three and six dimensions. The robustness to trait omission is generally low but 

highly variable among datasets. We also highlight invariant scaling relationships, 

whatever organismal complexity, between the number of clusters, the number of 

species in the dominant cluster and the number of unique species with total species 

richness. When species richness increases, the number of unique species saturates, 

whereas species tend to disproportionately pack in the richest cluster. Based on 

these results, we propose some rules of thumb to build species trait spaces and 

estimate subsequent functional diversity indices.
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INTRODUCTION

Biodiversity comprises a great variety of organismal 
forms, functions, diets, physiologies and life histories—
hereafter called traits—that have been shaped by large-
scale evolutionary and ecological processes (Reich et al., 
1999; Schluter, 1993) and that have important impli-
cations for ecosystem functioning (Duffy et al., 2001; 
Hector et al., 1999). Thus, quantifying and characteris-
ing trait variation among species is key to understand 
species assembly rules (Bruelheide et al., 2018; Jarzyna 
et al., 2020), evolutionary dynamics (Deline et al., 2018; 
Pigot et al., 2020) and ecosystem functioning (Cadotte, 
2017; Gagic et al., 2015) but also to predict biodiversity 
responses to global changes (McLean et al., 2019; Rüger 
et al., 2020) and to guide conservation efforts (Pollock 
et al., 2017; Sala et al., 2021). For instance, experiments 
show that plant communities with higher levels of trait 
diversity are more productive and have a higher resource 
use efficiency by intercepting more light, taking up more 
nitrogen and occupying more of the available space 
(Spehn et al., 2005) but can also limit plant disease risks 
(Le Bagousse-Pinguet et al., 2021).

Yet, owing to the increasing availability of 
widespread—but also incomplete and heterogeneous—
information on multiple traits collected with various 
methods across most kingdoms of life (Jones et al., 2009; 
Kattge et al., 2020; Perez et al., 2019; Schneider et al., 
2017), the characterisation of species ecological strate-
gies and relationships with environmental conditions is 
becoming more complex and multidimensional than ever 
(Bruelheide et al., 2018; Villeger et al., 2011). Reducing 
this complexity has both theoretical and practical bene-
fits. First, clustering thousands of species into a limited 
number of entities sharing similar trait values can reveal 
the amount of functional vulnerability within assem-
blages (Mouillot et al., 2014) or a functional backbone 
common to separate geographic realms (McLean et al., 
2021). Second, many traits are strongly correlated owing 
to life-history trade-offs or adaptive constraints, suggest-
ing that trait diversity within a clade is more limited than 
expected (Díaz et al., 2016; Pigot et al., 2020; Winemiller 
et al., 2015). Birds with relatively long, narrow wings, 
pointed tips and strong sweep back (such as those of a 
swallow) fly at high speeds but are energetically ineffi-
cient and cannot fly over long distances (Savile, 1957). 
Third, the hyper-dimensionality of trait spaces, where 
species are placed according to their combinations of 
traits, prevents the computation of hypervolume-based 
functional diversity indices or null models to test com-
munity assembly hypotheses (Blonder et al., 2014; Maire 
et al., 2015). Fourth, predicting biodiversity and ecosys-
tem trajectories under various environmental scenarios 
needs parsimonious trait-based models (Barros et al., 

2017; Cooke et al., 2019b; Rüger et al., 2020) because the 
use of too many traits may induce overfitting (Bernhardt-
Römermann et al., 2008).

However, we still lack a unified methodological 
framework to assess the different aspects of a species 
trait space. The dimensionality and the structure of a 
species trait space are indeed two sides of the same coin 
because they both refer to its complexity, that is, the way 
species and their traits are organised in this space. We 
also lack a synthesis on the main factors shaping the 
different aspects of species trait spaces. The degree of 
organismal complexity, which is related to the diversity 
of cell types (Valentine et al., 1994), can indeed influence 
the complexity of species trait space following key func-
tional innovation in multicellular clades (Cox et al., 2021; 
Knoll, 2011; Sosiak & Barden, 2021). The environment 
can also be crucial in determining the course of multicel-
lular evolution and organismal complexity, with aggre-
gative multicellularity evolving more frequently on land 
whereas clonal multicellularity is more frequent in water 
(Fisher et al., 2020). On the other hand, the number of 
species and trait characteristics are likely to influence 
the complexity of species trait spaces beyond the type of 
organism and the environment (Kohli & Jarzyna, 2021; 
Zhu et al., 2017). Yet the relative importance of these 
different potential drivers has never been tested across 
kingdoms and realms for a vast number and diversity of 
traits and taxa.

A first critical aspect of a species trait space re-
fers to the well-known dimensionality issue (Laughlin, 
2014; Maire et al., 2015). While dimension reduction is 
appealing, the devil lies in the details. Indeed, going 
from a large number of traits to a reduced trait space 
(Figure 1a–d), that represents meaningful ecological di-
mensions or axes, is conceptually and methodologically 
difficult (Maire et al., 2015; Pigot et al., 2020; Sosiak & 
Barden, 2021; Winemiller et al., 2015). High-dimensional 
spaces might indeed be required to fully capture trait 
variation among species (Carscadden et al., 2017) or 
clades (Cooney et al., 2017). Moreover, the extent to 
which collected traits, some being potentially uninfor-
mative, redundant or incomplete, can be summarised 
with a few dimensions to reliably represent the diversity 
of organism forms and functions has not been quantita-
tively tested across a large set of taxa, ecosystems and 
traits.

A second key aspect of any species trait space is its 
robustness to the choice or the omission of traits so its 
capacity to consistently position species relative to each 
other whatever the sub-selection of traits for a given goal 
(environmental filtering, competitive interactions etc.). 
This capacity ultimately determines the confidence by 
which we can estimate metrics like species trait dissim-
ilarity or functional diversity (Carscadden et al., 2017; 
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Kohli & Jarzyna, 2021; Zhu et al., 2017). However, this 
robustness has been largely overlooked and deserves a 
dedicated analysis across multiple datasets where the 
number, completeness, correlation and type of traits 
cover a broad range of options.

