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Introduction and synopsis

Listening back to the whole piece

The experience of going through a PhD training is similaidtehing for the first time
to a long musical composition. Like the composition’s moeets, projects come in
rapid succession and as you concentrate on single unitsfi@umiss to perceive the
global coherence of the work. Writing up this thesis is theasoon for listening back
to the whole piece, and appreciate its cohesion. This tlsbsiws both unity and vari-
ation. Unity has been provided by the firm guidance of my sjtarho have pushed
me along a meaningful and clear research direction. Varias due the freedom they
have granted me to comply with the whims of interests, stinanld ideas.

By the nature of the work | have carried over, this cannot beietly monographic
thesis — | haven't been working on a single research projech fthe beginning to
the end. But it is certainly neither a mere collection of papéf it were a music
piece, it wouldn’t have the monolithic character of BacBsldberg variationswith
its obsessive exploration of a single aria, but it wouldther resemble a collection of
completely disparate and unrelated passages like Chdpindes It would probably
sound like SchumannBarnaval a series of scenes withstrong thematic unityepre-
sented by a leitmotiv and the ubiquitous, recurring preseridour keys. The leitmotiv
is decoherenceand the recurring keys are the conceptsafierencemeasurements
correlations information

Synopsis: decoherence and information

“The inability to discard entails the impossibility to den”
Umberto Eco

When you measure a quantum system, you irremediably peitturlso goes a
common representation of Heisenberg’s uncertainty grlaciwhile this image is es-
sentially faithful, it may fail to adequately depict the leugap between classical and
quantum physics. In fact, even by measuring a classicatsygbu ought to perturb it.
For instance, if you want to measure an electrostatic fieldmast use a test charge,
whose presence will necessarily affect the field itself. ieev, there is a fundamental
difference between this kind of disturbance and the kindstfidbance emerging from
Heisenberg’s uncertainty principle. The disturbancetetdy a classical measure-
ment is not fundamental, and it can be made arbitrarily sraaleast in principle. On

iv
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the contrary, the disturbance unleashed by a quantum nezasnt is lower-bounded
by precise limits that depend on the measured observahilé,Gannot be reduced at
will, not even in principle. This kind of disturbance is fuardental, and it stems from
the fact that we are trying textract classical records from a quantum staM/hen
we measure a given observable, we obtain a classical releerddf. This comes at
the price of losing all information about the quantum stf#iases in the observable’s
eigenbasis.

The leitmotiv of this thesis is thédtt we wish to obtain a classical record of a quantum
property or process, we must usually discard some infomnafi he obstacle that im-
pedes acquiring classical records of quantum phenomengiggmcoherencein its
multifarious manifestations. Correspondingly, the pescef information loss that is
needed to create classical recorddésoherence

Decoherence, as the product of physical processes affexen quantum systems, has
been studied since the 1980es. A major breakthrough in theratanding of quantum
mechanics was the realization that decoherence can be tisegquence of phase in-
formation dispersal among an ensemble of uncontrollatdesds of freedom external
to the system, generally termed “environment”. Decohezembether it is caused by
a quantum measurement or not, effectively creates cldssicards of the system. It
fragilizes quantum information, and stabilizes classictdrmation.

While decoherence is now a well-known and well-studied pinggnon, its effects have
not been explored in all possible directions yet. In paléican interesting perspective
on decoherence processes opens up by taking an informlsgippraach. The imme-
diate dividend of this choice is that one can ugermation-theoretical quantifier®
give a precise quantitative meaning to the ideas of infoionagain and information
loss under the effect of decoherence. In several casesiitberd of information that
is lost under decoherence is commensurate with the amouwtledrence originally
presentin the system. Actually, it turns out that a good walefineandassesshe de-
gree of coherence, or quantumness of the system is exachngider the information
lost under actual or potential decoherence processes. éuatltler side, the ability to
quantify the classical information gained after the actibdecoherence is a precious
indication of how much an observer can learn about a quanygsters through obser-
vation.

The thread binding together all studies presented in thladoming chapters is the
analysis of the effects of actual or potential decoheremoegsses on several physical
systems, with the key aid of information-theoretical qifems.

An important aspect of decoherence that has been propeghfiginted only in re-
cent years is its effect on the correlations between twoystbsis. If a measurement-
induced decoherence process locally affects a subsystemgieg to a correlated sys-
tem, a part of the correlations can be irreversibly lost. ually, unless correlations
are in a specific, classical formany local decoherence process entails a correlation
loss. This was recognized by Ollivier and Zurek [26] as adnty nonclassical fea-
ture of correlations and they considered the minimal amofirorrelations lost to
define a genuine measureafiantum correlationgalled quantum discord Comple-
mentarily, Henderson and Vedral [27] considered the mariramount of correlations
that can survive the effect of local decoherence to define @sare of classical cor-
relations. Discord and classical correlations have beegiving growing attention in
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recent years, as they are of relevance to the performanavefat quantum informa-
tion processing tasks. In the first part of this thesis | wigent two research projects
aimed at analyzing discord and classical correlations irsiglally important scenarios:
a quantum many-body model (Chapter 2) and a quantum optizsdéh{Chapter 3).
Another still poorly studied aspect of decoherence is ittian todynamical entropy
that quantifies the amount of information generated by the g&volution of a system,
i.e., that cannot be predicted on the basis of previous datiagsystem. This issue can
be properly addressed within the general formalismexfoherent historiegOriginally
developed as an interpretational framework for quanturorthelecoherent histories
provide a natural language to describe coherence in thetewolof quantum systems.
Coherent effects reflect into the impossibility of assignivell-defined probabilities to
different paths or “histories” of the system, and they ampty captured by the off-
diagonal elements of a mathematical object catledoherence matrifor functiona).
When the decoherence matrix is diagonal, a condition cafledium decoherengthe
evolution admits a perfectly classical description. Madidecoherence is usually ob-
tained upon discarding information, a procedure caleedseegraining. The ignored
information can be related either to an external envirortimamto a part of the sys-
tem itself. By framing the concept of dynamical entropy ie thecoherent histories
language, we will obtain a twofold yield. On one side, we widvelop an informa-
tion theoretical quantifier of coherence in the time-eviolubf a system (theelative
entropy of decoherenc€hapter 5), by comparing entropy production when coherent
effects are neglected or taken into accout, respectivéiig Measure will be used to ad-
dress a physically important problem, the emergence oftpobases in Hilbert space
after interaction with a noisy environment (chapter 7). btaver, we will analyze the
effects of decoherence and coarse-graining on entropyiptiaeh by quantum systems,
comparing chaotic and integrable dynamics, and estab@isinder which conditions
both types of dyamics can lead to the effective productiatiagsical information at a
nonvanishing rate.

Quantum information theory has contributed to highligha tight relation between
physics and information theory. On one side, encoding, pdating and extracting
information are tasks that sensibly depend on the physicglgrties and behavior of
information-bearing systems. On the other side, takingnéorinational perspective
can shed light onto the physics of those systems, leadingndisant advances in un-
derstanding.

Exploring the effects of decoherence from an informatigrespective conforms to
this general spirit. There are two main motivations for #mgloration. From view-
point of applications understanding how decoherence, information extractind,in-
formation loss affect quantum systems is essential to obtitem and put them to use
for information processing tasks. From the point of viewfuridamental theorywe
can achieve a deeper comprehension of the difference betwl@ssical and quantum
physics.
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Contents of the chapters

e Chapter 1 contains an introductory review of quantum dicor will high-
light the derivation of discord from decoherence theorplaix its information-
theoretic meaning and stress its potential for applicatiohquantum science
and technology. The chapter should enable the reader tastadd and contex-
tualize the work in presented in Chapters 2 and 3.

