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Computational whole-brain models describe the resting activity of each brain region based on a local model, inter-regional functional 
interactions, and a structural connectome that specifies the strength of inter-regional connections. Strokes damage the healthy struc-
tural connectome that forms the backbone of these models and produce large alterations in inter-regional functional interactions. 
These interactions are typically measured by correlating the time series of the activity between two brain regions in a process, called 
resting functional connectivity. We show that adding information about the structural disconnections produced by a patient’s lesion to 
a whole-brain model previously trained on structural and functional data from a large cohort of healthy subjects enables the prediction 
of the resting functional connectivity of the patient and fits the model directly to the patient’s data (Pearson correlation = 0.37; mean 
square error = 0.005). Furthermore, the model dynamics reproduce functional connectivity-based measures that are typically abnor-
mal in stroke patients and measures that specifically isolate these abnormalities. Therefore, although whole-brain models typically 
involve a large number of free parameters, the results show that, even after fixing those parameters, the model reproduces results 
from a population very different than that on which the model was trained. In addition to validating the model, these results show 
that the model mechanistically captures the relationships between the anatomical structure and the functional activity of the human 
brain.
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Graphical Abstract

Introduction
A significant development in neuroscience involves the concep-
tualization of the brain as a set of dynamic networks that inter-
act and facilitate information processing through the 
integration and segregation of information. Correspondingly, 

the application of formal methods from the graph theory1,2

and the statistical mechanics for studying the structure and dy-
namics of those networks3,4 has been essential to this develop-
ment. The spatiotemporal activity of the brain’s resting-state 
physiology is identified by measuring the inter-regional correl-
ation of the BOLD signal,5 so-called resting-state functional 
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connectivity (FC). This spatiotemporal activity arises and is 
constrained by a structural connectome,6 a small-world organ-
ization,7 in which the ‘wiring efficiency’ is maximized by 
groups of densely interacting sets of brain regions (i.e. net-
works) that are linked by sparser connections. The structural 
organization of the brain generates spatiotemporal dynamics 
of activity or recurring waves across cortical, subcortical, 
and cerebellar circuits,8 which occur within a critical 
regime.9,10

The last decade has seen the development of computation-
al models that simulate the spatiotemporal patterns of the 
brain activity by combining biologically plausible whole- 
brain descriptions of the macroscale structural connectivity 
with models of local regional activity.

These ‘whole-brain models’ have been able to replicate at 
least, at the group level, many of the spatial and temporal prop-
erties of the brain activity.11 Whole-brain models have also si-
mulated activity changes produced by behavioural states, drugs 
or neurostimulation in the healthy or pathological brain.12,13

A key health-related application of whole-brain models is 
the simulation of the effects of brain pathologies, such as 
stroke, epilepsy or schizophrenia, on the brain activity and 
behaviour.14,15 Pathology-specific whole-brain models are 
very important because accurate simulations of the physio-
logical effects of a pathology and their distributed impact 
on brain networks may not only provide insights into disease 
mechanisms, but may also additionally allow the effect of 
therapeutic interventions, such as drugs, rehabilitation or 
stimulation, to be modelled or predicted.12

Our group has pioneered the study of brain network altera-
tions in stroke, and their simulation in whole-brain models. 
Focal lesions like stroke produce characteristic patterns of be-
havioural impairment and alterations in structural-functional 
connectivity measured with magnetic resonance imaging.16–22

In parallel, we and others have been able to show that whole- 
brain models can reproduce the abnormalities in network seg-
regation, integration, variability and criticality of neural states 
that are observed following a stroke.14,23–26

However, whole-brain computational models often involve 
large numbers of free parameters, making validation a critical is-
sue, which has been addressed using variants of out-of-sample 
prediction. In a leave-one-out procedure, the model is fit to all 
members of the sample, except for one, whose data are ‘pre-
dicted’. This procedure is then successively applied to each mem-
ber of the sample. In a cross-validation procedure, the model is 
applied to a completely different sample from the same training 
population. However, a more demanding validation criterion 
would provide better support. Here, we fit the model to a sample 
from one population (i.e. healthy participants), and then apply it 
to a sample from a completely different population (i.e. stroke 
patients). ‘Out-of-population’ prediction can be implemented 
for a stroke population because the effects of a sub-acute stroke 
lesion on an important measure of the whole-brain function 
(i.e. resting-state FC) are primarily determined by the effect of 
the lesion on the brain’s structural connectome,18 and critically, 
the alterations in a patient’s structural connectome due to a le-
sion can be incorporated into the whole-brain model without 

introducing new parameters. In addition to validating the mod-
el, the application of the out-of-population procedure to stroke 
patients specifically tests how well the model integrates the func-
tional brain activity with structural connectivity because the pre-
dicted physiology in a patient will only be accurate to the extent 
that the alterations in the structural connectivity produced by 
their lesion appropriately modify the model’s outputs.

We apply this more demanding validation criterion to a 
whole-brain model that is generative (i.e. generates BOLD 
time series across a participant’s brain). One advantage of 
a generative model is that it allows the prediction of any 
functional brain measure that can be computed from a 
BOLD time series (i.e. the model is not restricted to predict-
ing FC).

Another noteworthy aspect of the generative, predictive 
whole-brain model of stroke that is evaluated in this paper is 
that it predicts measures of the brain function and behaviour 
for individual patients. Briefly, a ‘healthy’ model is first derived 
in a group of healthy control subjects by combining local, parcel- 
level measures of activity from a Hopf model14,27 with a 
population-level structural connectome28 that is modified during 
model fitting using directional connectivity parameters (GEC 
parameters) that instantiate generative effective connectivity. 
The resulting healthy model is then ‘damaged’ separately in 
each patient by using the structural disconnections produced 
by their lesion to proportionally modify the GEC parameters, 
a modification that introduces any new parameters. Finally, 
the model-derived activity time series for each patient is con-
volved with a hemodynamic response function to generate a 
blood oxygenation level-dependent (BOLD) time series across 
the brain. Previous stroke-related models optimized the patient 
fitting by including both the anatomical and functional informa-
tion of each subject.26 In contrast, this generative, predictive 
whole-brain model satisfies an out-of-population validation cri-
terion because it does not include any functional information 
from stroke patients. Consequently, our previous models were 
not predictive and could not reproduce the functional connectiv-
ity anomalies observed in patients from their structural altera-
tions alone.

The results described below validate the new predictive 
model by showing that it reproduces FC abnormalities 
both at the individual and group levels, which resemble the 
empirical findings reported in the literature. Moreover, the 
new model has the same degree of accuracy as our previous 
models, which were fit directly to the patient’s functional 
data. In addition to supporting the model validation, these 
results show that the model mechanistically captures the re-
lationships between the anatomical structure and the func-
tional activity in the human brain.