A third key aspect of any species trait space relates 
to its structure and particularly how species are dis-
tributed and clustered in that space. Species with very 
similar traits are likely to play comparable roles in eco-
systems (Dehling et al., 2016; Pigot et al., 2020; Sosiak & 
Barden, 2021) and are packed within a trait space into 
clusters (Figure 1d). The size (i.e., species richness) of 
these clusters relates to functional redundancy (Fonseca 
& Ganade, 2001; Walker, 1992), which could act as an 

insurance against the loss of certain combinations of 
traits and the disruption of ecosystem functioning under 
disturbance (McLean et al., 2019; Sanders et al., 2018). 
The other side of the same coin is functional unique-
ness represented by species having no neighbours in the 
trait space owing to their unique combinations of traits 
(species B and D in Figure 1d). Several studies suggested 
that, beyond the positive influence of species trait diver-
sity on ecosystem functioning (Craven et al., 2018; Gross 
et al., 2017), these unique species can play key and irre-
placeable functional roles (Le Bagousse-Pinguet et al., 
2021; Maire et al., 2018; O'Gorman et al., 2011; Pigot 
et al., 2016a). The filling of this trait space through evolu-
tionary history, and more particularly the emergence of 

F I G U R E  1   Theoretical example showing the different steps of our framework from species trait matrix (a) to species trait space (d) after 
calculating species pairwise distances (b) and extracting synthetic axes providing new species coordinates in a low-dimensional space (c). 
Then the ranking of species pairs in both high-dimensional (i.e., considering all traits so distance matrix (b)) and low-dimensional spaces (i.e., 
considering coordinates on few axes in (c)) can provide a Q matrix where the diagonal corresponds to all species pairs with a perfect match in 
their ranking in both spaces whereas off-diagonal values correspond to mismatching species pairs in the co-ranking; that is, species get closer 
in the low-dimensional space (intrusion) or farther (extrusion) compared with their relative position in the high-dimensional space. A clustering 
algorithm isolates two unique species (species B and D) in the trait space (no neighbours within a given radius d0) and creates two clusters with 
two (green) and three (red) species (f). See Section 2 for details

(a) (b)

(c) (d)

(e) (f)
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species with unique traits, has also motivated numerous 
studies investigating specialisation in clades or competi-
tion footprint across the tree of life (Cornwell et al., 2014; 
Cox et al., 2021; Jarzyna et al., 2020; Phillips et al., 2018; 
Ricklefs, 2010; Stubbs & Benton, 2016). Yet we still lack 
a flexible framework in which the number and composi-
tion of species clusters but also unique species are auto-
matically detected regardless of the shape, the density in 
terms of species richness and the dimensionality of the 
trait space in which they are embedded.

Here, we propose a unified and flexible framework to 
assess (1) the optimal number of axes representing spe-
cies trait diversity (dimensionality), (2) the consistency of 
the trait space in species placement when sub-setting a 
limited number of traits (robustness) and (3) the distri-
bution of species among clusters including the propor-
tion of unique species (structure). To better understand 
the drivers of these three key aspects, we apply our 
framework on 30 trait datasets spreading across most 
kingdoms of life (e.g., bacteria, plants and vertebrates) 
and biomes (terrestrial and marine) at different scales 
(local to global), and spanning 2 orders of magnitude in 
species richness and 1 order of magnitude in the num-
ber of traits with different types (e.g., continuous and 
categorical) and varying proportions of missing values 
(Table 1). To disentangle the drivers of trait space com-
plexity, we then model the dimensionality, the robustness 
and the structure of these 30 trait spaces as a function of 
the type of species, the type of ecosystem, the number 
of species, the number of traits, the type of traits, the 
correlation between traits and the proportion of missing 
values. Ultimately, we provide guidance to deal with the 
heterogeneity and incompleteness of species trait data-
bases when building species trait spaces and assessing 
trait-based metrics in community ecology, evolution and 
biogeography.

M ATERI A LS A N D M ETHODS

Building species trait space

Among the myriad of methods proposed to reduce the 
dimensionality of data (Kraemer et al., 2018; Laughlin, 
2014; Nguyen & Holmes, 2019), we chose one that is com-
monly used in ecology, based on well-established ordi-
nation techniques, and flexible enough to be adapted to 
any kind of trait data. Our goal is not to review or com-
pare existing methods but rather to assemble a suite of 
methods able to extract the main features of any species 
trait space and test their drivers.

First, we calculated trait dissimilarity between spe-
cies pairs using the Gower pairwise distance (Gower & 
Legendre, 1986). This metric can handle multiple types 
of data (e.g., categorical, ordinal and continuous traits) 
and is also less sensitive to missing values than other dis-
tance estimation methods (Pavoine et al., 2009; Podani 

& Schmera, 2006). The dissimilarity between two species 
is only evaluated on traits with known values for both 
species, but this dissimilarity is standardised across all 
pairs whatever the number of traits considered. This step 
(Figure 1b) was carried out with the daisy() function in 
the cluster R package.

Second, we performed ordination of species in a space 
of reduced dimensionality by mean of principal coordi-
nates analysis (PCoA), which identifies orthogonal axes 
along which trait dissimilarity is decomposed (Legendre 
& Legendre, 1998). For this step (Figure 1c), we used the 
pcoa() function in the ape R package.

Quality of species trait space

To assess the dimensionality and robustness of species 
trait spaces, we needed a metric measuring the degree 
of distortion between the initial trait distance matrix 
between species pairs (Gower distance on all traits) 
and the distance matrix after dimensionality reduction 
(Euclidean distance on PCoA axes) or after removing 
traits (Gower distance on the sub-selection of traits), 
respectively. We assumed that a trait space is a high-
quality representation of the full dataset if distances 
between species in that space are close to the initial 
distances computed with all traits (Maire et al., 2015). 
The approach of comparing the similarity of two dis-
tance matrices has precedent in Mantel tests (Legendre 
& Legendre, 1998), although the end goal here is quite 
different—producing a metric of robustness for low-
dimensional trait space. Indeed, Mantel tests only cor-
relate values or ranks between two distance matrices, 
ignoring the global co-ranking between species and 
their neighbourhood, which are key features of species 
trait space when the ultimate goal is to cluster species 
and identify functionally unique ones (Pimiento et al., 
2020a).

Several measures of trait space quality have been 
proposed (Maire et al., 2015; Mérigot et al., 2010), but 
we chose a new one in the field of ecology with five key 
properties that overcome classical limitations: (1) being 
unitless so independent of the number, range or value 
of traits; (2) being standardised between 0 and 1 with a 
clear and intuitive interpretation of these extreme values; 
(3) avoiding the dilemma of whether or not to square the 
error, which arises in distance-based quality metrics; (4) 
being asymmetric by construction so only considering 
that the lower dimensional distance matrix is a poorer 
representation of species distribution in trait space com-
pared with the initial distance matrix; and (5) proposing 
a common, albeit arbitrary, threshold to define quality.