¢ In Chapter 2, | investigate quantum discord and classicaktagions in the ex-
tended Hubbard model, a reference model in the study of letereelectrons.
This chapter significantly overlaps with an article that basn featured in Phys-
ical Review B [107], of which | am the first author. Since quantinformation
has highlighted strong ties between quantum entanglemenlaysical proper-
ties of many-body ground states, especially at quantumeakipoints, it is inter-
esting to look for similar relations involving other typeflsqgmantum correlations
like quantum discord. | will assess discord and classicaktations in all phases
of the model, which has a complex phase diagram, and focuseolpehavior of
correlation measures in the proximity of quantum criticaings. | will uncover
a tie between long range correlations (off-diagonal loagge order) and quan-
tum discord in parameter regions where entanglement iskiang, pinpointing a
possible general relation between discord and macrosqoictum phenomena
like superfluidity and superconductivity. Furthermoreg #eparation between
discord and classical correlations at the critical pointsprove essential to dis-
criminate between phase transitions that are physicaffgrdint depending on
the appearance/disappearance of off-diagonal long-ratpe.

e In Chapter 3, | will address discord for Gaussian states ofltasonic modes.
This chapter is essentially a reprint of a paper publisheBhgsical Review
A [64], of which | a contributing author. The computation afantum discord
is in general very difficult, since an optimization over altal measurements is
required: One has to identify the optimal local measurenadiawving for the
maximal preservation of classical correlation between ¢ewelated systems.
The problem is interesting per se, besides the evaluatialisobrd, as it sheds
light onto information extraction from the quantum systerhand. For Gaussian
states, it has been shown that the maximization problem eaolved if one re-
stricts the optimization to Gaussian measurements likedayme detection, that
maintain the Gaussian character of the state. This left tpequestion, whether
non-Gaussian measurements may allow for a better optimizdtwill focus on
two large classes of Gaussian states, (squeezed therteal stal mixed thermal
states) and evaluate discord comparing results obtaingddgiussian measure-
ments, like homodyne detection, and non-Gaussian onepliign counting. |
will exhibit strong evidence that Gaussian measuremeetsjatimal.

e Chapter 4 is a review of the decoherent histories formaligime presentation
is tailored to provide the reader with sufficient knowledg@nderstand the fol-
lowing chapters (5,6,7).
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e In Chapter 5, | will introduce dynamical entropy and explaow this concept
can be embedded in the decoherent histories formalism,rhyevdf a general
mapping between measurements and Hilbert space partitiom#l show that
ALF-entropy, a quantum generalization of the classicalnkayorov-Sinai en-
tropy, is related to the von Neumann entropy of the decolwerematrix of a
set of histories with fixed projections for all times. | wilhew that the de-
coherence matrix can be interpreted as the density matrixssft of quantum
registers that subsequently interact with the systemcfdy performing the
“measurements” that define the set of histories under a@tenthis picture al-
lows to interpret ALF entropy as the rate of production of mfuian information
by the dynamics. Upon casting ALF entropy in the decoherésibties lan-
guage, | will introduce a general measure of coherence fanmum histories,
the relative entropy of decoherence. The latter is defing¢deaguantum relative
entropy between the actual decoherence matrix and a dexa®matrix where
off-diagonal entries are completely discarded.

e In Chapter 6, | will analyze dynamical entropy productionddgsed quantum
systems in presence of two sources of randomness, (R1)maress in the dy-
namics, i.e., in the choice of the evolution operator (RBJiamness in the choice
of measurements. By using the decoherent histories fasmaliwill be able to
focus on the effects of decoherence and coarse-grainingdyftamical entropy
production. Both (R1) and (R2) lead to similar results: Upaifficient coarse-
graining, histories are decoherent and exhibit to a nornstémg rate of entropy
production. These results entail that both chaotic andyiatde quantum sys-
tems can produce effectively classical information at a-wamnishing rate. This
picture is obtained through a general, yet heuristic arqurend strengthened
by a rigorous random matrix argument that proves resultshfier(R1) case. |
will test theoretical results by numerically studying deerent histories and dy-
namical entropy in the quantum standard map, a well-knowdahthat has a
chaotic/integrable transition. Results of this chapteradrinterest for a general
issue raised by Gell-Mann, that of fundamental sources pfedictability in
guantum mechanics.

¢ In Chapter 7, | will analyze the emergence of pointer bases firivileged bases
in which the open system decoheres) in a two-level smalegy#tteracting with
a non-Markovian environment. As previous literature hamsash pointer bases
depend on the strength of the system-environment couplifigle weakly cou-
pled systems decohere in their own energy eigenbasisgiroaupled ones do
so in a basis dictated by the interaction Hamiltonian. A meégaper has sug-
gested that pointer bases exist also for intermediate salfithe coupling, and
they “interpolate” between the two extremes found at weakstrong coupling.
By following previously developed methods, | will investig pointer bases as a
function of the system-environment coupling. In additibwjll study decoher-
ent histories with fixed projections in different basesufsing on the behavior of
the relative entropy of decoherence introduced in Chaptendl test the basic
expectation that pointer bases should correspond to setsitofally decoherent
histories. At weak and strong coupling | will observe the egmance of clear
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pointer bases, and correspondingly a small value of thévelantropy of deco-
herence. For intermediate values of the coupling, | will@rthat no true pointer
bases arise, showing that different initial states de@medifferent bases. The
behavior of the relative entropy of decoherence (that steimvdar values for all
bases) strengthens this conclusion.

We, the authors of this thesis

This is my thesis, but it alsour thesis. No part of this manuscript arose from a soli-
tary effort. In particular, | can claim no unshared creditday of the scientific results
presented in the following chapters. It is hard to delimi& gontribution given by
my supervisor at ISI, Paolo Giorda. Work presented in clrafteand 3 is the prod-
uct of our direct collaboration, and his steady supervisid¥e were both involved
in discussing ideas, making calculations, analyzing tesahd writing. We also had
the pleasure to collaborate with other people. Our projadfiscord in the extended
Hubbard model (chapter 2) was done in collaboration withrafnia Montorsi, whose
essential ideas and physical insights have determinedatyeshape of the work. For
the work on non-Gaussian discord (chapter 3) we collabdnatth Matteo Paris, who
gave fundamental contributions in the framing, the analgsid the writing. All work
related to decoherent histories (chapters 5,6,7) was dpmeecbin collaboration with
Seth Lloyd. Those projects were ignited by creative burktssy and he later carefully
guided me along the most interesting research directiomsn E Paolo Giorda didn’t
directly collaborate on the projects described in chapf@y75 his encouragement, as
well as his comments and suggestions were invaluable igiogrthose projects to an
end. Although the review chapters on discord and decohéisturies were written
solely by me, they reverberate many echoes of discussiofmadiégether with Paolo
and several other friends and colleagues.

I am sure that the merits, if any, of this thesis are largelyé 6f this range of collab-
orations, while | am the sole responsible for its possiblegla
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Notations

We always consider units whehe= 1, unless otherwise specifieBubscripton kets,
density matricesd) and traces (Tr), ansuperscript©on measurement mapsand®’s
label subsystem label the subsystem(s) of reference. Biguantities always indicate
that they are evaluated after a measurement. Logarithmiskea in base, unless
otherwise stated.

List of symbols

ax, a} boson creator operators of mode Chap. 3

@ displacement parameteGhap. 3

A; Kraus operatorsChap. 1,4,5,7

Afl Kraus operator representing alternatjyat timet,, Chap. 4,5,7
A B, C subsystemsChap. 1,3

|b;) orthonormal basisChap. 7

B inter-basis angleChap. 7

Cigs cjg fermion creation operator for siteand spino, Chap. 2

Cj history operator,Chap. 4,5,6,7

Cn relative entropy of decoherenc€hap. 5,6,7

d space dimensionall chapters

d+ symplectic eigenvalueChap. 3

D(n) displacement operatoChap. 3

D(A|B) quantum discord with measurements®n Chap. 1,2,3
D(BJ|A) quantum discord with measurements4nChap. 1,2,3
D¢g(A|B) geometric discordChap. 1,3

DY(A|B) Gaussian discord with measurements on mBdeChap. 3
DNY(A|B) non-Gaussian discord with measurements on mi®d€hap. 3
DZ(A|B) Gaussian geometric discor@hap. 3

Dg/g(A|B) non-Gaussian geometric discor@hap. 3

Dix decoherence matrixChap. 4,5,6,7

DN.E) dec. matrix with\V measurements given by POVK, Chap. 4,5,6,7
52 coherence ratio between pair of histori€hap. 6

Os basis stability parameteChap. 7

A coarse-graining dimensiorGhap. 5,6

At time interval between projections in historieShap. 4,5,6,7
les), | fi) orthonormal basesChap. 1

les) Schmidt basisChap. 7

& environment,Chap. 1,4,7

& energy densityChap. 2

Ex(o) entanglement entropy @ Chap. 1

Er(o) entanglement of formation @f Chap. 1,3

Es(o) relative entropy of entanglement of Chap. 1

n n-pair creation operatorChap. 2
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f fine-graining parameterf(= d/A), Chap. 5,6

) generalized measurement (POVMJhap. 1

oY Gaussian POVMChap. 3

5y dephasing constanChap. 7

r relaxation constantChap. 7

h(pa) Shannon entropy gf4, Chap. 1

harLr Alicki-Fannes entropyChap. 5,6

hks Kolmogorov-Sinai entropyChap. 5

hn () Shannon entropy of refined partition aft€riterations of7, Chap. 5
hn(E) von Neumann entroppV-#) | Chap. 5,6,7

WO (E) Shannon entropy of diagonal elementg®f¥-#), Chap. 5,6,7
b history, Chap. 4

H Hilbert space,all chapters

Hx Hamiltonian of systenX, all chapters

Hint interaction HamiltonianChap. 6

H(palpy) (classical) conditional entropy @fs givenpg, Chap. 1,5
IIIIII IV regions of Hubbard modelChap. 2