Materials and methods
Subjects
We utilized data from the Washington University Stroke 
Cohort dataset,16 which is a comprehensive longitudinal 
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study spanning 2 weeks, 3 months and 12 months. It focuses 
on patients experiencing their first-time, single-lesion stroke, 
predominantly ischemic (83%) with a minority being haem-
orrhagic (17%). Our analysis solely concentrated on the data 
collected at the initial time point, within 1–3 weeks post 
stroke (mean = 13.4 days, SD = 4.8 days). Additionally, we 
examined a control group matched for age, consisting of 
27 healthy individuals who were assessed twice and 3 months 
apart. From this cohort, we selected 96 stroke patients 
(M = 57%, F = 43%) and 27 healthy subjects (M = 59%, 
F = 41%).

The stroke patients were recruited prospectively from the 
stroke service at Barnes-Jewish Hospital (BJH) in collaboration 
with the Washington University Cognitive Rehabilitation 
Research Group (CRRG). The detailed data collection method-
ology is outlined in full detail in a prior publication.16 The 
healthy controls were chosen based on the same criteria as out-
lined previously.16 Typically, they were spouses or first-degree 
relatives of the patients, who were matched in age and educa-
tion level. Patients underwent neuroimaging assessments to ob-
tain structural and functional features and an extensive (∼2 h) 
neuropsychological battery.

Neuroimaging acquisition and 
preprocessing
An extended outline of the neuroimaging evaluation can be 
found in a previous publication.18 The neuroimaging data 
were gathered at the Washington University School of 
Medicine using a Siemens 3T Tim-Trio scanner equipped 
with a 12-channel head coil. Specifically, the protocol 
involved acquiring the sagittal T1-weighted MP-RAGE 
(TR = 1950 ms; TE = 2.26 ms, flip angle = 90°; voxel 
dimensions = 1.0 × 1.0 × 1.0 mm), as well as a gradient 
echo EPI (TR = 2000 ms; TE = 2 ms; 32 contiguous slices; 
4 × 4 mm in-plane resolution) from each participant. During 
the scans, subjects were instructed to focus on a small white 
fixation cross against a black background on a screen located 
at the back of the magnet bore. Each participant underwent 
between six and eight resting-state scans each consisting of 
128 volumes, totalling to approximately 30 min of scanning 
time and yielding 896 time points per participant.

Preprocessing of resting-state fMRI data involved the fol-
lowing steps: (i) regression of head motion parameters, sig-
nals from the ventricles, CSF and white matter; (ii) global 
signal temporal filtering retaining frequencies in the 0.009– 
0.08 Hz band; and (iii) censoring of frames with large head 
movements, FD = 0.5 mm. The resulting residual time series 
was mapped onto the cortical and subcortical surfaces of 
each participant’s brain, which was partitioned into 234 re-
gions of interest (200 cortical and 34 subcortical). These re-
gions were selected from the multi-resolution functional 
connectivity-based cortical parcellations developed by 
Schaefer et al.,29 supplemented by additional subcortical 
and cerebellar parcels from the automated anatomical 
labelling (AAL) atlas30 and a brainstem parcel from the 

Harvard–Oxford Subcortical atlas (https://fsl.fmrib.ox.ac. 
uk/fsl/fslwiki/Atlases).

Furthermore, a structural connectome atlas was con-
structed using a diffusion MRI streamline tractography atlas 
publicly available based on the high-angular resolution diffu-
sion MRI data obtained from 842 healthy participants in the 
Human Connectome Project.28 This atlas, previously 
reported (Griffis et al., 2019, 2021), was built using high- 
spatial and angular resolution diffusion MRI data recon-
structed in the MNI template space using q-space 
diffeomorphic reconstruction.31 The resulting spin distribu-
tion functions were averaged across all 842 subjects to esti-
mate the normal population-level diffusion patterns. 
Whole-brain deterministic tractography was then conducted 
on the population-averaged dataset, employing multiple turn-
ing angle thresholds to obtain 500 000 population-level 
streamline trajectories.

The predictive patient model presented in this study was 
based partly on a group structural representation (i.e. a 
group healthy structural connectome) and partly on patient- 
specific structural information (i.e. the patient’s lesion). As 
such, inaccuracies in how well the group healthy connectome 
corresponds to a patient’s pre-stroke structural connectome 
will affect the model accuracy for that patient. Therefore, it 
is relevant to clarify that for stroke patients, the inter- 
individual variability in structure is dominated by the dis-
connection caused by the lesion, rather than fine-grained 
individual differences in the pre-stroke connectome.

Neuropsychological and behavioural 
assessment
The same subjects (controls and patients) underwent a com-
prehensive battery of neuropsychological assessments at 
each time interval. This battery comprised 44 measures dis-
tributed across four functional domains: language, motor, 
attention, and memory (for detailed descriptions of the 
task measures, see the work of Corbetta et al.16). 
Additionally, a perimetric evaluation of visual fields was 
conducted. Within each domain, individual test data under-
went a dimensionality reduction via the principal component 
analysis following the method outlined by Corbetta et al.,16

yielding summary domain scores: language, MotorR and 
MotorL (one score per side of the body), AttentionVF (visuo-
spatial field bias), attention average performance (overall 
performance and reaction times on the battery’s attention 
tasks),AttentionValDis (ability to reorient attention to un-
attended stimuli), MemoryV (composite verbal memory 
score) and MemoryS (composite spatial memory score). 
Furthermore, patients’ behavioural scores were standardized 
using z-scores in relation to the scores of controls, facilitating 
the identification of behavioural deficits.

In addition to domain-specific scores, the patients’ clinical 
severity was evaluated using the National Institutes of 
Health Stroke Scale (NIHSS)32 that encompasses 15 subtests 
addressing the level of consciousness (LOC), gaze and visual 
field deficits, facial palsy, upper and lower motor deficits, 
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limb ataxia, sensory impairment, inattention, dysarthria and 
language deficits. The total NIHSS score provided an aver-
aged measure of clinical severity for each patient.

Functional connectivity measures
Based on previous work,17,18 we defined three measures that 
are consistently impaired in stroke patients: 
1. Intra-hemispheric FC: average pairwise FC between re-

gions of the dorsal attention network (DAN) and the de-
fault mode network (DMN)

2. Inter-hemispheric FC: average homotopic inter- 
hemispheric connectivity within each network

3. Modularity: overall Newman’s modularity among cor-
tical networks, a comparison between the number of con-
nections within a module and the number of connections 
between modules. Here, by ‘module’ we mean what is 
commonly called ‘module’ or ‘community’ or ‘cluster’ 
in network theory (i.e. a set of nodes forming a tightly 
knit subnetwork). In this case, modules correspond to 
major resting state networks.33

Lesions
Manual segmentation of each lesion was performed on struc-
tural MRI scans and verified by two board-certified neurologists. 
The categorization of the lesion location (cortico-subcortical, 
subcortical, white-matter only) was determined using an un-
supervised K-means clustering based on the percentage of the 
total cortical/subcortical grey and white matter masks overlay. 
For a detailed explanation on how the overlap of each lesion 
group with grey matter, white matter and subcortical nuclei is 
calculated, please refer to Corbetta et al.16