This method is based on the co-ranking matrix Q that 
compares the ranking of distance between objects in the 
initial distance matrix and in a lower dimensional space 
(Lee & Verleysen, 2009). In our case, let us denote by δi,j 
the distance between species i and j in the initial trait 
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matrix (Figure 1a) and di,j their distance in the lower di-
mensional matrix (Figure 1c). Then, for any fixed spe-
cies i, we assessed the ranks of the distances between 
this species i and all other S-1 species j in both the ini-
tial and lower dimensional matrices denoted as ρi,j and 
ri,j, respectively. These ranks varied between 1 and (S-1) 
with S being the total number of species. The co-ranking 
matrix Q is of size (S-1) by (S-1) and has for elements the 
number of species pairs that have the rank k in the initial 
(all traits) Gower distance matrix and the rank l in the 
lower dimensional (PCoA axes) Euclidean distance ma-
trix (Figure 1e). Because the roles played by species i and 
species j are asymmetric, matrix Q sums at S(S-1), so the 
total number of pairs (S-1) made by each of the S species.

Then we defined the rank error to be the difference 
ρi,j − ri,j. If there is no error, that is, a perfect match in 
species neighbours between the initial and lower dimen-
sional distance matrices, then Q is a diagonal matrix; 
that is, ranks k and l will be similar, so ρi,j −ri,j = 0 for 
all species pairs. At the opposite, rank mismatches or er-
rors, due to dimensionality reduction or trait omission, 
induce off-diagonal species pairs in this co-ranking ma-
trix (Figure 1e). These off-diagonal species pairs repre-
sent pairs that come at a lower distance rank (intrusion) 
or at a higher distance rank (extrusion) in the lower di-
mensional space compared with the initial space (Lee & 
Verleysen, 2009).

To assess whether the lower dimensional space was a 
good representation of the initial space, we needed an 
asymmetric measure. In other words, a measure that 
compares the ranks of species pairs in the lower dimen-
sional matrix to those of the initial matrix and not the 
way around. A Spearman rank correlation is symmetric 
(the correlation between A and B equals the correlation 
between B and A) because it compares the ranks without 
any primary structure like in Mantel tests. We thus chose 
the area under the curve (AUC) criterion, which is based 
on the Somer's D statistic, as an asymmetric rank mea-
sure (Somers, 1962). AUC is unitless and varies between 
0 and 1. A value of 1 represents the best case scenario 
where the ranking of species pairs would be perfectly 
preserved between the initial and lower dimensional dis-
tance matrices (Kraemer et al., 2018). A rule of thumb 
to interpret this metric is that above 0.7, dimensionality 
reduction can be considered as good or acceptable and 
above 0.8 as excellent. Below 0.5, the lower dimensional 
space is a poor representation of the initial trait space 
whereas 0 means as good as random. It corresponds 
to the null or independence hypothesis in Mantel tests 
(Legendre & Legendre, 1998). More details can be found 
in Kraemer et al., (2018) who developed the dimRed and 
coRanking R packages for computing the co-ranking 
matrix Q with the function coranking and then the AUC 
metric with the function AUC_lnK_R_NX.

Complementary to the AUC metric, which is only 
based on ranks so potentially weakly influenced by 
some extreme distortion values, we also compared the 

initial and lower dimensional distances between species 
pairs by using the Euclidean distance for multidimen-
sional spaces, also known as the mean absolute deviation 
(MAD) (Maire et al., 2015).

Dimensionality of species trait space

To determine how many dimensions are needed to build 
a trait space of enough quality that correctly positions 
species between each other, we used two approaches: a 
parsimonious one based on the elbow inflection point 
for the AUC metric and the other one based on a qual-
ity threshold for the AUC metric, both tested on 1 to 
20 PCoA axes. The idea behind the elbow method is to 
maximise a given benefit (AUC gain in our case) while 
reducing the cost (number of dimensions in our case) 
(Thorndike, 1953). Consequently, the inflection point 
corresponds to the additional PCoA axis above which 
the benefit becomes lower than the cost (Figure S2). This 
elbow method is classically used in dimensionality anal-
yses (Nguyen & Holmes, 2019) but never in combination 
with AUC.

As a complementary method, we used the AUC qual-
ity threshold of 0.7 to determine the dimensionality of 
the trait space so here the cumulated number of PCoA 
axes needed to obtain a good or acceptable positioning 
of species in the lower dimensional space compared with 
the initial one based on all traits. This approach is more 
subjective than the elbow one since it is based on an arbi-
trary threshold. However, it has the merit of providing a 
standardised, so comparable, quality value across data-
sets for the low-dimensional representations.

The amount of variance explained by the PCoA axes 
could also be considered as a quality metric of species 
trait space (Pimiento et al., 2020b) like with principal 
components analyses (PCA) (Pigot et al., 2020; Rüger 
et al., 2020). Yet, for non-Euclidean distances like Gower, 
PCoA axes may obtain negative eigenvalues correspond-
ing to imaginary dimensions (Legendre & Legendre, 
1998). In that case, the sum of all positive eigenvalues 
(real axes) is higher than the total variance of data. This 
intuitive additional piece of information was nonetheless 
included in our study through the examination of the re-
lationship between the AUC-based dimensionality and 
the number of axes necessary to explain 50% of trait vari-
ation. The proportion of explained variance by PCoA 
axes was extracted using the ape::pcoa() R function.

Robustness to trait omission

To test the robustness, or the lack of sensitivity, of the 
trait space to trait omission or sub-selection, we ran-
domly removed between 10% and 80% (increments of 
10%) of the total number of traits and then estimated a 
new Gower distance between all species pairs for each 
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removal percentage; we did not use PCoA axes in this 
robustness analysis, only traits. Then we assessed the 
level of congruence between the initial distance matrix 
and the lower dimensional distance matrix by computing 
the AUC and MAD metrics. These simulations were per-
formed 100 times for each removal percentage. We then 
extracted an index of robustness defined as the opposite 
of sensitivity so the mean loss of AUC when 50% of the 
traits are removed.