I 234 symplectic invariantsChap. 3

I(A:B) classical mutual informationChap. 1

Z(A: B) qguantum mutual informationChap. 1,2,3

I,.c(A: B) accessible information informatiorChap. 1

I1(A)B) coherent informationChap. 1

Im imaginary part,all chapters

NE Y multi-index for quantum historyChap. 4,5,6,7

i=J1-. N multi-index for coarse-grained historg;hap. 4,5,6,7
i=J.. N multi-index for fine-grained historyChap. 4

jVvk coarse-graining by logical sum of historieandj, Chap. 4
J(A: B) classical correlationsChap. 1,2,3

k. k k same ag, j,j, Chap. 4

K concurrenceChap. 1,2

Kiw (Kiw) propagator (reduced propagator) between tignend timet, Chap. 4,7
L length of chain,Chap. 2

A coupling constantChap. 7

A two-mode squeezing paramet&hap. 3

Ak state eigenvalueChap. 1,2

A guantum operation (TPCP maplhap. 1

me, Ny number of projectors at timg, Chap. 4

M(A: B) entanglement monoton&hap. 1

I chemical potential Chap. 2

n average per site fillingChap. 2

ng (ns) density of doubly (singly) occupied site§hap. 2

Nig fermion number operator for siteand spins, Chap. 2

nr thermal numberChap. 7

N number of projections in decoherent historied, chapters

Ng (Ns) number of doubly (singly) occupied site€hap. 2
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N total number of particlesChap. 2

Ny, N thermal numbers of mode$, B, Chap. 3

N(A: B) negativity, Chap. 1,2

Np, N, symmetry factors,Chap. 6

v(N) thermal state with thermal photon numtér Chap. 3

(0] generic operatorChap. 1,6

Q; phase-space partition elemen@hap. 5

ng\’ ) in elements of refined partition aftéf iterations of7, Chap. 5
P momentum coordinate of the kicked rot@Chap. 6,7

i probability ofi, Chap. 1,2,3

Dilj conditional probability of givenj, Chap. 1,2,3

Dj probability of historyj, all chapters

pth(N) thermal distribution,Chap. 3

P, Q; projectors,all chapters

]ff[ history proj. representing alternatiyetimet, , Chap. 4,5,6,7
Pfe history proj. representing coarse-grained alterngtitene t,, Chap. 4
P! history proj. representing f-grained alternatjygimet,, Chap. 4
II projective measurement maghap. 1,2,3

q position coordinate of the kicked roto€hap. 6,7

q®), (Q()) generalized coordinate (of neglected DOEhap. 4

Q2,Q8 two-point (multipartite) quantum correlation§hap. 2
Q(A|B) measure of discord with measurementsnChap. 1

r single-mode squeezing paramet€hap. 3

R register,Chap. 5

R guantum kicked rotorChap. 6,7

R1 randomness in the dynamic€hap. 6

R2 randomness in the measuremer@hap. 6

Re real part,all chapters

Ry monogamy ratio,Chap. 2

R entanglement rangeChap. 2

0 density matrix,all chapters

00 initial state, all chapters

oM mixed state in Heisenberg notatioBhap. 4,5

0x|j conditional density matrix oX, given outcomg, Chap. 1,2,3
0x time-averaged density matrix &f, Chap. 7

S system label op, all chapters

S(o) von Neumann entropy of, all chapters

S(ollo) guantum relative entropyall chapters

S(A|B) guantum conditional entropy of given B, Chap. 1

S(A|IIP) guantum conditional entropy given a measuremeht” on B, Chap. 1
S(A|®@P) guantum conditional entropy given a POVM®?5 on B, Chap. 1
S(r) squeezing operatoChap. 3

b set of quantum historiesall chapters

S action, Chap. 4

Pauli matrices,all chapters
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Chapter 1

An introduction to quantum
discord

1.1 Introduction

There are two points at which quantum mechanics radicajpyade from the classical
picture of physics. The first, by far more popularized, isithpossibility to simulta-
neously assign values to all observables of a system (“Hbérg’s uncertainty princi-
ple”), which compels a probabilistic account of physicseBecond are the collective
properties of compound quantum systems. The most impaxample thereof are the
symmetries obeyed higentical particles which play a crucial role in the organization
and behavior of matter. Another example, perhaps equdéyast, is the existence of
several types ofjuantum correlation®etween different parts of a system. Although
the study of quantum correlations has met changing fortums® course of time, the
global trend has been one of growth in importance and attenti

The field originated in the 1930es and flourished in the 1950ksn it was still con-
sidered of merely foundational interest. Several physics that time believed that
guantum mechanics should be ultimately reduced to cldssieahanics, by virtue of
a local hidden variable model that might explain quantunetadninacy in terms of
ignorance of some relevant variables. Much effort was pagemnfirm or disprove
this intuition. Quantum entanglement, a form of quantunrelation, was soon rec-
ognized as a key concept that might tip the scales againtdugtion of quantum to
classical mechanics. Indeed, in the 1960es it was provéctiitanglement is tied to
the so-called nonlocality of quantum mechanics, as diselssthe seminal work by
John Bell. The discovery of nonlocality severely diminidhiee appeal of local hidden
variable models.

But not only could quantum correlations explain why quantaechanics is not re-
ducible to classical mechanics. In the 1980es, they werd asehe picklock that
opened the door to the quite opposite goal of reducing daksiechanics to quantum
mechanics. The theory decoherencehowed that correlations between quantum sys-
tems and their environment are essential to explain thegamee of classical reality
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from a quantum substrate.

In the early 1990es, the spring of quantum information th@oojected quantum cor-
relations out of the niche of foundational topics, for it veasidenly realized that quan-
tum correlations are powerful in affecting the way inforimnatcan be manipulated
and transmitted by quantum systems. In fact, quantum etives became the fun-
damentatesourceallowing for novel communicational and computational taakthe
quantum level: quantum computation, teleportation, deosking. Finally, in the last
decade quantum correlations have acquired a more cergtassh condensed matter
theory, as a relevant concept to explain so-called new glafsaatter.

Correlations reflect the fact that the information contdiimethe global state of a sys-
tem is not equivalent to the information contained in thelatates of its subsystems
taken separately. The ability to perform global operatithras jointly involve all sub-
systems or the availability of communication between ssetesys allows for ways of
encoding and decoding information beyond what can be aetiby means of sepa-
rate local operations on each subsystem. What characepizetum correlationsas
opposed to other (classical) types of correlations, is thentum nature of the global
operations and/or the type of communication involved.

Traditionally, quantum information theory has focused ataaglement, that distin-
guishes states that can be prepared by local quantum aperatnd classical com-
munication (LOCC) from those whose preparation requirebgllquantum operations
or, equivalently, peferct quantum communication. In thet fgears, a novel view of
quantum correlations has emerged, based on the fundameletélestowed omea-
surementsather than preparation. The essential ideatbatlations can be unstable
under decoherence induced by local measurentetded to the concept gluantum
discord

For pure states, entanglement and discord coincide, agdatieesimply related to the
algebraic structure of the states. The complex, but intiegesase is that of mixed
states, where entanglement and discord differ in nontrivégs. A better understand-
ing of this difference is important to clarify the quantunpest of correlations and
delineate the boundary between classical and quantumgshydoreover, discord has
prompted an extended research effort aimed at eluciddimgale of quantum corre-
lations in mixed state quantum information processingsThiapter provides an intro-
duction to quantum discord. | do not aim at a fully comprehenseview of the subject
(which can be found elsewhere, e.g. in [25]), but only at atstamd highly personal)
summary that may provide the reader with sufficient knowéettyunderstand later
chapters. Ir§ 1.2 | will introduce quantum discord by showing its genesithin the
theory of decoherence. 1.3 | will present a more information-theoretical derioati
of discord, which will allow to define classical correlat®rMoreover, | will discuss
properties of discord and classical correlations and fiessible generalizations to the
case of general measurements and multipartite systgrhel discusses the relevance
of discord in quantum information processing. Throughbetthapter, | assume that
the reader is familiar with the concepts of subsystems, &raand von Neumann en-
tropy, mutual information, entanglement, LOCC, entangiattmonotones. The reader
who is not familiar with these concepts can read the backgi@ection§ 1.5 where
they are explained.
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1.2 Einselection, local measurements and correlations

The fundamental idea by Zurek [26] was that entanglemenbighe only possible
form of quantum correlation. His pioneering work led to a @loview of quantum
correlations, based on measurements rather than preperatithough Zurek’s idea
was introduced in the context of measurement theory, it imoth wider applicabil-
ity. In measurement theory, one focuses on correlationsdeat a systen under
observation and an “apparatud”’ The process of measurement requires an interac-
tion between the two, leading to a correlated state. Cdioelsacan be regarded as a
measurement of a fixed observalife= } . f;[s;)(s;| only if the stategs;) of the
system become univocally correlated with correspondiatgsta;) of the apparatus.
Assuming thatS and A interact unitarily, entanglement between the two is eshét.
The S A state can be written as:

[Y)sa = Z ailsi)|az) (1.1)

where|s;) and|a;) are orthogonal bases 6fand A respectively. Contrary to appear-
ances, Eq. (1.1) cannot be seen as a measuremént tideed,|i)s4) reflects the
so-calledbasis ambiguityproblem that we already noticed discussing the EPR para-
dox. Correlations betweesi and A can be expressed in several bases, not only in the
preferred basispreferred basesrresponding to the eigenbasisiof To see this, con-
sider a change of basis finduced by a unitary rotatioll, |s;) = >_, U;;|5;). The

S A state can be rewritten as

[W)sa =Y ailisl3plan) = B;l35)1a;) (1.2)
9 J

whereg;la;) = >, a;U;; and theps; are fixed by the requirement that the) be

normalized. Thetia;) is a new (not necessarily orthogonal) basisiofif the |a,) are

sufficiently distinguishable, meaning that|a;) < 1,Vi # j, then correlations can be

expressed inthg;), |a;) bases, and the interaction can be fairly seen as a meastremen

of a different observable with eigenbasis given|By), viz., G = >_, g;|3;)(s;]. In

the extreme case where the state is maximally entanglee-(1/d, Vi), then for any

U the new basi$i;) is orthogonal, henc8 A are correlated in any possible basis and

their interaction can be seen as a measurement of an ayl{itatiner than a specified)

observable. What leads to the overcoming of the basis artpigaue isdecoherence

The (unavoidable) interaction with external degrees oédmn, usually collectively

denoted as called “environment”, has the effect of stahijizhe correlation in a given

preferredbasis. The effect of interaction with the environméns that different states

of SA become correlated with (quasi) orthogonal state§.ofs a result, the reduced

S A state evolves into an incoherent mixture,

osa =Y aiajlsi)ai)(sil (] = doa = D laillsi)(sil @ aidei|  (1.3)
17 7
Now correlations cannot be expressed in a different bakisy are unambiguously
fixed in the|s;), |a;) basis. This process through which the environment selguts-a
ferred basis is called environment-induced superselectieinselection Once einse-
lection has happened, the state of the apparatus can bdtednsithe preferred basis
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leaving it unperturbed: if we perform an orthogonal measwget ofA in the|a;) basis,
PA = |a;){ai|, then we havélpa (o) = o4 wherell# is the quantum operation
corresponding to the orthogonal measuremitit,o) = >, P/*oP/*. Moreover,os 4

is also stable under further interaction whwhose net effect o9 A is the same as
that of an orthogonal measuremén(the environment can be thought of as effectively
acting as a measuring device). Thus we are left with coioglathat are stable under
environmental perturbation and repeated measurement.

Einselection decreases correlations betwseand A, as measured by the quantum
mutual informatioriZ(S : A) (Eq. 1.91). Indeed, we have

(S A) =2 |oilloglail’,  T'(S:A) = |ail*loglail” (1.4)

Hence,Z(S : A) > Z'(S : A). However, the additional correlations presenbiu
have the drawback of being unstable under measurementragrd/wmonmental per-
turbation. This feature is recognized as a quantum effetdsdially, when locally
probing a subsystem we do not alter its correlations withrése of the system. The
instability of correlations under local measurement is gefyuquantum phenomenon.
The excess correlations that are disrupted by any local uneaent define a peculiar
kind of quantum correlation, that has been catie@dntum discord

To introduce its formal definition, let us now leave aside shistem-apparatus setting
and just consider a generic system living in Hilbert spHce® H . Assume first that
its state be in the form

09 = Zpij|€i>A<ei| ® |f5)B(f;] (1.5)

i.e. diagonal in a product eigenbagis) 4 ® |f;) 5. A state in this form is calledlas-
sically correlated stater simplyclassical-classical@'C) state | warn the reader that
the terminology “classical state” used in the quantum didéterature may be slightly
misleading. The classical aspect of these states residestrilicture of correlations.
From other standpoints, these states are not classicalarticydar, they do not cor-
respond to an embedding of a classical probability distiglouin a quantum setting,
unless one restricts to an observable algebra of local ipesacommuting with the
state’s eigenbasis. Much less can CC states be consideeeskeasiclassical approxi-
mation, i.e., do not correspond to a suitable quantum agpation of a phase space
distribution (like, for instance, coherent states thataften termed “classical states”
in the quantum optics literature).

For anyCC state, there exist (at least) one pair of local measureniefiten A and
QP on B that leave the total state — and correlations — unchangeeethit is imme-
diately seen that correlations are stable under local neamnts in thee;) 4 (e;| or
|f;)5{f;| basis: upon performing the projective measuremétits= |e;) 4 (e;| and
Q¥ = |f;)8(f;| then we obtain

HA(QAB) = 0%p> HB(Q%B) = 0%B (1.6)
where agairl“ (o) = Y, P/oP/ and analogouslyI® (o) = >, QFeQF. Asa
consequencg(A : B) = Z(II*(oap)) = Z(I1%(0ap)). If a state is not classical,
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then there is no pair of local measurements leaving the statkanged. Here we can
distinguish two cases. The first case is that of states tledtctassical” in one of the
two parties. States in the form

oy = ledaleil®@opi  of o= oa;®f)sfil (1.7)
i i

are calledclassical-quantun(C'Q) or quantum-classica(QQC) respectively. Such
states are “classical” in one of the partids ¢r A respectively), meaning that there
exist a local measurement on that party leaving the statks@melations invariant. It
is sufficient to consideP and( defined above and get

HA(QZQB) = 04p ) HB(Q?LXCB) = 04p (1.8)

The second case us that of states that are neittgenor QC' (nor, a fortiori, CC) and
hence are disturbed by any possible local measurement hathamd onB. Such a
disturbance always leads to a decrease in total corretatasymeasured by the mu-
tual information. Consider a general z and a (projective) measurement on pafty
PA = |e;) ales]. We get

dap =1"(0ap) = Z lei) a(ei| ® (eiloanle:) (1.9)

LetZ(A : B) be the mutual information before the measurement,Jafl : B)a the
mutual information after the measurement. We always have

T'(A: B)ya <Z(A: B) (1.10)
with equality if and only ifo4? is CQ:
T'(A:B)a =Z(A: B) < o0ap =1 (0ap) & oap = lei)aleil ® opy;

K2

(1.11)
The proof is postponed to the end of this section. The sanutsesbviously hold true
if a measurement?) is performed on party3.

1.3 Introducing quantum discord

1.3.1 The definition of quantum discord
Excess correlations

The minimal amount of excess correlations that are unatbbjdast in the process of
local measurement defines theantum discord If the measured subsystemAs the
quantum discord(B|A) is defined as

D(B|A) = nr}iAn(I(A :B)—T'(A:B)pa) =Z(9) —maxT'(A: B)ga (1.12)

1A
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If the measured subsystemiis the quantum discorfd(A|B) is defined as
D(A|B) = min(Z(9) —I'(A: B)ps = Z(0) —maxZ'(A: B)gs (2.13)
B s

States that are not CC have a non-vanishing value of efit{¢t| A) or D(A|B) and
they are termediscordantwith respect to measurements dror B respectively. It has
been proven [35] that discordant states are dense in thé attoixed states, which
a fortiori implies that almost all states are discordant Notice thiahtat all” refers
to a mathematical framework where all states are grantedl egpriori probability,
in the same sense that almost all pure states are entangleeality, decoherence is
ubiquitous and hence it is nontrivial to create states witligh amount of discord (or
entanglement) in the lab (i.e., in the lab probabilities laigesed in favor of classical
states).

Itis in general very hard to explicitly perform the maximipa required by the above
definition. So far, analytic solutions have been obtainelg €or finite-dimensional
2 ® 2[52, 53, 54, 55] an@ ® d [56, 57, 58] systems, as well as two Gaussian modes
in the continuous variable setting [59, 60].

Quantum generalizations of the mutual information

We have just introduced discord as the difference in thed tataelations before and
after a local measurement. The nadigcord though, stems from a different interpre-
tation of the same quantity which was also originally givgndurek: the difference,
or failure to agree, of two quantum generalizations of théualinformation. Let
pap be the joint probability distribution of random variabldsand B, andp 4, ps the
marginal distributions ofA and B. Classically, the conditional entropy as .4fgiven
B is defined as

h(palps) = h(pas) — h(ps) (1.14)
whereh is the Shannon entropy (Eg. 1.88). The conditional entroppsures the
residual uncertainty on variabl onceB is known. The classical mutual information
I(A: B) = h(pa) + h(ps) — h(pap) can thus be rewritten as

I(A: B) =h(pa) — h(palps) (1.15)

Zurek noticed that we obtain two different quantities whentwy to define a quantum
mutual information by generalizing Eqgs. (1.87) or (1.18arfng from (1.87) and fol-

lowing the conventional prescription of replacing probipdistributions with density

matrices and Shannon entropies with von Neumann entropéegist obtain the stan-
dard definition of quantum mutual informatidh(oap) = S(04) + S(04) — S(0aB).