Lesion disconnection masks
The Lesion Quantification Toolkit (LQT)34 generates a com-
prehensive set of atlas-derived lesion measures that includes 
measures of grey matter damage, white matter disconnection 
and alterations of a higher-order brain network topology. 
Crucially, the measures are derived from population-scale 
(e.g. N = 842) atlases of grey matter parcel boundaries and 
white matter connection trajectories established using high- 
quality resting-state functional MRI and diffusion MRI 
data.28

Taking advantage of the LQT, structural disconnection 
(SDC) masks were constructed to represent spared connec-
tion, quantifying the percentage of streamlines connecting 
each region pair in the atlas-based structural connectome 
that remained unaffected by the lesion. Consequently, the 
multiplication of each SDC with the aforementioned group- 
average structural connectivity34 provides an atlas-based 
weight for each region pair in each subject. The SDC masks 
were generated by integrating indirectly derived measures of 
structural disconnection into the healthy structural connect-
ivity atlas. In the same cohort, we also assessed diffusion ten-
sor imaging (DTI) at 3- and 12-months post-stroke, but these 
time points were not included in this study.

Given that many stroke lesions primarily affect the white 
matter or include both a grey and white matter component, 

the SDC mask offers an accurate depiction of connectome 
damage. We computed the total amount of disconnection18

as a metric of anatomical impairment to assess the validity 
of the model. For each patient, region-based disconnections 
were binarized at a 1% disconnection threshold. The total 
disconnection score for a patient was then determined by 
summing the number of disconnected regions. Therefore, 
the disconnection is obtained from each subject SDC, for 
which the relevance is driven, but not the amount and loca-
tion or consequences of the lesion, as reported in previous 
literature.14,18,34

Whole-brain Hopf model parameter 
estimation
The Hopf model directly simulates the BOLD activity across 
the entire brain. It comprises interconnected dynamical units 
representing cortical and subcortical brain regions based on 
a specified parcellation. The local dynamics of each brain re-
gion (node) is described by the normal form of a supercritical 
Hopf bifurcation, also known as a Stuart–Landau oscillator, 
which is the canonical model for investigating the transition 
from a stable equilibrium to a periodic oscillation. Our ap-
proach involved employing the Hopf computational model 
to simulate the whole-brain BOLD activity, capturing the 
emergent dynamics arising from the interactions among in-
terconnected brain regions, as determined by established 
anatomical structural connectivity graphs.35,36 The struc-
tural connectivity matrix (group average SC template) was 
scaled to a maximum value of 0.236 to explore the range of 
the G parameter established in the previous work. To calcu-
late the generative effective connectivity (GEC), we opti-
mized the phase of the empirically measured FC in the 
healthy subject group with the phase of the model FC time 
series. This optimization was performed by changing the glo-
bal coupling parameter G (obtaining a value of G = 0.75 as 
the optimal one), which assesses the influence of SC in the 
model. A higher G value indicates a greater influence of the 
system on each node. The model encompasses 234 coupled 
dynamical units (ROIs or nodes) representing the 200 cor-
tical and 34 subcortical brain regions from the parcellation. 
Integration with brain network anatomy, as described in the 
‘Neuroimaging acquisition and preprocessing’ section, en-
ables the complex interaction between Hopf oscillators to ef-
fectively replicate features of brain dynamics observed in 
fMRI.35,36

In complex coordinates, each node j is described by the 
following equation (for further details, refer to Deco 
et al.37):

dzj

dt
= z(aj + iωj − |zj|

2) + g
N

k=1

C jk (zk − zj) + βηj, (1) 

and

zj = pjeiθ = xj + iyj (2) 
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where α and ω denote the bifurcation parameters and in-
trinsic frequencies of the system, respectively. This normal 
form exhibits a supercritical bifurcation at aj  = 0 for where 
we utilized a homogeneous parameter space around the 
Hopf bifurcation (a = −0.01). Within this model, each 
node’s intrinsic frequency ωj falls within the 0.04–0.07 
Hz range (j = 1, …, n). The intrinsic frequencies were de-
rived from the data calculated as the averaged peak fre-
quency of the narrowband BOLD signals of each brain 
area. The variable G represents a global coupling factor 
scaling the structural connectivity Cjk, and η represents a 
Gaussian noise vector with standard deviation β = 0.04. 
Conceptually, this model extends the Kuramoto model 
with amplitude variations, thus the choice of coupling 
(zk − zj) indicative of a synchronization between two 
coupled nodes. We incorporated Eq. 2 in Eq. 1 separating 
the real part in Eq. 3 and the imaginary part in Eq. 4.36

dxj

dt
= (aj − x2

j − y2
j )xj − ωjyj + G



k

C jk(xk − xj)

+ βηj(τ) (3) 

dyj

dt
= (aj − x2

j − y2
j )yj + ωjxj + G



k

C jk(yk − yj)

+ βηj(τ) (4) 

For all cases, we will compute the goodness of fit by the 
mean error (squared difference) between the upper triangu-
lar values of the empirical and simulated FC.

Generative effective connectivity 
calculation
The generative effective connectivity (GEC) utilizes differ-
ences detected at different times in the signals for the con-
nected pair of brain regions to infer what effects one brain 
region has on the other.

The analysis of the GEC integrates an indirect measure 
into the whole-brain model, replacing the existing descrip-
tive metrics of FC and SC. Previous researches have demon-
strated the pivotal role of the GEC in elucidating information 
propagation within structural networks.38,39 The method-
ology for estimating the GEC is extensively elucidated in a 
prior publication.37 In essence, we computed the distance be-
tween our model and the empirical grand average phase co-
herence matrices serving as a measure of system 
synchronization within the healthy control group. Each 
structural connection was individually adjusted using a gree-
dy version of the gradient-descent approach. All values were 
transformed into a mutual information measure to work 
only positive values for the algorithm (assuming a 
Gaussian distribution). We derived the healthy simulated 
functional connectivity FCmodel from the first N rows and 
columns of the covariance matrix K representing the real 
part of the dynamics, specifically mirroring the BOLD 

fMRI signal. Subsequently, we optimized parameter ‘C’, 
such that the model optimally replicates both the empirically 
measured covariances FCempirical (i.e. normalized covariance 
matrix of the functional neuroimaging data) and the empir-
ical time-shifted covariances FSempirical (τ), where τ is the time 
lag normalized for each pair of regions i and j by 
�������������������������

KSempirical
jk (0)KSempirical

jk



(0).The optimization process was it-

eratively performed until full optimization was achieved. 
The equation of the optimization is as follows (for detailed 
information, please refer to the relevant citation):

C jk = C jk + ε(FCemp
jk − FCmod

jk )