Species clustering and uniqueness

To cluster species in the trait space and potentially 
identify unique species, we used the ‘clustering by fast 
search and find of density peaks’ algorithm, which is 
based on initial pairwise distances and does not require 
dimensionality reduction (Rodriguez & Laio, 2014). Yet 
the robustness of the clustering critically depends on the 
robustness of pairwise species distances to trait omis-
sion. Among the many clustering algorithms that have 
been proposed (Condon et al., 2016; Jain & Dubes, 1988; 
Xu & Tian, 2015), this one combines the advantages of 
(1) clustering objects regardless of the shape and dimen-
sionality of the space in which they are embedded, (2) 
detecting isolated objects automatically independently 
of their number and (3) making the number and size 
of clusters emerge with no a priori expectation or arbi-
trary choice.

In our case, this algorithm first computed the den-
sity of neighbours for each species, defined as the num-
ber of species that are within a given small distance d0 
(Figure 1f). Given this density, the algorithm then relied 
on two basic principles: (1) cluster centres were species 
characterised by a higher density of neighbours than 
their own neighbours and by a relatively large distance 
from other species with a higher density of neighbours, 
and (2) isolated or unique species had no neighbours at 
maximum d0 (zero density or redundancy). Once cluster 
centres and unique species were identified, all remaining 
species were assigned to a cluster corresponding to the 
nearest neighbour of higher density (Rodriguez & Laio, 
2014). We adopted two modifications to reduce arbitrary 
choices. First, the identification of cluster centres was 
fully automated: all species with higher neighbour den-
sity than their own neighbours and at a distance of at 
least d0 from species with higher density were considered 
as cluster centres. Second, if two clusters were not sepa-
rated by a ‘low density valley’, that is, a region of radius 
d0 where densities were lower than those of the cluster 
centres, they were merged.

The whole clustering process thus required only a 
single free parameter, the threshold d0, fixed by a rule 
of thumb by which the minimum distance to the near-
est neighbour defining isolation, that is, species unique-
ness in trait space, is the average number of neighbours 
around each object corresponding to 1% or 2% of the 

total number of species in the dataset (Rodriguez & Laio, 
2014). This procedure has the advantage of not fixing a 
d0 value a priori for all datasets but instead to define a d0 
value for each dataset only depending on species num-
ber. Unique species can thus be considered as relative 
isolates in the trait space. We chose 1% as a conservative 
rule to not cluster species being too different in traits so 
keeping d0 small. We provide an R implementation of 
this algorithm along with the code to reproduce all the 
analyses of this paper (R Core Team, 2021; see section 
Data and Code availability).

Influence of trait dataset characteristics

To test whether the characteristics of species, eco-
systems and traits can influence the dimensionality, 
robustness and structure of species trait space, we per-
formed general linear models (GLMs) with a Gaussian 
distribution for all response variables, that is, the 
elbow-based dimensionality, the threshold-based di-
mensionality, the robustness to 50% trait removal, the 
log-transformed number of species clusters, the per-
centage of species packed in the first cluster and the 
percentage of unique species (distributions are shown 
in Figure S3). As explanatory factors, we used the type 
of species life form (plant, invertebrate and vertebrate) 
and the type of ecosystem (aquatic and terrestrial) to 
test the potential effects of organismal complexity. We 
also used the log-transformed number of species and 
number of traits as the dimensions of the initial species 
trait matrix. Trait characteristics were then used as po-
tential drivers like the percentage of missing values, the 
percentage of quantitative traits and the mean pairwise 
correlation between traits, expressed as the rank-based 
Kendall index able to mix continuous and categorical 
traits. Pairwise correlations between quantitative trait 
dataset characteristics are rather low (−0.19 < r < 0.45) 
and mainly non-significant (Figure S4).

We then used partial regression plots to highlight the 
effect of each factor while controlling for the others (set 
at their mean). Statistical analyses were carried out using 
the function glm from the stats R package whereas par-
tial plots were drawn using the function visreg from the 
visreg R package.

In addition to the analyses performed on empirical 
datasets, we also built three simulated datasets to test 
the effect of species and trait number on the dimension-
ality of species trait space without changing the type of 
traits as a controlled experiment. Continuous traits for 
1000 species were generated following a uniform distri-
bution (0–1) with no missing value. In the first dataset, 
we simulated 10 uncorrelated traits, in the second 10 cor-
related traits (r = 0.5) and in the third 20 uncorrelated 
traits. We then estimated the trait space dimensionality 
for each level of species number and each dataset using 
the AUC threshold of 0.7.
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RESU LTS

Trait space dimensionality

Over the 30 datasets, we obtained an optimal reduced 
dimensionality ranging between 2 and 8 axes (me-
dian  =4) using the elbow method and between 2 and 
17 axes (median  =  6) using the AUC threshold of 0.7 
when attained. For all datasets, we could reach the 
AUC threshold of 0.7 with less than 20 dimensions or 
PCoA axes, except for plants of the French Alps for 
which AUC remained low (<0.6) even with many axes 
(Figure 2). For the remaining 29 datasets, the corre-
lation between the elbow-based and threshold-based 
dimensionality was positive but weak (r  =  0.3) and 
non-significant (p-value  =0.10), highlighting their 
complementarity (Figure S5). With a more demanding 
threshold of AUC =0.8 (high-quality trait space), up to 
24 datasets could reach this value with a maximum of 
20 dimensions (Figure 2).

Two first GLMs, including all explanatory factors 
but only 29 datasets out of 30 (bacteria were excluded 

because they are the only representative of a kingdom), 
showed that the type of life form (plant, invertebrate and 
vertebrate) and the type of ecosystem (aquatic and terres-
trial) did not significantly explain the elbow-based and 
threshold-based dimensionality (Table S1). The partial re-
gression plots illustrate these weak influences while con-
trolling for the other factors (Figure 3). We thus retained 
only quantitative variables related to the characteristics of 
the species trait datasets in the following analyses.