It is less straightforward to “quantize” Eq. (1.15). Inde#dve start from Eq. (1.14)
and try to define a quantum conditional entropy as

S(AIB) = S(ean) — S(eB)

we obtain a quantity that is unsuitable as a quantum gemat@n of the conditional
entropy. In particularS(0a5) — S(op) can be negative. In fact, its opposite

I(A)B) = S(oB) — S(0aB) (1.16)
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is a well-known quantity in quantum information theory,ledlcoherent information
When A is a purification ofB and B is sent across a noisy channglA) B) measures
the amount of quantum information that can be reliably tngitted across the chan-
nel[116, 117]. Unless(A|B) < 0, no information can be transmitted. More recently,
another informational meaning 6f(A|B) has been found. It measures the amount of
shared entanglement needed to accomplish a protocol efrsetging [119] (more in
§1.3.5). WhenS(A|B) < 0, the protocol can be carried over with no entanglement
cost and additional gain df(A) B) units of shared entanglement. Also an interesting
thermodynamical meaning 6f( A| B) has been found in [131]) as the amount of work
needed by an observérto erased. When(S(A|B) < 0, erasure can be effected with

a net work gain.

To sum up,S(A|B) is a important and meaningful quantity, that, however, catve
interpreted as a conditional entropy. Conceptually, ciomail entropy should assess
the uncertainty about systerh once we have information about systén A satis-
factory quantum definition can be obtained by adopting anaijmnal approach and
recognizing that information abou? must be acquired through a physical process, a
local measurement process Bn Then we consider a measuremé&itt on B. When
outcome; is obtained, the state of is projected onto

1
oAl = ;TrB[Q?QABQ?] (1.17)

with probabilityp; = Trap[QF 045QPF]. Therefore, the average uncertainty abduyt
one we have measurég] is given by

S(AP) = ZPiS(QA\i) (1.18)

that we may consider as a measurement-dependent contlgiotnapy. We always
haveS(A|ITIP) > 0. To remove the dependence on the measurement, one canearonsid
the optimal local measurement dhallowing for the maximal reduction of uncertainty
on the state ofd. We thus defineS(A4|B) = mings S(A|II?). Now, a quantum
generalization of Eq. (1.15) is achieved as

T(AIB) = S(ea) — min S(AIII") (1.19)

J(A|B) measures the amount of correlations that can be extractaddeal measure-
ment, i.e., the amount of information abaditthat we can extract via a measurement
on B. The optimal measurement is the measurement that allowsptimal extrac-
tion of information. In generalZ and J have different magnitudes. In particular,
J(A|B) < Z(A: B). Infact, one can easily prove (the proof is postponed to tite e
of this section) that

J(A|B) =maxZ'(A: B)ys (1.20)

HB

i.e.,J corresponds to the (maximum) mutual information after doal measurement
on B. Therefore the quantum discoid(A|B) can be alternatively defined as the
difference betweefi and.7,

D(A|B) = Z(A: B) = J(A|B) = S(en) — S(ear) + min S(A[I®)  (1.21)
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Analogously, the quantum discofd( B|A) can be defined by just swapping the roles
of the two subsystems, hence by considering a measurdrieah systemA:

D(B|A) = I(A: B) — J(B|A) = S(ea) — S(eap) + min S(B|TY)  (1.22)

The pure state case

A very simple case is that of pure states. In the Schmidt faee{ 1.5.3) we have
[Yap) = >, Ailei)alfi) 5. Upon locally measuring! in the Schmidt basig®” =
|ei) (ei| or B in the Schmidt basi®” = |f;)(f;]), we get

S(BIY) =0,  S(AIP) =0 (1.23)
Thus we simply obtain
J(B|A) = S(0a) = S(es),  J(A|IB) = S(ea) = S(en) (1.24)
The discord is simply evaluated as
D(A|B) = D(B|A) = S(0a) = S(¢B) (1.25)

Then for pure states the discord is symmetric and it coirscitigh the entanglement
entropy.
Asymmetry of discord

In general, the discord is non-symmetric under the exchahtfee measured parties,
i.e. D(A|B) # D(B|A). SinceZ(A : B) = S(oan||loa ® op), we can write

D(BIA) = min (S(eazllea ® op) = S(I(045) 1" (24) © 5) )
D(A|B) = min (5(@AB||@A ® o5) — S(I1%(0aB)|loa ® HB(@B)))

In the special case in which the parties are symmetric= op, the discord and the
classical correlations are symmetric too and we can write
D(A: B)=D(A|B) = D(B|A), J(A:B)=J(A|B)=J(B|A) (1.26)

In the general case, a symmetric version of discord can beeatkfiy taking measure-
ments on both sided and B and looking at the mutual information before and after
the paired measurements:

D(A:B)= I 11}113 (Z(A: B) —T'(A: B)gans) = (1.27)
min (S(QABIIQA ®op) — S(I* @ I (0ap)||1% (04) ® HB(QB)))

This equation can be also rearranged as
D(eas) = min, (S(eas|Msgns (0an)) (1.28)

— S(oall*(e4)) — S (e2IIN” (02)))
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Proofs

Upon introducing a third partg' [47], originally in the state0), the projective measurement on
A can be realized as a joitC' unitary rotationU|e;) 4|0)c = |ei) alg:)c such that

danc = Y _les)ale| ® (ejloanler) ® 1g;)c (gl (1.29)

and we can obtaimp’y 5 as a partial trace ove?, o’y = Trc[o4pc]. Upon taking the partial
trace ofo’y 5 over B we get:

dac = Y _(eiloaler) les)aler| @ |g;)c (gl (1.30)

jk

We have the following relations:

S(@asc) = S(ean) (1.31)
S(0ac) = S(0a) (1.32)
S(oB) = S(eB) (1.33)

To prove (1.31), expangdap in its eigenbasigas = Y, Am|Um)aB(vm|. Then

dapc = Y Amleshaler] @ (ejlvm)(vmle;) ® |g;) o (gxl

jkm

- Z A77’L|u'm>ABC<u7n|7

where we defined the orthogonal vectprs,) asc = >, |ej) 4 ® (ej|vm) B ® |g;)c. To prove
(1.32), expanaga in its eigenbasiga = 3, pn|wn)a(wn|. Then

dac =Y pnleslwn)(waler) les) aler] @ g5)c(gr]
jkn

= Z)\n|zn>AC<Zn|7

where we defined the orthogonal vectprs) ac = >~ (ej|wn) |e;)a ®|g;)c. To prove (1.33),
just notice thato’s = op (a local measurement oA cannot alter the reduced state &).
Finally, recall that the strong subadditivity of entropy2(] implies

S(0dapc) +S(04) < S(ac) + S(0an) (1.34)

Hence, by using all above relations we conclude Fatur) < Z(0s5)-

Z(oas) = S(0) + S(0a) — S(dan) =
S(er) + S(da) — S(dap) < S(er) + S(daC) — S(danc) =
S(es) + S(ea) — S(eas) = Z(an)
In the second line we have used (1.33) and (1.34), in the timedwe have used (1.32) and
(1.31).

Let us now inquire when the above inequality is saturated,whenZ(oas) = Z(0'45) holds.
Clearly, the inequality is saturated only if the states introduced above saturates the strong
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subadditivity inequality. Now, it is known from Refs. [12tljat a hecessary and sufficient con-
dition for saturation is that there exist a decompositioft{of as

Ha = @H@L ®HQR

such that’y g is in the form

oaBc = Z Aa0aLB ® OarC (1.35)

[e3
where),, is a probability distribution . Sincg/, 5 is invariant under exchange dfandC, we
must also have a decompositidfc: = @, Har ® Har Such that

ohBc = Zua 9BaL ® QAaR (1.36)

[e3

wherep,, is a probability distribution. If both (1.35) and (1.36) Hplve must have:

dac =Y _ XalBla ® 0AC|a (1.37)

i.e. the state is separable betwe&6' and B. Moreover, because of the orthogonality of the
blocksa: we must havey s | = Ila0ac|alla Where

Mo =Y lear) aleat] @ |gar)c(gail, (1.38)
1
and)" _, lear)(eat] = Ia (we have relabeled thig;) as|en:) to explicitly distinguish those
belonging to different blocka). Therefore,
dapc = Y Aabilalea) leam| ® 0Bja ® |gat)c(gam] (1.39)
alm

Upon tracing out”' we obtain
04p =Y AalAlaleat) aleal] ® 05)a (1.40)
al
Upon undoing the measurement, we get,

oac = Y Aalijaleat) aleam| ® 0pja © |0)c (0] = (1.41)

alm

B Z)\QQA\Q 24 QB\Q & |O>C<O|

@

hence, by tracing ouf’, we obtain

04B =Y _ Aalaja ® 0Bla (1.42)

We can diagonalizep|, as
QA\oe = Z Vallual>A<ual| (143)
l



CHAPTER 1. AN INTRODUCTION TO QUANTUM DISCORD 11

where for any fixedy the|u.;) 4 are linear combinations of tHe.;) 4, and get

0AB = Z)\ayal|ual>A<ual| ® QB\a (144)
al

By just relabeling, we finally get:

0aB =Y pjlug)alu;| @ o (1.45)
J

Thuspap isaQC state. Thepg|; are equal for alj corresponding to the same bloak If some
block « is more than one-dimensional, then any measurement in thepaae identified by
attains zero discord. More in general, any measurefiest { P;} whose projectors commute
with the block structure[P;, I1.], Vj, o attains zero discord.