+ ε(FSemp
jk (τ) − FSmod

jk (τ)). (5) 

where C is the anatomical connectivity updated with the dif-
ference between the grand-averaged phase coherence matri-
ces (empirical: FCemp

jk and model: FCmod
jk ) and the difference 

between the time-shifted covariance matrices both scaled by a 
factor ε  = 0.001, as extensively reported for optimization 
through a gradient-descent approach in previous litera-
ture.14,27,40 FSmod

jk (τ) is defined similarly to FSemp
jk (τ). After this 

process, C is considered as a GEC matrix. Consequently, the pre-
diction relies on the ongoing estimation of the healthy structural 
connectivity, which is iteratively updated by optimizing the 
phase FC in each iteration. In essence, the model underwent mul-
tiple runs with recursive updates of GEC until convergence was 
achieved. The distinction between functional and effective con-
nectivities is crucial here. The FC denotes the statistical depend-
ence between distant neurophysiological activities, while the 
GEC represents the directional influence one neural system ex-
erts over another, imparting asymmetry to the matrices.41,42

Models
Full predictive model
We calculated a predictive model to capture the dynamical 
effects of stroke lesions 2 weeks after onset. First, the average 
BOLD time series of each region of interest was 
Hilbert-transformed to yield the phase evolution of the re-
gional signals, as reported in previous literature as a proxy 
for brain dynamics similarity.14,37 Next, we estimated the 
optimal value of global coupling for which the modelled 
Hilbert phases were most similar to the empirical data in 
the healthy control group (G = 0.75). We then computed 
the GEC (see previous section) on the same group 
(Fig. 1A). Lastly, we added the information of the SDC 
mask of each patient to the existing GEC to simulate the 
fMRI BOLD data of the corresponding patient (Fig. 1B). 
Previous models included both structural and functional in-
formation from each stroke patient, making them ‘non- 
predictive’ models. In contrast, the ‘full predictive model’ 
used to generate the simulated time series contained struc-
tural information from the patient, but not their functional 
information, making it a predictive model.
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For each patient, the simulated fMRI BOLD time series for 
each parcel pair were then correlated to construct the patient’s 
simulated FC matrix. To isolate the degree to which the pa-
tient’s FC between two parcels was abnormal relative to the 
healthy controls, the empirical and simulated FC matrices 
for each patient were z-scored with respect to the healthy con-
trols’ empirical and simulated FC matrices to create the pa-
tient’s empirical and simulated z-scored FC abnormality 
matrices. Specifically, the healthy group-mean FC for a parcel 
pair was subtracted from the patient’s FC for that parcel pair. 
This difference score was then divided by the standard devi-
ation of the healthy group FC for that parcel pair.

In addition, we separately averaged the homotopic inter-
hemispheric FC and DAN–DMN entries from a patient’s 
z-scored FC abnormality matrix to create averaged abnor-
mality scores for these two classes of FC, which are typically 
abnormal in patients.

Predictive comparative models
Three different predictive models were calculated to com-
pare their performances with the full predictive model: 
• Predictive model without mask: To assess the effect of in-

corporating a disconnection mask (lesion information) in 
the predictive model, this model simply consisted of the 
healthy group model without any disconnection mask.

• Surrogate mask model: As the effect of the disconnection 
mask could simply reflect the overall magnitude of discon-
nection, we computed predictive models in which each pa-
tient received the disconnection mask of another patient. 

As the lesion severity averages out across patients, but 
the pattern/location of the lesion is different, comparisons 
of the full predictive model versus the surrogate mask 
model indicate how strongly the accuracy of a predictive 
model depends on incorporating the specific features of 
a patient’s lesion. Therefore, the model without mask 
and the surrogate mask models serve as predictive controls 
for the full predictive model.

• G-DSC model: To estimate the contribution of the GEC 
parameters to the accuracy of the full predictive model, 
we constructed a healthy model that was fit using only 
the G parameter, and not the GEC parameters. 
Therefore, the connections between parcels in this healthy 
model were based on a healthy structural connectome28

that was not modified via the GEC parameters. As for 
the full predictive model, the healthy model was then le-
sioned separately for each patient using the patient’s struc-
tural disconnection matrix.

‘Non-predictive and patient-specific’ model
A non-predictive patient-specific model was calculated for 
comparison with the full predictive model. The patient- 
specific model used each patient’s own functional information 
(i.e. their BOLD time series) and their structural disconnection 
matrix to estimate the model parameters, making the model 
non-predictive. By including both anatomical and function-
al information, the patient-specific model could be used to 
predict the effect of perturbations in the system, such as 
stimulation.

Figure 1 Pipeline for the predictive model: (A) Healthy control generative effective connectivity (GEC) was calculated by using the healthy 
template structural connectivity (SC) with each healthy control fMRI time series. The model was optimized using a whole-brain (WB) model to 
create an average GEC for the healthy controls. (B) The predictive model used each patient’s disconnection mask to modify the control GEC and 
obtain the patient’s simulated functional connectivity (FC), referred to in the figure as the full predictive model. (C) We determined the accuracy 
of the healthy model in accounting for the FC matrix of each healthy control subject (Fig. 2A). We also determined the accuracy of the full 
predictive model in predicting each patient’s FC matrix (Fig. 2A), FC-derived measures in each patient that are typically abnormal following a 
stroke (Fig. 2B), z-scored abnormalities, relative to healthy controls, in the FC matrix of each patient (Fig. 2C) and each patient’s behavioural 
deficits (Fig. 2D, upper panel) . We also investigated the determinants of the model accuracy by examining whether the accuracy of a patient’s 
simulated FC matrix covaried with the severity of their lesion-induced structural damage (Fig. 3A), the magnitude of FC-based and graph-related 
functional measures that are typically abnormal following a stroke (Fig. 3B and C) and the magnitude of the patient’s behavioural deficits (Fig. 3D).
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Figure 2 Model prediction of patient FC and behaviour. (A) The Pearson correlation between the empirical and simulated FC matrices of 
each subject (27 healthy controls and 96 stroke patients) was computed to assess the model accuracy (healthy controls: r = 0.43; stroke patients: 
r = 0.37). (B) FC-based measures typically abnormal in stroke patients were calculated from the empirical and simulated FC matrices from the full 
predictive model to compare their similarities (N = 96). (C) Distribution across patients of the correlation between the empirical and simulated 
z-scored FC abnormality matrices for each patient from the full predictive model (N = 96). (D) Separate partial least squares regression (PLSR) 
analyses were conducted using the empirical (FC EMP), z-scored (FC Z-ABN) and simulated FC (FCSIM) matrices from the full predictive model 
and the structural disconnection matrix (SDC) as regressors to predict each domain of behavioural impairment (language; motor left; motor right; 
attention-visuospatial field bias; attention-average performance; attention-orientation to unattended stimuli; memory spatial; memory verbal; and 
motor independent component) (N = 96).
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Assessment of the model accuracy
To complement the typical metrics (see section ‘Functional 
connectivity measures’) from the literature that assesses the 
functional brain dynamics after stroke,16,17,23 we have in-
cluded the following additional metrics of model accuracy:

Behaviour impairment prediction
We explored how well subjects’ behavioural scores were pre-
dicted by their empirical and simulated FC. We calculated 
two partial least-squares regression (PLSR) models using the 
empirical and simulated FC matrices as predictors. As a control, 
we included a third model based solely on anatomical informa-
tion (SDC matrix), as reported in previous literature.17,18,43

PLSR is a multivariate regression technique44 that is closely 
related to principal component regression.45 Both approaches 

are especially useful for situations where there are more vari-
ables than observations and/or when there is a high collinearity 
among the predictor variables. Nevertheless, PLSR has im-
portant advantages that are primarily caused by the differences 
in the criteria used for the predictor matrix decomposition.18

Detailed descriptions of theory and algorithms behind the 
PLSR approach are explained in previous literature.46

Global efficiency
Global efficiency was determined by computing the average 
inverse shortest path length.47 Unlike path length, global ef-
ficiency can be calculated, even on disconnected networks, 
because paths between disconnected nodes are defined to 
possess infinite length and, correspondingly, zero efficiency. 
Hence, it proves to be an optimal metric for analysing stroke 
data. While path length is predominantly affected by long 

Figure 3 Structural and functional determinants of model accuracy for individual patients. (A) Subjects with lower levels of 
disconnection exhibited a higher correlation between the empirical and simulated FC matrices, indicating a better model performance for patients 
with less severe lesions (t(94) = 5.82, P < 0.01; N = 96). (B) Higher global efficiency, entropy and average degree associated with a higher model 
accuracy. (C) Model accuracy for the FC-based measures typically abnormal in stroke patients assessed for the presented model. The accuracy of 
the full predictive model was significantly associated with the magnitude of the intrahemispheric FC and modularity, but not interhemispheric FC. 
(D) Model accuracy predicted by each type of regressor (structural disconnection—‘SDC’ matrix, z-scored FC abnormality matrix and FC 
empirical and FC simulated matrices) in a PLSR analysis of model accuracy (N = 96).
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paths, global efficiency is primarily influenced by short 
paths. Several authors have claimed that this may elevate glo-
bal efficiency to a superior metric of integration.48,49 Global 
efficiency is calculated as follows, following the methods 
outlined in previous studies:47,49

E =
1
n



i∈N


j ∈ N, j ≠ i dij

n − 1
(6) 

where N is the set of all nodes in the network; n is the number of 
nodes; and (dij) is the shortest path length between nodes i and j.

FC entropy
FC entropy is an information theoretical metric that mea-
sures the richness of functional connections and may, there-
fore, be a relevant biomarker for many disorders.25,26,50

Previous studies have reported abnormal FC entropy va-
lues when comparing healthy controls with stroke pa-
tients.23,25 However, these models use generic anatomical 
connectomes based on group averages instead of persona-
lized structural connectivity. Although the current study 
used an atlas-based structural connectome for modelling 
the healthy control subjects, this connectome was separately 
modified for each patient based on their lesion.

Entropy is calculated as follows:26

H = −
m

i=1

pi log pi/logm (7) 

where, m represents the number of bins employed in con-
structing the probability distribution function of the upper 
triangular elements of |FC|. The normalization factor in the 
denominator is the entropy of a uniform distribution, guar-
anteeing that H falls within the normalized between 0 and 1.

Average degree
Average degree is the measure of the overall network con-
nectivity that provides information about network segrega-
tion and integration.49

Average degree is calculated as follows:26

K =


v kv

N
(8) 

where, N is the number of nodes, and kv is the degree of node 
v defined above.

Statistical analysis
We performed paired/unpaired parametrical statistical ana-
lyses (t-test/ANOVA, based on the group number) depend-
ing on whether the comparison was performed for the 
same patient or between subjects. Statistical significance 
was assessed with a threshold of P = 0.05. All post hoc com-
parisons were Bonferroni-corrected for the number of com-
parisons taking place.

Results
To infer the dynamical effects of stroke lesions 2 weeks after on-
set, we used a computational model based on coupled Stuart– 
Landau oscillators (Fig. 1A). The model contains a global scale 
factor also referred to as the G coupling value that determines 
the influence of SC in the model. It also contains GEC para-
meters that capture directional interactions between regions. 
Both parameter types are optimized to improve the model fit 
(i.e. the similarity of empirical and model FC). In the current 
study, we use only the functional data of the healthy control da-
taset to optimize these parameters at the group level. Performing 
an exhaustive exploration of the homogeneous parameter space 
(a, G) around the Hopf bifurcation (a = −0.01), we found G =  
0.75 as the optimal value of G for which the modelled FC of the 
Hilbert phases were most similar to those observed in the empir-
ical data. Initializing the GEC to be equal to the SC, we iterative-
ly adjusted its values to improve the similarity between the 
model and the empirical FC at the group level. Supplementary 
Fig. 1 shows the role of the structural connections between par-
cels by assessing the difference between the empirical and simu-
lated FC. We then added information about the structural 
damage caused by a patient’s stroke to the healthy group GEC 
by using a structural disconnection mask to create a predictive 
model that generated a simulated version of each patient’s FC 
matrix (Fig. 1B). Therefore, the full predictive model reproduces 
the functional consequences of stroke lesions in individual pa-
tients by exploiting the patient’s structural disconnection ma-
trix. Importantly, in contrast to previously reported models, 
the full predictive model uses the functional data of only healthy 
control subjects to predict a patient’s FC.

From the obtained simulations, several metrics were calcu-
lated to assess how well the predictive model captured the 
functional effects of stroke. For this purpose, among other re-
sults, we considered the main FC-based metrics that are known 
to give abnormal values in stroke patients (mean intra- 
hemispheric FC between the DAN and DMN, mean homoto-
pic interhemispheric FC and modularity level). Similarly, we 
determined how well the predictive model captured patients’ 
behavioural deficits. To better understand the determinants 
of model accuracy, we also examined whether the accuracy 
of the predictive model for a patient covaried with the magni-
tude of the structural and FC- and graph-based measures that 
index the severity of the patient’s stroke, such as total struc-
tural disconnection, modularity and global efficiency (Fig. 1C).

Model outcomes and their 
relationship with stroke effects
We first determined how well the model accounted for each 
subject’s empirical FC matrix (healthy controls and stroke 
patients) by computing the Pearson correlation between 
the model-generated FC matrix and their empirical FC ma-
trix. This analysis directly compares the similarity of the si-
mulated FC edges to the empirical FC edges, as extensively 
reported in the literature.22,37,51 Fig. 2A shows the 
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distribution of the Pearson correlation coefficients over the 
sample, indicating that both the healthy and full predictive 
models generated simulated FC matrices that showed a mod-
erate level of accuracy (healthy group mean, r = 0.43, std =  
0.05; patient group mean, r = 0.37, std = 0.05; Fig. 2A).