The elbow-based dimensionality was weakly ex-
plained by the five quantitative characteristics of the 
datasets (R2 = 0.15), but the correlation between traits 
had by far the main effect, albeit non-significant (p-
value  =0.09) (Table S2), with a lower optimal number 
of axes when the correlation between traits increased 
(Figure 4). The threshold-based dimensionality was well 
explained by characteristics of the datasets (R2 = 0.61) 
with the log number of traits and the correlation between 
traits having the strongest and only significant effects 
(Table S2). The partial regression plots showed that the 
threshold-based dimensionality strongly increased with 
the log number of traits whereas it decreased with the 

F I G U R E  2   Influence of the number of dimensions (number of retained PCoA axes) used to build the 30 species trait spaces on the 
space quality assessed by the area under the curve (AUC) criteria. The black dots and dotted lines correspond to the elbow-based optimal 
dimensionality for each dataset. The values indicate the elbow-based dimensionality, the total species richness (#S) and the total number of 
traits (#T) in each dataset. Datasets are ranked (top left to bottom right and from dark green to dark red) following the number of species
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correlation between traits (Figure 4). As a complemen-
tary analysis, our simulated trait datasets confirmed 
the main influence of the number and the correlation of 
traits on species trait space dimensionality whereas the 
number of species had only an effect for less than 100 
species and no effect above 200 species (Figure S6).

The number of axes necessary to explain 50% of trait 
variation was a weak predictor of the elbow-based di-
mensionality (R2 = 0.18) but was a strong predictor of the 
threshold-based dimensionality (R2 = 0.82), albeit under-
estimated (Figure S7).

Robustness to trait omission

The robustness to trait omission was generally low over 
the 30 datasets with a mean AUC loss of 0.54 (SD =0.12) 
when 50% of the traits were deleted. In these cases, most 
low-dimensional trait spaces were poor representations 
of the initial distances between species. Yet this robust-
ness was highly heterogeneous among datasets ranging 
from 0.33 to 0.85 of AUC loss (Figure 5). To stay above 

the AUC threshold of 0.7, trait omission should not ex-
ceed 20% on average when we ignored the five datasets 
for which even removing 10% of traits induced an AUC 
loss of more than 0.3 (i.e., AUC <0.7).

Like for the dimensionality, the robustness to trait omis-
sion was not significantly influenced by either the type of 
species life form or the type of ecosystem (Figure 3 and 
Table S1), so these factors were ignored in the following 
analyses focused on quantitative factors. The robustness 
to trait omission was strongly dependent on the dataset 
characteristics (R2 = 0.84) with the log number of traits, 
the percentage of missing values and the correlation be-
tween traits having the strongest and only significant ef-
fects (Table S2). The partial regression plots revealed quite 
logically that the robustness to trait omission (opposite to 
AUC loss) increased with the number of traits but also with 
the correlation between traits (Figure 4). In contrast, ro-
bustness was negatively related to the percentage of miss-
ing values, which again makes sense. With many missing 
values, the trait space is likely to be unstable under trait 
omission, so dimensionality reduction may distort the rep-
resentation of the initial distances between species.

F I G U R E  3   Partial plots showing the influence of the species life form (plant, invertebrate and vertebrate) and ecosystem type (aquatic 
and terrestrial), while controlling for the five dataset quantitative characteristics, on species trait space dimensionality measured with the 
elbow-based (first row) or threshold-based (second row) AUC criteria. The third row shows trait space robustness, in terms of AUC loss, to 
trait removal or omission (50%) according to the two factors being tested. Related statistics are reported in Table S1; the effects are all non-
significant
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Species clustering in trait space

Over the 30 datasets, the number of species clusters, de-
lineated by the ‘fast search and find of density peaks’ al-
gorithm, varied between 4 and 434 and was moderately 
explained by the dataset characteristics (R2 = 0.57). The 
number of clusters was not significantly influenced by ei-
ther the type of species life form or the type of ecosystem 
(Figure 6 and Table S3), so these factors were ignored 
in the following analyses. The main and only significant 
drivers were the log number of species and percentage of 
missing values (Table S4). The number of clusters logi-
cally decreased with the percentage of missing values 
because less trait combinations can be realised but in-
creased with the number of species (Figure 7 and S8). Yet 
the number of clusters increased as a saturating power 
law with the number of species owing to a slope much 
lower than 1 (0.41) in the log–log relationship when we 
controlled for other effects (Figure 8a).

The proportion of species belonging to the first or 
dominant cluster was not significantly driven by either 
the type of species life form or ecosystem (Figure 6 and 
Table S3), so these factors were ignored in the following 

analyses. This species packing into the dominant cluster 
was mainly driven by the log number of species with a 
predictive power of R2 = 0.58 whereas all the other data-
set characteristics had non-significant influences (Table 
S4). The slope of the relationship between the propor-
tion of species clustered within the first group and the 
log number of species was positive (Figure 7), highlight-
ing that species tended to pack in the richest trait cluster 
when species richness increased, regardless of the other 
dataset characteristics. Yet the log–log relationship be-
tween the total species richness and the richness of the 
first cluster revealed a power law with a slope higher than 
1 (1.38) when we controlled for other effects (Figure 8b), 
suggesting that species packing disproportionately in-
creased with species richness.

Unique species in trait space

The number of unique species, that is, species that did not 
belong to any cluster so isolated in the trait space, varied 
between 27 and 1750 among datasets with a percentage 
ranging from 2% to 74% (median  =42%). These unique 

F I G U R E  4   Partial plots showing the influence of the five trait dataset characteristics on species trait space dimensionality measured with 
the elbow-based (first row) or threshold-based (second row) AUC criteria. The third row shows trait space robustness, in terms of AUC loss, to 
trait removal or omission (50%) according to the five characteristics. Only significant (p < 0.05) relationships are coloured; the others are grey. 
Related statistics are reported in Table S2
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species were widespread in trait space and not just located 
on the edges, suggesting openings scattered throughout 
species trait spaces (Figure 9). Yet well-known unique 
species appeared clearly far on the edge such as the whale 
shark (Rhincodon typus), which is the largest shark (20 m 
long and body mass of 34 tonnes) while being a plankti-
vore, so an ecological outlier among Chondrichthyes.

The proportion of unique species was not signifi-
cantly influenced by either the type of species life form 
or ecosystem (Figure 6 and Table S3), so these categor-
ical factors were ignored in the following analyses only 
based on quantitative factors. The proportion of unique 
species was strongly explained by dataset characteristics 
(R2 = 0.82) with the log number of species and, to a less 
extent, the percentage of missing values, being the main 
drivers (Table S4).

The partial regression plots revealed that the pro-
portion of unique species had a marked negative 
relationship with the log number of species while con-
trolling for other effects (Figure 7), suggesting that 
species-rich assemblages left less space for ecological 
uniqueness or that species tended to disproportion-
ately pack into the richest cluster when diversity in-
creased (Figure 8b). This saturating relationship was 

highlighted by the partial plot linking the total num-
ber of species and the number of unique species with a 
power log–log slope of 0.47 (Figure 8c). The proportion 
of unique species also decreased with the proportion 
of missing values because it mechanically reduced the 
diversity of trait combinations and increased species 
similarity (Figure 7).