1.3.2 Classical correlations

The quantum discord(A|B) (D(B|A)) has been defined as the amount of excess
correlations inZ(A : B) that are unavoidably lost if a local measurement is perfdrme
on B (A). The correlations that are stable under repeated measutsmre given by
J(A|B) (J(B|A)) and they are calledlassical correlationsSuch a denomination is
justified by several considerations. First, Henderson aedta [27] derived formula
(1.19) while trying isolate the “classical part” of totalrecelations inZ. In particular,
they required that a good measure of classical correlagit(o B) satisfy the follow-

ing properties:

1. J(A|B) > 0andJ(A|B) = 0 for product states
2. J(A|B) is invariant under local unitarid$, ® Ug
3. J(A|B) is non-increasing under local operations
4. J(A|B) = Eg/(p) for pure states

that coincide with those of an entanglement measureg§(4e®5), except for poir.
Point 1. is obvious. Poin®. is required because a local change of basis should not
affect correlations. Poir& is natural because classical correlations should notésere
under local operations, but may be legitimately increasecldssical communication,
contrary to an entanglement measure. Painis justified by the observation that total
correlations for pure states are givenlfyl : B) = 2FE (), while the quantum part of
correlations should correspond to the entanglenigsito): thus classical correlations
should amount to the difference.

The classical correlationg (A|B) represent the maximum amount of correlations that
can be distributed among many parties by classical mean€QQAsSUMe 4 IS a
correlated state, and we haxeother system€’y, .. ., C,, initially uncorrelated with
AB. If we can use only LOCC among, (4, ..., C,, then the maximum amount of
correlations betweed and each of thé, C4, ..., C, is given by 7 (A|B), as proven

by Zurek [44]. In the limitn — oo, even allowing quantum communication among
the B,C4,...,C, does not change the picture. As a consequence, ordy if is
QC (classical inB) can we distribute the entirety of correlations with measured
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by Z(A : B) to additional partie€’;, ..., C,,. The classical correlations represent the
amount of correlations that can be shared among arbitnadgy parties. This result,
which pinpoints a limitation on the sharability of corretats, is in agreement with
other results. For instance, the no-local-broadcastiegrdm [43] states that onlyyC'
states can be locally “duplicated” (formally: given a statgs , there exists a state
oaarpp With Z(ocap) = Z(oas’) = Z(oap), that can be obtained froms s by
means of local operations, if and onlydf 5 is CC).

1.3.3 Discord for general POVMs

So far, we have defined quantum discord and classical ctioreeby only considering
projective (von Neumann) measurements. More in general,can allow for gener-
alized local measurements (POVMs), which is equivalentlmving the use of local
ancillas. POVMsp are described by a set of positive operatofs} with . F; = I.
To any POVM we can associate a quantum operation§4e&.4) by choosing Kraus
operators{.4;} such thatt; = AZTAZ-. Given a density matriy, the probability of
measuring resultis p; = Tr[p£;] and the post-measurement state;is= ) . A;oAl.
The definition of classical correlations and quantum didawe simply replaced by

T(AIB) = S(oa) — min S(A|8®),  D(A|B) = S(o5) — S(0az) +min S(4]0%)

whered” = { EP} is alocal POVM on3, and analogously faf (B| A) andD(B| A).
Actually, the minimization can be restricted without lodsgenerality to rank-one
POVMs, i.e., POVMs such that all; are one-dimensional projectors [65]. Indeed
assume thak’ can be refinediz; = 5~ EJ}. The refined post-measurement reduced
states oM arepy |, = p]%kTrB[gABEjk] with p;, = TrloasEji]. We have

1 Djk Pik Aljk
oa; = —TrploanEj] =Y “ETrploanEul /i =Y =™ = " prjjoain
Pj o Pi w Pi %

wherepy,; = %. Then we obtain
S(A[RP) = "p;S(ef) =Y iSO prjjoain)
J J k

By the concavity of von Neumann entropy, we get

S(AI®®) > pipr;S(eain) = Y pirS(0ajr)
Jk ik

Thus the refined POVM can only decrease the value of conditiemtropy. Since any
POVM can be written in terms of its eigendecomposition, threimum conditional
entropy is attained on a rank-1 POVM. Furthermatgd |®7) is concave on the set of
POVMs. IfEf = AEJ; + (1 - \)EZ ;, we have

Pj0Blj = APa,j0B|a,; + (1 — AN)Ps.j0B18.5, Pj = Da,j +D3,j
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Then by using again the concavity of von Neumann entropy we ge
S(A|@") > S(A|9P*) + S(A]@PF)

As a consequence, the minimum is attained on extremal pofritse convex set of
POVMs. In the case of rank-1 POVMSs, a necessary and sufficemdition for ex-
tremality is that the set aF; be linearly independent [126].

One may ask whether the minimization over all POVMs leadssmaificantly lower
value of the conditional entropy. In Ref. [61], it was showattthe difference between
the minimum over projective measurements and the minimusn aV POVMs is very
small (or the ordet0~3), at least for two-qubit states.

1.3.4 Measures of discord

Entanglementis regarded as a property of all entanglegkstaggardless of the specific
measure (entanglement monotone) used to quantify it. Irahdlogy, all discordant
states are characterized by a property — having excessumarttrrelations that are
lost under local measurements, independent of how they aasuned. Unfortunately,
in the literature this property is simply referred todiscord with a patent abuse of
terminology becausdiscord also designates a specific measure of nonclassical cor-
relations). Henceforth, we will follow the literature udeetworddiscordalso. With
this proviso, we may say that all discordant states have stisgerd, that may be as-
sessed vianeasures of discordParalleling the definition of entanglement monotones
(see§ 1.5.5), we may require measures of disc@@A|B) to satisfy a minimal set of
properties. If only one partyR) is measured, a convenient list of properties is given

by

1. Q
2. 0
3

. Q(A|B) is non-increasing under local operations4n

=
>

( > 0andQ(A|B) = 0 forall CQ states
(

)
A|B) is invariant under local unitaridés, ® Upg
)

4. Q(A|B) = Eg(p) for pure states

If both parties are measured, we ought to replace 1. With Q = 0 for CC states
and3. with 3("): Q is non-increasing under local operations.
Among the proposed measures of discord, we havesiaéve entropy of discorfR9]

Ds(A|B) = infy,.cqeS(0anlloqe) (1.46)

defined as the minimum statistical distance between a gtael a classical sta,.
Upon considering the geometric distance induced by theetremm (instead of an
entropic distance) one obtains a widely used measure abrdisalledgeometric dis-
cord[29]

Dg(A|B) =infy,.cqelleas — eqell3 (1.47)

Surprisingly, it was proven in [30] that the same measureeaigetric discord can be
obtained upon minimization with respect to local (orthoglpmeasurements

Dc(A|B) = infralleas — 1 (0an)|f3
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However, the geometric discord does not satisfy 3), as pravg31], and, hence, is
considered by many Authors as a bad measure of quantumatione.

Another measure of discord is based on the fact, first higteidjin [40], that discor-
dant states are such that any local measurement probingstesrsnecessarily creates
entanglement between the system and the external apptratusalizes the measure-
ment. Thus generic quantum correlations carabvatedinto entanglement [41].
The entanglement created in the local measurement can b®imedaby the negativ-
ity. Upon minimizing the system-apparatus negativity aaépossible local measure-
ments one obtains a measure of quantum correlations cadigdtivity of quantum-
nesq41, 42].