To assess whether the full predictive model accurately spe-
cifically predicted the abnormalities in a patient’s FC that re-
sulted from their stroke, we correlated each patient’s 
empirical and simulated z-scored FC abnormality matrices. 
We performed this analysis by normalizing the matrix with 
the healthy control group (Healthy FC: mean = 0.12, std =  
0.02; Z-Empirical: mean = 0.046, std = 0.01; Z-Simulated: 
mean = 0.039, std = 0.01). Figure 2C shows that the mean 
correlation across patients (r = 0.24, std = 0.18) was signifi-
cantly positive (t(95)= 12.65, P < 0.01), indicating that pa-
tient abnormalities in FC were significantly predicted.

Next, we analysed how well the model predicted specific 
FC-based measures that are typically abnormal in stroke pa-
tients: (1) a decrease of negative intra-hemispheric FC be-
tween regions of the DAN and DMN; (2) a decrease of 
inter-hemispheric homotopic FC; and (3) a decrease of 
modularity. Figure 2B shows that the empirical and 
simulated values for these three signatures of stroke were 
significantly correlated across patients (intra-hemispheric: 
r = 0.47, P < 0.01, MSE = 0.01; inter-hemispheric: r = 0.46, 
P < 0.01, MSE = 0.008; modularity: r = 0.40, P = 0.03, 
MSE = 0.07). When exploring the levels of intra-hemispheric 
connectivity, we focused on the connectivity between DAN 
and DMN because this comparison has been extensively 
used in the literature.14,17,18,20,21,52,53 As this metric is not 
performed globally, but in specific regions, we complemen-
ted it with other whole-brain metrics, such as inter- 
hemispheric homotopic FC level and modularity. We also 
included a diverse set of functional dynamic metrics that 
capture the global impact of stroke lesions (see section 
‘Assessment of model accuracy’).

Previous studies have shown that whole-brain GEC mod-
els preserve the same three FC-based measures, especially 
when they include structural disconnection information, re-
vealing the key importance of incorporating this information 
into the models.14 In addition, for each patient, we separate-
ly averaged the entries in their z-scored FC abnormality ma-
trix for interhemispheric homotopic FC and DAN-DMN FC 
to assess whether the model specifically predicted patient ab-
normalities in these two FC measures. The results shown in 
Supplementary Fig. 2 indicate that abnormalities in both 
FC measures were significantly predicted. Overall, the results 
indicate that the full predictive model reproduced, to some 
extent, patient FC matrices, patient-specific abnormalities 
in the FC matrix, summary FC-based measures that are typ-
ically abnormal following a stroke and patient-specific ab-
normalities in those measures.

Finally, we used partial least squares regression (see 
Methods) to separately assess how well the simulated FC ma-
trices, empirical FC matrix, z-scored FC abnormality matrix 
and SDC matrix predicted the patients’ behavioural scores. 
Although the simulated FC matrix was modestly predictive 

across behavioural domains, the model-independent SDC 
matrix showed a nominally better performance, except for 
the domains for Attention VF, Attention Ave and Memory 
Verbal (Fig. 2D). The empirical FC matrix showed a lower 
performance than the z-scored and simulated FC matrices 
across all domains possibly because the predictive model 
that generated a patient’s simulated FC matrix explicitly in-
corporated their structural disconnection matrix. Overall, 
these results indicate that although the predictive model 
partly accounted for behavioural abnormalities, the model 
did not generally perform better than a purely structural 
measure.

Model accuracy in relation to 
structural damage and global metrics
Next, we investigated whether structural and functional fea-
tures influenced how accurately the model accounts for the 
data from individual patients. Specifically, we examined 
whether the accuracy of the model’s simulation of a patient’s 
FC matrix, as indexed by the correlation between the patient’s 
simulated and empirical FC matrices, covaried with the struc-
tural damage from the patient’s own lesion, the values of the pa-
tient’s graph-based functional metrics and the magnitude of FC 
abnormality metrics that are canonically affected in stroke.

We found that higher model accuracy was associated with 
lower values of total structural disconnection (R: −0.58, P <  
0.01, MSE: 0.04), which served as a measure of overall lesion 
damage (Fig. 3A, left panel). When splitting the sample in 
half by using the median value of total structural disconnec-
tion, patients with greater total disconnection showed a sig-
nificantly lower model accuracy (t(94) = 5.82, P < 0.01) 
(Fig. 3A, right panel). A similar analysis using lesion volume 
(number of damaged voxels) as an alternative metric yielded 
similar results (Supplementary Fig. 3; an example of a patient 
lesion and the corresponding asymmetric effective connectiv-
ity matrix is shown in Supplementary Fig. 4).

The dependence of the model accuracy on lesion severity 
was consistent with its dependence on the magnitude of 
graph-based metrics that are typically abnormal following a 
stroke.26 We found significant positive correlations between 
model accuracy and global efficiency (r = 0.54, P < 0.01, 
MSE = 0.04; Fig. 3B-Top), entropy (r = 0.30, P < 0.01, 
MSE = 0.05; Fig. 3B-Middle) and average degree (r = 0.58, 
P < 0.01, MSE = 0.04; Fig. 3B-Bottom). In other words, 
model accuracy was higher when the lesion produced weaker 
network function abnormalities.

Furthermore, the full predictive whole brain model generated 
FC matrices whose correlation with empirical FC matrices 
(i.e. model accuracy) was significantly related to the magnitudes 
of intra-hemispheric FC (R = −0.23, P = 0.02, MSE = 0.04) and 
FC modularity (R = 0.33, P < 0.01, MSE = 0.04), as seen in 
Fig. 3C. The sign of the relationship was consistent with the con-
clusion from Fig. 3A and B that the model more poorly predicted 
the functional measures of patients that had more abnormal 
structural or functional measures. However, model accuracy 
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was not correlated with the magnitude of inter-hemispheric FC, 
which is typically lower in stroke patients than controls.

Finally, separate PLSR analyses showed that model accur-
acy for a patient was well predicted by the full SDC matrix, 
next by the simulated FC matrix and z-scored FC matrix and 
least by the empirical FC matrix (SDC: R2 = 0.66, P < 0.01, 
Sim-FC: R2: 0.37, P < 0.01, Z-scored Abnormality FC: R2: 
0.35, P < 0.01, and Emp-FC: R2: 0.27, P < 0.01) (Fig. 3D).

Overall, these results indicate that the model’s ability to 
accurately reproduce a patient’s FC matrix decreased as 
the patient’s structural measures and, to a lesser extent, func-
tional measures showed larger departures from those for 
healthy controls.

Model comparisons
Having established the accuracy with which the full predict-
ive model reproduced measures that are typically abnormal 
in stroke patients (Fig. 2B and C), we compared its perform-
ance with a patient-specific non-predictive model reported in 
a previous study14 that used both anatomical and functional 
information to simulate a patient’s time series (referred to as 
the non-predictive patient specific model) (Fig. 4A).