DISCUSSION

The necessary trade-off between trait space 
quality and operationality

Trait-based approaches have a long tradition in life 
science since the development of the two-strategy life-
history framework from ‘fast’ (r) to ‘slow’ (K) organisms 
(MacArthur & Wilson, 1967; Pianka, 1972). This over-
simplified view was later extended to triangular continu-
ums of plant life-history strategies with the well-known 
competitive ability—physiological tolerance to stress—
adaptation to disturbance (C-S-R) schema introduced by 
Grime (1977) and the leaf-height-seed (LHS) framework 
by Westoby (1998). Such meaningful simplifications 

F I G U R E  5   Influence of the percentage of traits omission (between 10% and 80%) on the quality of the trait space in terms of AUC when 
representing species in a trait space of lower dimensionality. For this, we randomly removed traits 100 times for each level of omission to obtain 
the boxplots across the 30 datasets ranked by the total number of species (top left to bottom right). For 0% of trait omission, AUC is 1
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of trait variability among species have revolutionised 
functional ecology and inspired similar successful ap-
proaches for insects (Greenslade, 1983), freshwater fishes 
(Winemiller & Rose, 1992), corals (Darling et al., 2012) 
and microbes (Malik et al., 2020). In the case of well-
established or experimentally tested causal relationships 
between traits and environments or functions, the dimen-
sionality issue is of marginal importance when building 
species spaces with few relevant traits delineating clearly 
defined ecological strategies. By contrast, when such 
knowledge is lacking, so when many traits are available 
with low evidence of particular causal relevance, when 
big data analyses are performed with many missing val-
ues or when species strategies cannot be summarised 
by a limited set of traits, ecologists face the challenge of 
trait space hyper-dimensionality (Blonder et al., 2014).

Dimensionality reduction can then be a necessary step 
because some widely used functional diversity indices 
(e.g., functional richness) are based on the volume of trait 
space (convex hull volume) occupied by species of a given 
ecosystem (Laliberte & Legendre, 2010; Trindade-Santos 
et al., 2020; Villeger et al., 2008) that can be hardly cal-
culated beyond six dimensions, even less (four to five) if 

null models are required or when pairwise site measures 
like β-diversity have to be estimated (Loiseau et al., 2017; 
Pimiento et al., 2020b; Su et al., 2021; Villeger et al., 2011). 
Because most common functional diversity indices are 
sensitive to the degree of correlation among traits (Zhu 
et al., 2017), we also suggest to compute these indices from 
a reduced number of independent PCoA axes to improve 
the capacity to distinguish between communities along 
gradients of stress (Trindade-Santos et al., 2020).

Beyond practical reasons, this dimensionality value 
also informs about the extent to which species traits can 
be reduced to a limited number of ecologically meaning-
ful axes (Díaz et al., 2016; Pigot et al., 2020). This quest 
for ecological syndromes or strategies is not new (Reich 
et al., 2003; Westoby, 1998), and some previous studies 
have investigated the intrinsic dimensionality of spe-
cies traits using various linear and non-linear methods 
(Laughlin, 2014; Maire et al., 2015; Westoby, 1998). Here, 
we proposed two complementary ways to estimate linear 
dimensionality, and we applied them to 30 datasets to 
ultimately identify their main drivers, if any.

Using the parsimonious elbow-based AUC method, 
we found a median dimensionality of 4 axes, which is a 

F I G U R E  6   Partial plots showing the influence of the species life form (plant, invertebrate and vertebrate) and ecosystem type (aquatic and 
terrestrial), while controlling for the five dataset quantitative characteristics, on the log number of species clusters (first row), the proportion of 
species packed in the first or dominant cluster (second row) and the proportion of unique species so those isolated in the trait space (third row). 
Related statistics are reported in Table S3; the effects are all non-significant
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rather low value given that we only considered datasets 
with at least 10 traits in our study (Table 1). Interestingly, 
for most datasets (25 out of 30), the elbow-based dimen-
sionality is lower than 6 axes (2–5) (Figure 2), suggesting 
that the calculation of most volume-based functional di-
versity indices can be performed even with null models. 
Using the AUC threshold criteria of 0.7, the dimension-
ality is higher (median of six axes) and generally out of 
the operational range for calculations of hypervolume-
based metrics like functional richness (Villeger et al., 
2008) or functional β-diversity (Loiseau et al., 2017). It 
reinforces the idea that the diversity of organism forms 
and functions has a larger dimensionality than previ-
ously thought (Messier et al., 2017; Pigot et al., 2016b) 
whatever the kingdom and ecosystem. Only poor assem-
blages (<30 species) can be accurately described with low 
dimensionality (<4 axes) as shown in our simulations 
(Figure S6).

This can be partly due to the coexistence of different 
syndromes related to different sets of traits, correspond-
ing to different ecological strategies, under a given envi-
ronment (Reich et al., 2003; Sosiak & Barden, 2021). For 
instance, landscape filters can shape trait community 

composition with species sharing some traits (trait syn-
dromes) responding in a similar way under the same en-
vironmental conditions (e.g., agricultural intensification) 
(Gámez-Virués et al., 2015). When using large species 
datasets mixing various environments and many traits 
like in most of our cases (Table 1), the potential multi-
plication of trait syndromes could explain the relatively 
high dimensionality in the trait space we have observed, 
particularly for the plants in the French Alps or stream 
macroinvertebrates (Figure 2). We may expect lower di-
mensionality in species trait space built from local com-
munities under severe filters owing to the predominance 
of a few but highly constrained trait syndromes. We may 
also expect lower dimensionality when using effect ver-
sus response traits in a more coherent and systematic 
manner with a clear defined goal (Luck et al., 2012).