Before closing this paragraph, let us comment on 3. If theswesl party isB, often a
local operation orB can create discord [46]: for example considér@ 2 system and
an operation\? acting as

AP10)B(0| = [0)5(0],  A1)B(1]=[+)5(+]

(as usual|+)p = %(|O>B + |1))). This map can be realized by a introducing an
ancillaB; in the statd0) 5, , performing a unitary/, on BB; such that

Ual0)5(0)B, = 10)5(0) 5, Ual)B|0)B, = |+)B|1) B,

and finally tracing out theé3,. UnderA the CC state

%(|0>A<0| ®10)5(0[ + [1)a(l] ® [1) 5(1]) (1.48)

is mapped into the state
1
510040 @ [0)5(0] + [1)a (L] @ [+)B(+]) (1.49)

that has non-vanishing discofd(A|B) (while D(B|A) = 0). It should perhaps not
come as a surprise that qguantum correlations are creatdaaftjuantum) operation
is performed on the system whose classicality is tested. 0Ofse, local operations
do not increase the total amount of correlations (in thiec#sere is a loss of cor-
relations as measured by the quantum mutual informatiog)cdrelatingB with a
local ancilla that is later discarded, some of th8 correlations become inaccessible
to local measurements dB, so that not all correlations are classical any more. The
creation of quantum correlations occurs at the price of a tdslassical correlations
(this phenomenon is at the root of quantum data locking [I24), Nevertheless, sev-
eral Authors consider the increase under local operatisasségn that discord cannot
be considered as a true measure of correlations, but onlyreesaure of the quantum-
ness of the state. Recently, Gessgieal.[45] have proposed a different way to define
quantum correlations, based on looking at the operator &ithamk of the state. Given
local baseqg 4;} and{B;} of Hermitian operators, any state can be written as

0aB =Y _ M;;A; ® B, (1.50)
ij
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Via the same reasoning used for the Schmidt decompositiparefstates, we can find
rotated base$E; } and{F}} such that

N

OAB = Z N ® F (1.51)

i=1

wheren; is called opersator Schmidt rankC' states are such that < min(da,dg).
It can be proved that discordant states that can be locadted fromCC states also
respectr, < min(da,dp) and are zero-measure in the set of all dicordant states. A
measure of quantum correlations that does not increase lowdg operations can be
obtained by a suitable function of,.

1.3.5 Monogamy of discord and Koashi-Winter relation

It is well known that entanglement cannot be shared among pariies: if two sys-
tems are maximally entangled, they cannot be entangled avithird system. This
property is callednonogamyand it is expressed by general inequalities of the type

M(A:B)+ M(A:C) < M(A: BC) (1.52)

where M is an entanglement measure (§ek5.5). In general, contrary to entangle-
ment, discord is non-monogamous. This was revealed by atfedies [33, 32, 107],
including my work with Paolo Giorda and Arianna Montorsi F10to be presented in
later chapters. By means of a general argument, Stredtsal: [34] later proved that
monogamy is a property of strictly entangled correlatid®snsider a generic measure
of discordQ(A|B) satisfying properties 1., 2. above and

5. Q(A|B) isinvariant under addition of a local ancilla in a pure stateboth sides

which all meaningful measures of discord satisfy. Assunmthér thatQ is monoga-
mous,

Q(A|B) + Q(A|C) < Q(A|BC) (1.53)
We can prove tha® must vanish on separable states, and hence, can be seenas a me
sure of entanglement. Letuic = >, pi|vi) a(¢i] @ |¢i)c(¢:| be a general separable
state. We can extengd, ¢ as

0o = > pilthi) Al @ [i) (| @ |¢:) o (@il

The quantityQ(A|BC) is equal foroapc ando’y g = >, pilwi) A (i ® i) B (i]| ®
|0)c (0] becauseapc and ¢/, 5 are related by a local (0AC) unitary and we as-
sume 2). Moreover, since by 5. adding ancilfadoes not alter@, we must have
Q'(A|BC) = Q'(A|B). Hence because of the monogamy relation (1.53) we must
have

Q'(A|B) = Q(A|B) + Q(A|C)
But Q'(A|B) = Q(A|B), whence we infe@(A|C) = 0. Sincepsc is a general
separable state) must vanish on separable states. Even if we discard assampti
5., we can show tha® must vanish for separable states by making a much weaker
assumption:
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6. Q(A|B) remains finite for a fixed subsystem dimensi@{4|B) < f(da) <
oo (d 4 is the subsystem dimension afich generic function).

Let o4 be a general separable state. It admits a symmetric extensig, ...z, such
thatoap, = 0ap,Vi € {1...n}. Because of 6.Q(A|B; ... B,) must remain finite
for all n, including the limitn — co. Assuming that) is monogamous, the relation

Q(A|B, ...B,) > nQ(A|B), Vn

must hold. Thus we must have(A|B) = 0, lest the last inequality be violated for
sufficiently largen.

Although monogamy, Eq. (1.53) does not generally hold foasuees of quan-
tum discord, it is possible to find “hybrid” monogamy relatsoinvolving a measure
of discord and other information-theoretical measurese fost well-known is the
Koashi-Winter relation [39] that involves the quantum digtand the entanglement
of formation for different partial traces of a tripartiteast o 4 so. The relation can be
expressed as

Er(0ap) < D(A|C) + S(A[C) (1.54)

whereD(A|C) is evaluated with respect to all POVM measurement§’oince
D(A|C) + S(A|C) =Z(A : O) = T(AIC) + S(eac) — S(ec) = S(ea) — T(A[C)

Eg. (1.54) can be seen as a monogamy relation invol#ipgo.4 ) and the classical
correlations7 (A|C),
Er(0ap) +J(AIC) < S(0a) (1.55)

If the ABC state is a pure tripartite sta¢) 4 ¢, the above relations hold with equal-

ity,
Er(eap) = D(A|C) + S(A|C),  Er(eas) + J(A[C) = S(ea)  (1.56)

Let us prove (1.56). By using/(A|C) = S(0a) — mingc S(A|C)ec, We have to
prove
Er(0aB) = lgicnS(A@C) (1.57)

Letus consider an ensemblg |¢;) ap for oap (i.€.,0a5 = >, pi|¢i) aB(¢:|) achiev-
ing the minimum of the entanglement of formation,

Er(oaB) = ZPiS(TrB[|¢i>AB<¢i|])

There must exist a POVM'© = {E€} onC such that
Tro[ES [Yase)(ascl] = pildi) ap (¢l

(consider e.9.E; = |1;)c (| where/pilvi)c = ap(¢il¢)anc). If we neglect
systemB and apply’“ on o 4 we get outcomewith probabilityp;, leavingA in the

conditional state 4); = Trg[|¢:) ap(¢:|]. We have

Er(oac) = ZpiS(TTBH@MB(@H) = 5(A[¥) < min S(AleC)  (1.58)



CHAPTER 1. AN INTRODUCTION TO QUANTUM DISCORD 17

Conversely, consider a POVNF® = {EC} achieving the minimum of5(A|®%).
From the above discussion, we can také to be a rank-one POVM. Let us apply
U 10 [Yapc)(Wapc|. Since¥® is rank-one, we obtaiirc[ES [Yapc) (Yasc|] =
pi|#:)y ap{(®i|. Hence we obtain an ensemHle;, |¢;) ac} for p45. We must have

S(A) =3 piS(Tralloian(oil]) < mind_ piBr(|vi)an) = Er(eas)

(1.59)
From (1.58) and (1.59) we get the desired result, (1.57.4B¢ is not pure, we can
always purify it withoape = Trp[|Yasep)(Yasepl|]- Upon regarding systems
andD as a single systeifi’, we get

Er(oap) = min S(A|2")
(I>C

Sinceminger S(A|®C") < minge S(A|®Y), we get

: C
Er(eap) < min S(A|27)

hence retrieving (1.55).

Eq. (1.56) can be also used to obtain an operational intextpye of discord as the total
entanglement cost in the quantum state merging protocdl [@& latter is a scheme
where two partiesA and B are required to swap correlations with a third syst@m
via LOCC. More in detail, starting from a pure state,z¢), the goal is to create a
state|vp pc), whereB' is a local ancilla onB’s side. In general, LOCC oA andB
are insufficient to perform the task, and some prior shar¢éahghement entanglement
(in terms of the asymptotic number of singlets) is givendgyl|B). If S(A|B) < 0,
not only does no shared entanglement have to be spent, butdteeol can be carried
over obtaining in return an additional amounb(A|B) of shared entanglement. At
the end of the protocol, the initial entanglement betwdemdB presentinyapc) is
completely lost. If we measure such entanglement with thaghement of formation
Er(A: B), then the total loss ofl B entanglement in the state merging protocol is

Ep(A: B) — I(A)B) = D(A|C) (1.60)

where equality comes from Eq. (1.56). Thus the discOfdd|C) of a statepc
acquires an operational interpretation as the total eteament cost of performing state
merging betweer and a third partyB holding the remainder of a purificatiot 4 s¢)

of pac.

We mention for completeness that a different interpretatibdiscord within a noisy
version of the state merging protocol has been given in [B@] consider state merging
betweenA and B whereA is subject to a generic decoherence process, modeled as a
quantum operatio®* acting onA. ®4 can be effectively realized by coupling to

an external ancill&’ in some pure stat@) through some unitary” and then tracing
outC. After action of®“, it can be readily computed that

S'(A|B) = S(dap) — S(c) = S(B|@*)
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hence the additional entanglement cost due to decoherandésogiven by
S"(A|B) — S(A|B) = S(04) — S(0an) + S(B|®*) (1.61)

The minimum additional cost over all possible decoherenoegsses is just the discord
S(0a) — S(0ap + minga S(B|®4) = D(B|A). Since several quantum communica-
tion protocols (including teleportation and dense coduay) be derived from the state
merging protocol, discord also measures the additionargment cost to perform
such protocols in the presence of noise [82].