Secondly, two comparative predictive models were chosen 
to assess how much model accuracy depended on the pa-
tient’s disconnection mask that was incorporated in the full 
predictive model. The model without mask allowed us to as-
sess the accuracy gain obtained by incorporating the pa-
tient’s lesion information with respect to not incorporating 
any lesion information (i.e. using the unmodified healthy 
group model for all patients). The surrogate mask model al-
lowed us to assess the accuracy gain obtained by specifically 
incorporating the patient’s lesion information with respect to 
using a lesion from a different patient (Fig. 4B).

We compared the performances of all models by comput-
ing the correlation of the simulated and empirical FC matri-
ces. The full predictive model showed a roughly equivalent 
accuracy to the non-predictive patient specific model,14

while the model with surrogate mask and that without 
mask showed lower accuracies (Fig. 4C).

A within-subject ANOVA indicated that the main effect of 
the model type (non-predictive, full predictive, no mask and 
surrogate mask) on accuracy was significant (F(3285)  =  
14.84, P < 0.01). Post-hoc tests indicated that the patient- 
specific and full predictive models did not significantly differ 
in accuracy (P < 0.36), but were significantly more accurate 
than both the surrogate mask and no mask models (P <  
0.01 in all cases).

To assess the effects of the GEC parameters on model ac-
curacy, a healthy model was fit using only the G parameter, 
not the GEC parameters, and was then lesioned as in the full 
predictive model to generate predictions for the patients. The 
results shown in Supplementary Fig. 10 indicate that model 
accuracy was significantly higher for the full predictive mod-
el than for the G-DSC model.

The accuracy of the full predictive model depends on the 
integration of functional and structural information; hence, 

we assessed this relationship in more detail. Specifically, 
model accuracy was computed as a function of whether 
two parcels were directly or indirectly connected (Fig. 4D). 
A two-way ANOVA was performed to analyse the effect of 
the model type and the node connection on the model accuracy. 
The two-way ANOVA revealed a statistically significant inter-
action (F(1, 190) = 67.96, P < 0.01). The full predictive model 
showed a significantly greater accuracy for indirectly connected 
parcels compared to directly connected parcels (P < 0.01), but 
showed no difference for the no mask model (P > 0.05).

The model accuracy relative to the accuracy of the healthy 
control group model is shown in Supplementary Fig. 5. The 
influence of the global coupling parameter (GC) is presented 
in Supplementary Fig. 6. The relation between the accuracy 
of each model and the magnitude of the FC measures typic-
ally abnormal in stroke patients is presented in 
Supplementary Fig. 7A, while the association between the 
different FC abnormalities is displayed in Supplementary 
Fig. 7B. Comparisons of the dynamical metrics22,51 between 
the models are presented in Supplementary Fig. 8 (see figure 
caption for metric explanation).

Overall, the results show the efficacy of the full predictive 
model, which does not use a patient’s functional BOLD data, 
allowing its predictions to be generalized to new patient da-
tasets and opening the door for predicting the expected ef-
fects of a simulated lesion or external stimulation of a 
patient’s brain.

Discussion
The results show that functional connectivity in patients could 
be predicted by a whole-brain computational model strictly 
from the structural disconnection caused by a patient’s lesion, 
suggesting that the model mechanistically captured to some de-
gree the relationship between anatomical structure and func-
tional activity. Moreover, the model significantly predicted 
abnormalities in patient FC with respect to the FC of the 
healthy control group. Although the model also predicted 
the behavioural abnormalities of patients, prediction was no 
better than that obtained using a purely structural measure, 
namely, the structural disconnection matrix. While previous 
work has examined how well computational models can re-
produce FC when the model parameters are directly fit using 
functional and structural data from healthy controls or stroke 
patients,14,52 the current study moves fundamentally beyond 
such work by determining whether these models can actually 
predict the effects of a stroke based solely on the structural in-
formation associated with a patient’s lesion.26

Validating the full predictive model’s 
integration of structure and function
The Introduction noted that the large number of free para-
meters in whole-brain models emphasizes the need for strong 
validation procedures, such as the out-of-population ap-
proach taken here. Both the facts that the full predictive model 
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significantly predicted patient abnormalities and that the ac-
curacy of the predictive model was essentially equivalent to 
the accuracy obtained by fitting a non-predictive model direct-
ly to the patient’s functional and structural data, despite the 
absence of free parameters in the full predictive model, 

provide support for model validity. Moreover, because the 
out-of-population prediction was applied to a patient popula-
tion with a different structural connectome than the training 
population, the variation of model accuracy with lesion sever-
ity, connection type (direct, indirect) and lesion mask type (the 

Figure 4 Model comparisons. (A) We calculated the non-predictive patient specific whole-brain (WB) model using both the anatomical and 
functional data of each patient. This model was not predictive because it was fit to the patient’s functional data. (B) We calculated two 
comparative predictive models to compare with the full predictive model. The predictive no-mask model was built using only the healthy 
generative effective connectivity (GEC), while the predictive surrogate mask model was calculated by modifying the healthy GEC via the 
disconnection mask of a different patient. (C) The similarity between the empirical and simulated FC matrices was assessed for each model. A 
within-subject ANOVA indicated that the non-predictive patient specific model and full predictive model showed similar levels of performance 
that exceeded that of the surrogate and no-mask models (F(3285) = 14.84, P < 0.01; N = 96). (D) A two-way ANOVA indicated that the 
comparison of the model performances when dividing by disconnected nodes and directly connected nodes showed a significant interaction 
between model and node connection (F(1, 190) = 67.96, P < 0.01; N = 96).
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patient’s own mask, a different patient’s mask, no mask) pro-
vided insights into the conditions under which the full predict-
ive model best integrated anatomical structure with functional 
activity.

We first fit a model to data from age- and education- 
matched healthy controls based on a healthy structural con-
nectome and the healthy controls’ functional imaging data. 
For each patient, we then determined how the patient’s lesion 
has modified the healthy structural connectome and made cor-
responding changes to the structural connectivity parameters 
in the healthy model (the GEC parameters) without additional 
model fitting or recourse to the patient’s functional data. 
Finally, the modified healthy model specific to the patient 
(i.e. the full predictive model) generated the patient’s predicted 
FC, which was compared against the empirically measured 
FC. Specifically, model accuracy was evaluated by assessing 
the correlation between the patient’s empirical and predicted 
FC matrices. The FC matrices specify the functional interac-
tions between each pair of brain regions; therefore, the pre-
dicted matrices potentially provide information concerning 
which functional connections are particularly vulnerable in 
the patient, a possibility also raised by the prediction of the pa-
tients’ z-scored FC abnormality matrices.

Interestingly, the accuracy of the full predictive model was 
essentially equivalent to the accuracy obtained by fitting the 
model directly to the patient’s functional and structural data. 
Moreover, the accuracy of the full predictive model de-
pended on incorporating the structural disconnection specif-
ic to that patient’s lesion, as shown by the significantly 
poorer performance obtained by substituting the structural 
disconnection for a different patient. This is derived from 
the fact that a higher level of structural disconnection 
(more severe lesions) deviates more from the trained sample 
(consisted in healthy controls). Both results provide add-
itional support for how the full predictive model integrated 
structure and function.