The most surprising result is the weak positive cor-
relation between the elbow-based and threshold-based 
dimensionality values showing that a low elbow-
based AUC value does not imply passing the 0.7 AUC 
threshold and vice versa (Figure 2). This is because the 
elbow-based method imposes a compromise between 
the quantity of axes and the quality of the trait space 

F I G U R E  7   Partial plots showing the influence of the five trait dataset characteristics on the log number of species clusters (first row), the 
proportion of species packed in the first or dominant cluster (second row) and the proportion of unique species so those isolated in the trait 
space (third row). Only significant (p < 0.05) partial relationships are blue plain dots and lines; others are in grey. Related statistics are reported 
in Table S4
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to avoid selecting more poorly informative axes (over-
dimensionality) whereas the threshold-based method 
only considers quality whatever the quantity of axes. 
Given this constraint, the elbow-based method provides 
lower dimensionality values (2–8 axes against 2–17 axes 
for the threshold method; Figure S5), which are also 
less influenced by dataset characteristics. As a practi-
cal guide, we suggest to use the elbow-based method as 
a first estimate of dimensionality on a given trait data-
set and then to increase the number of dimensions to be 

considered until passing the 0.7 threshold if necessary. 
With this rule of thumb, we should end up with an op-
timal dimensionality comprising between 3 and 6 axes 
for most datasets, as a trade-off between operationality 
and quality. Obviously, the operational constraint de-
pends on species number, diversity indices being used 
and power facilities.

In case a value of AUC =0.5 cannot be reached with 
a reasonable number of dimensions (<10 axes) like on 
the French Alps plants (Figure 2), we suggest either to 

F I G U R E  8   Partial log–log relationships between the number of groups clustered by the fast search and find of density peaks algorithm (a), 
the number of species in the most dominant cluster (b) and the total number of unique species so those not being part of any group (c), and the 
number of species in the 30 datasets. Slopes of the log–log relationships, so exponents of power laws, are reported
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carefully select the most relevant traits given the ques-
tion being addressed (Thuiller et al., 2014) or to avoid 
indices based on trait space reduction (like functional 
richness) but instead to use distance-based indices 
(Rao) only (Chao et al., 2019; Laliberte & Legendre, 
2010; Mouillot et al., 2013). For representation purposes, 
which are classically drawn in two or three dimensions 
with PCoA axes 1 to 4 (Bruelheide et al., 2018; Loiseau 
et al., 2020; Pimiento et al., 2020b; Stubbs & Benton, 
2016), we suggest to provide the corresponding AUC 
value as a key information on trait space quality along 
with the percentage of trait variation explained by axes. 
Because dimensionality is weakly influenced by dataset 
characteristics, except trait correlations that decrease 
dimensionality for both elbow-based and threshold-
based criteria (Figure 4), we suggest to pay particular 
attention to unnecessary or meaningless traits that are 
strongly independent from the others and would inflate 
dimensionality potentially biasing biodiversity met-
rics. Conversely, considering redundant or correlated 
traits, even if meaningless, has no expected impact on 
dimensionality so can be very neutral in the building of 

species trait space and the computation of indices. Yet 
using surrogate traits or traits with a coarse resolution 
to describe a given dimension of ecological strategy can 
substantially affect the results (Kohli & Jarzyna, 2021; 
Loranger et al., 2016).

The low but predictable robustness to trait 
omissions or choices

Choosing a set of traits always means ignoring some, 
whereas important traits can be missed because they 
are unavailable or unknown. Often traits are ignored for 
non-biological reasons such as the difficulty of measur-
ing them or the lack of standardisation in the research 
community. The consequences of this sub-selection have 
been poorly investigated, despite its potential to modify 
the perceived dissimilarity between species (Carscadden 
et al., 2017) and profoundly affect the estimates of func-
tional diversity (Zhu et al., 2017). Here, we randomly 
reduced our trait datasets to assess the impact of trait 
omission on AUC loss between the initial distance matrix 

F I G U R E  9   Trait spaces for the 30 datasets where the two axes come from principal coordinates analyses (PCoA) representing the 
distribution of species according to their trait values. Species coloured in dark are detected as statistically and ecologically unique species by 
the fast search and find of density peaks algorithm. The whale shark (Rhincodon typus) is highlighted in blue being highly distinct and unique in 
its clade. Datasets are ranked (top left to bottom right and from dark green to dark red) following the number of species
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(all traits) and that based on 90% to 20% of the traits only 
(Figure 5). When only 10% of traits are removed, AUC 
is still higher than 0.7 on average across simulations in 
21 datasets out of 30, suggesting overall high robustness 
to low rate of trait omission except for some taxa like 
palm trees, sharks, thermal fauna and corals that belong 
to different kingdoms and ecosystems. At 50% of trait 
removal, AUC severely drops below the 0.7 threshold for 
all datasets except fishes of the Jakarta Bay (Figure 5).

This overall low but highly variable robustness of 
species distances to trait omission is very well explained 
by dataset characteristics (Figure 4). Unsurprisingly, 
AUC loss at 50% omission rate is negatively related to 
the number of traits, so that trait-poor datasets (cor-
als, sharks or freshwater fishes) are more sensitive to 
the removal of traits than their trait-rich counterparts 
(macroinvertebrates or bacteria). Our statistical model 
also shows an expected negative relationship between 
AUC loss and trait correlation, so with more redun-
dant traits, the distances between species pairs in a 
low-dimensional space are more strongly preserved. 
This might explain why dimensionality reduction has 
been successful for some research fields in functional 
ecology (e.g., leaf traits and the leaf economic spec-
trum, Díaz et al., 2016; Wright et al., 2004), whereas 
other studies such as those spanning many organs of 
plants have failed to find meaningful reduction in trait 
dimensionality (Carscadden et al., 2017; Messier et al., 
2017). We also point out that the number of missing 
values strongly impacts robustness to trait omission, 
so including traits with many missing values (>10%) 
can be a counterproductive effort, especially with 
Gower-like metrics that only consider traits with no 
missing values to assess the distance between two spe-
cies. We also show a high variability in robustness for a 
given level of trait omission (Figure 5), suggesting that 
robustness to trait omission depends on traits being 
removed, some being more critical than others, inde-
pendently of their ecological relevance. This reinforces 
the advice to carefully select traits prior to analyses 
and pay a particular attention to those being uncor-
related to the others given their disproportionate im-
portance in the structuring of species trait spaces and 
subsequent analyses.

Taken together, these results point out that the robust-
ness of species space to trait omissions or choices is on av-
erage lower than previously thought (Douma et al., 2012) 
and that dataset characteristics, not the species life form 
or ecosystem type, explain this robustness, notably the 
presence of too many missing values. As a precaution-
ary principle, we suggest to perform sensitivity analyses 
where traits are removed one by one or until a certain 
percentage of removal to assess the robustness of the re-
sults (Cooke et al., 2019a; Loiseau et al., 2020; McLean 
et al., 2018; Mouillot et al., 2014; Pollock et al., 2017). 
Trait-gap filling through automatic imputation might 
also be an interesting perspective (Goberna & Verdú, 

2016; Johnson et al., 2021; Penone et al., 2014; Schrodt 
et al., 2015). However, given the way most of these ap-
proaches work, this is likely that trait imputations will 
follow the main trends and the main syndromes and will 
unlikely generate unique species artificially hidden in 
the space.

Species packing in trait space disproportionally 
increases with species richness

The species packing in trait space, or so-called over-
redundancy (Mouillot et al., 2014), provides functional 
insurance and resilience to ecosystems under distur-
bances (McLean et al., 2019). This packing can be eas-
ily assessed with categorical traits because each unique 
combination of traits, also called functional entity, is 
a cluster, so the clusters with a high number of spe-
cies, or higher than expected under a null model, are 
considered as over-packed or over-redundant whereas 
those with few species are vulnerable to biodiversity 
loss (Mouillot et al., 2014). With continuous traits or 
a large mix of traits as in our study, the clustering of 
species remains an arbitrary decision depending on the 
methods and thresholds used. We chose a clustering 
method with the lowest number of arbitrary decisions 
as possible independently of the shape and structure of 
species distribution in trait space (Rodriguez & Laio, 
2014). Surprisingly, this method, despite its attractive-
ness in other fields (medical and social sciences) and its 
parsimony (one parameter), has never been applied in 
ecology and evolution so far.

Using a ‘fast search and find of density peaks’ al-
gorithm (Rodriguez & Laio, 2014), we show that the 
number of clusters increases with the number of spe-
cies when we control for the other factors (Figure 7) 
but with a strongly saturating relationship (Figure 8a), 
suggesting that species tend to over-pack into some 
clusters instead of creating new clusters in species-rich 
assemblages as shown for reef fishes (Mouillot et al., 
2014) or passerine birds (Pigot et al., 2016b). With a 
slope of 0.41 on the log–log scale, it means that when 
species richness doubles, the number of clusters only 
increases by 30%. As a corollary, the richness of the 
dominant cluster increases with total species richness 
on a log–log scale with a slope higher than 1 (Figure 8b), 
suggesting that additional species disproportionally 
pack into the most speciose cluster. More precisely, 
two times more species in a given assemblage induces 
the packing of 2.6 times more species in the dominant 
cluster. So biodiversity only reinforces the redundancy 
of the most common traits instead of providing the 
level of insurance we should expect from species rich-
ness only under a random or proportional distribution 
of species among clusters (Mazel et al., 2014; Mouillot 
et al., 2014). This remarkable trend is observed for all 
taxa and ecosystem types.
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The saturating scaling of uniqueness with 
species richness

The identification of ecological disparity, gaps, distinc-
tiveness or uniqueness in trait spaces is a long-standing 
issue in ecology and evolution (Bapst et al., 2012; Foote, 
1990; Gauzere et al., 2020; Ricklefs, 2005; Violle et al., 
2017; Winemiller, 1991). It contributes, for instance, to 
estimate the level of functional insurance and vulner-
ability to species extinction (Mouillot et al., 2014) but 
also to better understand the influence of trait rarity on 
ecosystem functioning (Maire et al., 2018), to set con-
servation priorities targeting unique species (Loiseau 
et al., 2020) and to illuminate the capacity for innova-
tion in clades (Cornwell et al., 2014; Deline et al., 2018; 
Reeves et al., 2020). Yet there is no consensus on the way 
to determine which species are isolated enough in trait 
spaces to be considered as unique species. Among the 
myriad of clustering algorithms (Xu & Tian, 2015), the 
method based on fast search and find of density peaks 
was able to extract unique species in a very intuitive, 
standard, biodiversity-independent and distribution-
free way. We show that the proportion of unique spe-
cies decreases with species richness (Figure 7) whereas 
the number of unique species saturates rapidly with 
species richness (Figure 8c), suggesting that ecological 
novelty does not scale proportionally with taxonomic 
diversity but at a much lower rate whatever the king-
dom or ecosystem. With a slope of 0.47 on the log–log 
scale, it means that when species richness doubles, 
the number of unique species increases by 38%. This 
result resonates with the saturating link between eco-
logical disparity and species richness across geologi-
cal periods (Bapst et al., 2012) contrary to predictions 
from theory on adaptive radiations and ecological 
speciation (Rundell & Price, 2009). More precisely, 
some entire lineages remained ecologically conserva-
tive throughout the Mesozoic without exploring vacant 
portions of trait space, and then trait bursts occurred 
owing to changing abiotic conditions during the Late 
Jurassic (Reeves et al., 2020). Both adaptive radiations 
due to species interactions and innovative solutions to 
face new environments are certainly at play to explain 
the invariant saturating scaling of ecological unique-
ness with species richness.

CONCLUSIONS

Four take-home messages can be extracted from this 
analysis. First of all, when no prior selection of traits 
can be carried out, the minimum dimensionality of 
trait space is rather large with around three to six di-
mensions. The success of identifying axes of variation, 
especially when trait correlations are strong, suggests 
that the research program of finding major trade-off 
axes grounded in ecological principles shows more 

promise than the arbitrary selection and removal of 
traits. Second, most trait spaces are highly sensitive 
to trait omission, which thus requires careful thinking 
about which traits might be overlooked, missed and tar-
geted into the future. Third, there are plenty of unique 
species, and the success of the clustering approach sug-
gests that we need to pay more attention to how spe-
cies pack relative to each other in trait space and not 
only focus on dimensionality reduction of trait spaces. 
Fourth, the complexity of multicellular organisms from 
plants to vertebrates or from aquatic to terrestrial spe-
cies has little influence on the dimensionality, robust-
ness and structure of trait space. Instead, our synthesis 
suggests that the rate of key functional innovations and 
the subsequent complexity of trait space are consistent 
across multicellular clades with multicellularity evolu-
tion in plants sharing many features with that leading to 
animals. Yet these results are based on only 30 datasets 
and may lack statistical power to detect some effects. 
Moreover, these results are only valid for the range of 
dataset characteristics that we used in our analyses so 
more than 40 species and 10 traits. We obtained dif-
ferent patterns for species-poor assemblages in our 
simulations, but we are confident that our empirical 
assessment may embrace most species richness condi-
tions encountered in temperate or tropical assemblages 
for most taxa when building regional or global species 
trait space.
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