However, the accuracy for predicting a patient’s FC ma-
trix tended to be less more because the patient’s structural 
connectome and functional measures differed from the struc-
tural connectome and functional measures of healthy control 
subjects. Specifically, accuracy decreased with the magnitude 
of the total structural disconnection caused by the lesion. 
Similarly, the measures of modularity and intra-hemispheric 
FC and graph-based measures that are typically abnormal 
following a stroke tended to be more poorly predicted, and 
the more they differed from healthy control values (surpris-
ingly, a similar relationship was not observed for inter- 
hemispheric FC, an important signature of stroke-induced 
dysfunction).

One interpretation is that the model tended to better pre-
dict patients that were more similar to healthy controls be-
cause it was initially based on a model computed from 
healthy control data.

This interpretation suggests a limitation on how well the 
full predictive model integrated anatomical structure and 
functional activity, an interpretation also suggested by the 
difference in model accuracy for node pairs that were directly 

versus indirectly connected in the healthy structural 
connectome.

Alternatively, similar relationships may also be present for 
the non-predictive patient-specific model (i.e. the depend-
ence of model accuracy on structural and functional mea-
sures may not be related to prediction per se or be a unique 
feature of the full predictive model). The results in 
Supplementary Figs 7A and 9 provide some support for 
this alternative, but those results do not rule out the first ex-
planation as a contributing factor.

Finally, as a further alternative, it can be considered that 
the larger the amount of damage occurring in the brain, the 
more frequent the functional effects appear in secondary 
and tertiary connections, which are not well estimated in 
the healthy controls (given that healthy control FC does 
not change its weights). This reasoning would explain 
why indirect FC measures are not significantly predictive 
of behaviour, while direct FC measures are, especially for 
cognitive deficits that involve multi-network pattern 
abnormalities.17,20

Relation to previous work
The previous computational work based on concepts from 
statistical mechanics has shown that resting-state organiza-
tion conforms to a state of ‘criticality’ that promotes respon-
siveness to external stimulation (i.e. resting state 
organization facilitates task-based processing).13,54–57 The 
rich body of empirical work on resting-state organization 
has facilitated an important testing ground for evaluating 
computational whole-brain models. In these models, neural 
modules or elements are connected by ‘structural’ links 
that mirror the empirical structural connectivity of the hu-
man brain as assessed using diffusion-based MRI,27,54,55,58

resulting in resting-state dynamics that respect critically. 
Initial applications of whole-brain computational models 
to stroke populations23,25 used the biophysically-based mod-
el of Deco et al.,55 which involves a mean field approxima-
tion of populations of spiking neurons with realistic 
NMDA, AMPA, and GABA synaptic dynamics. However, 
the authors subsequently developed the mesoscopic Hopf 
model37 used in the current study, which provides a better 
fit to healthy control data and runs two orders of magnitude 
faster, allowing the use of higher-resolution functional par-
cellations that likely increase the model accuracy.

The whole-brain computational models presented in re-
cent studies that involved stroke patients included a global 
coupling parameter and GEC parameters that encoded direc-
tional interactions between nodes that had direct structural 
connections.14,52 The resulting generative effective structural 
connectivity weights allowed a better fit between the empiric-
al and modelled FC than that achieved by models that only 
varied the global coupling parameter. In both papers, how-
ever, the model was fit directly to a patient’s functional 
data and, therefore, was not a predictive model.

Given the moderate model accuracy and the decrease in 
the model accuracy as the damage from a stroke increases, 
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we acknowledge a room for improvement in future work, 
which could include the application of the model to other fo-
cal and non-focal pathologies that damage the structural 
connectome. Although the current study focused on predict-
ing FC in sub-acute stroke patients, future studies could 
examine whether changes in structural connectivity during 
recovery also produce predicted changes in FC. The dataset 
consisted mostly of ischemic patients; hence, model predic-
tions will need to be tested in haemorrhagic stroke patients 
before concluding that the model applies more generally to 
stroke. Following this line, the presented model was trained 
with a healthy group population. Due to the heterogeneity of 
strokes, a bigger dataset would be needed to train the model 
directly with patient data. Specifically, a large amount of 
data would be needed to represent all stroke subgroups (dif-
ferent location, sizes, etc.) such that the model could be ap-
propriately trained. Future studies could benefit from 
open-source datasets to achieve this goal.

Limitations
The mesoscopic Hopf model37 includes global coupling and 
GEC parameters that affect the connectivity between nodes 
of the model and bifurcation parameters that affect the 
node dynamics. The influence of the GEC parameters is de-
picted in Supplementary Fig. 10. Specifically, the bifurcation 
parameter for a node governs the transition between noise- 
dominated and oscillatory behaviours. The current work as-
sumed that strokes do not affect the bifurcation parameters/ 
nodes, only the connections between nodes; however, prior 
studies indicated that delta waves are prominent in the peri-
lesional tissue and propagate to directly connected re-
gions.59,60 Therefore, the nodes for perilesional/partly 
damaged parcels and perhaps directly connected parcels 
may have abnormal bifurcation parameters. Evaluating 
this possibility is beyond the scope of this work, but is cur-
rently in progress. On the positive side, properly accounting 
for abnormal bifurcation parameters/nodes may improve the 
model accuracy. On the negative side, it is unclear how node 
abnormality might be incorporated into a fully predictive 
model.

Although the GEC parameters encode directed influences 
between parcels, only undirected influences were assessed in 
the data via Pearson correlation and used to evaluate the 
model accuracy. Moreover, it is important to consider that 
stroke patients often exhibit an older demographic profile 
compared to the typical populations, upon which the as-
sumptions of neurovascular coupling and conventional ana-
lysis pipelines are based.61 Additionally, it is essential to 
interpret the presented results with the awareness that the 
BOLD signal does not directly measure the neuronal activity. 
Therefore, changes in network dynamics across different 
time points could reflect alterations in observable BOLD 
fluctuations, rather than explicit modifications in neuronal 
dynamics. Finally, the presented dataset consisted mostly 
of single-lesion stroke patients. Future studies could evaluate 
the model accuracy for patients with multiple lesions.

Conclusion
The current study shows that the effect of stroke-induced 
perturbations in structural connectivity on functional dy-
namics can be partly captured by a fully predictive whole- 
brain computational model, thereby demonstrating how 
out-of-population analyses can be used to validate whole- 
brain computational models. Adding lesion information to 
a model trained on healthy functional data is beneficial for 
reproducing functional anomalies in patients. Although the 
prediction accuracy worsens for patients showing greater 
structural damage and functional deficits, the predictive 
model can still provide unique insights into how strokes dis-
rupt resting brain organization.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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