1.3.6 Multipartite setting

To conclude this section, we analyze how the previous digfititcan be extended to a
multipartite setting. A state of anpartite system can be said to be classical id
parties identified by C {1,...,r} if it has the form

o= Y, D phadeslen] ® @ lej ) e,

15 €C juir..jrEC

®st+1®"'®gjr

(1.62)
In this case, there is asrtuple of local measurements on subsystéfigaving the
state (and correlations) unchanged. Such local measutsitem be specifieﬂ’f@ =

lej, elej, | with e =1,...,s. Astate is classical in all parties if it is in the form
o= Y Pgelenhilen @ @leg)rley,| (1.63)
jl"'jT
i.e., diagonal in a product eigenbagis;, )¢} with ¢ =1,...,r.

A multipartite version of discord can thus be obtained uponsidering ther-party
statep; . ) and the multipartite extension of the mutual information,

I(l:~~~:T):S(Ql,,,r||gl®"'®9r) (1-64)

which in classical information theory is called “total imfoation” and can be expressed
asI(1:---:r)y=H(1)+---+ H(r) — H(1...r). Upon extending equation (1.28)
to r parties undergoing local measuremdiits . . II”, Rulli and Sarandy [36] define a
symmetrized multipartite discord as

D(:eir) = min (S(or. |- 91 (01...)) (1.65)
—S(eil (en) =+ = S (eI (2.)))

A different route to define the multipartite discord was take [37]. Classically, the
total information (like in ther = 2 case of the bipartite mutual information) can be
re-expressed by using conditional probabilities, ., = p1j2...pP23...,- - - - pr @nd in-
troducing conditional entropies. In tle= 3 instance we have

I(A:B:C) = H(B) — H(B|A) + H(C) — H(C|AB)
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This formula can be “quantized” by introducing local measoentd14 = {P/} on
A andIl? = {QJB} on B, with post-measurement reduced density matriggs; =
p%,jTrAB[PiAQ?QABCPiAQjB]y 0Bli = iTrAC[PiAQABCPiA]- We can then define and
defining a tripartite version of the classical correlatioghas

J(ClA: B) = max [S(op) = S(BII) + S(oc) = S(CIM 7)) (1.66)

whereS(B|TII?) = 3. piS(0p:), S(CIA,TI5) = 3, pi;jS(ocyi;)- The tripartite
discord can then be defined as

D(CIA:B)=I(A:B:C)—J(C|A: B) (1.67)

By following the same procedure, one can define classica¢lzdions and discord for
r > 3.

1.4 Discord in quantum information processing

Discord received little attention until it was suggestedttit might be regarded as a
resourcefor quantum information processing, not unlike entanglemén particular,
interest in discord boomed when some evidence was giventf@éé]discord, rather
then entanglement, might be the essential type of quanturalaton enabling quan-
tum speedup in a relevant protocol of mixed-state quantunpeation, the so-called
power of one qubitnodel [141]. On one hand, the question whether some kind of
guantum correlation (and which then) can be considereddbece of the quantum
advantage in the power of one qubit model (and by extensidinarcomplexity class
DQC1 where it belongs) has not been fully settled yet. On therchand, the signifi-
cant research effort dedicated thenceforth to discord k@ased to highlight a precise
role of discord in several quantum information processagks that are unrelated to
computation. In particular, discord can be quantitativellated to the performance
of a variety of protocols that effectively exploit the fabt a part of correlations are
hidden to local measurements. These protocols make ussadfrdant states, where
global measurements display advantage in performancdasarmeasurements and
classical communication. In what follows we shall brieflgdiss the potential role
of discord in mixed-state quantum computations, reviewthrey power of one qubit
model, and then succinctly list a few information procegsasks where discord leads
to a performance enhancement.

1.4.1 Discord and mixed-state quantum computing

Quantum computation consists in encoding information iruanqum state and sub-
sequently applying some logical operations (for instamgeges in the circuit model,
measurements in the measurement-based model). If theneefficient classical de-
scription of both the states and the operations appliedgtlatum process can be
efficiently simulated by a classical computer. The classleacription is efficient if it
scales at most polynomially with the amount of qubits, areddlassical simulation is
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efficientif it has at most polynomial overhead with respeche quantum computation.
In a seminal paper [138], Jozsa proved that a quantum cotmputzan be efficiently
simulated if there is a fixed, independent of the total number of qubits such that
the states at all steps in the computationzaldocked meaning that the qubits can be
partitioned intoK blocks such that

0=01R0® QoK (1.68)

and each block contains at mgstjubits. In the case of pure statgshlocking is vio-
lated only ifn-partite entanglement is created during the computatitverern grows
without bounds with the input size. Thus, exponential sppadquires the generation
of entanglement. This is intuitively appealing, as thenedfficient classical descrip-
tion of entangled quantum states - the information requioespecify the state scales
exponentially with the amount of qubits. In a following syuttidal showed that expo-
nential speedup demands that the maximum Schmidt rank aalldsigartitions scales
exponentially. Otherwise, one has an efficient representaf the state as a matrix
product state [16] which allows to efficiently simulate theaqtum computation on a
classical computer.

In the case of mixed states, the violationgeblocking does not imply entanglement:
even fully separable states need notzbklocked. As a consequence, entanglement
is not a necessary condition for exponential speedup in drstate quantum compu-
tation. In fact, a mixed separable state has in general the s@apacity for coding
information as a general mixed state (note that mixed sbpmsiates have a finite
volume in the space of density matrices) and correspongihgiay not have an effi-
cient classical description. Accordingly, Jozsa [138]rded it plausible that separable
mixed states may have the same computational power as ¢erieed states. With the
same reasoning used in the pure-state case, Vidal showeekiienential speedup in
the mixed-state case requires that the maxinaperator Schmidt rankver all bipar-
titions scales exponentially. Otherwise there is an efficiepresentation of a state in
terms of a tree-tensor network, implying that an efficieasslcal simulation is possi-
ble. An exponential scaling of the operator Schmidt ranksda® imply entanglement,
though, but only the presence of (possibly unentangleden eilassical) correlations.
A prominent example of mixed-state quantum computing paités the power-of-
one-qubit model. Even if it is not computationally univdrstacan evaluate the trace
of a unitary matrices with an exponential speedup over tisé-kown classical algo-
rithm (it is thus believed, yet not proven, that it affordsexponential advantage over
classical algorithms). This property can be put to use ifougrproblems, including
estimating the density of states to the decay of fidelity iaatlc systems. We have a
set ofn + 1 qubits, the first (control qubit’) initialized in the pseudo-pure state

(1 —-a)le + «|0)c(0] (1.69)

and the remaining ones (target qubity initialized in the fully mixed statd. Con-
ditioning on the state of’, a unitaryU € SU(2") is applied toT, i.e., the system
undergoes a unitary evolution represented®y: (0| @ Iy + |1)c (1| ® U. The initial
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C'T state evolves into

1 o
ocT = WHC®HT+W[|O>C<O|®UT+|1>c<1|®U] = (1.70)
1

= a1 (00l ® (Ir + UM + 1) (1] @ (I + aU)]

The final reduced state @f is

1 1 ~Tr[U] 1 1 ar
S 2n -
ec =73 < ZTrU1] 1 ) 2 ( at* 1 > (1.71)

wherer = 1 + it; = = Tr[U]. This allows to evaluate the trace Gfby measuring
o, ando, onC, as

Tr[awgc] = %TR, Tr[O’ygc] = %T[

The estimation error depends only on the purity of the cdgubit « and the number
of trials, but is independent of the size of the problemlt is conjectured that there
is no classical algorithm that can efficiently solve thistgeon. Datta and Vidal [144]
showed that the maximum operator Schmidt rank in the moddésexponentially,
strengthening this hypothesis. This implies the presehceroelations, but not neces-
sarily entanglement. It is immediate that the control qubis always separable from
the target qubit§™. Therefore there can be entanglement only amon@'thebits. The
negativity A’ was used to measure entanglement across any bipartitengglitcluding

C. Fora < 2% N is bounded by a constant independentpénd hence vanishes for

n — oo. Fora < 2% N = 0. In summary, only multipartite entanglement between
theT qubits is present. The seemingly marginal role of entangterim the model has

led to propose that the speedup may be due to nonzero quargoondiin the model.

For a typical unitaryU, chosen according to the Haar measure, we can evaluate the

discord betweefi” andC (C is measured) in the final state [66, 69]:
D(T|C) = S(oc) — S(ect) +xﬁicnS(T|HC) (1.72)

Here | sketch the case = 1. Consider the measuremeRj = 129 with oy =

cos ¢o + sin ¢o,,. The reduced conditional density matricesIohfter the measure-
ment are

TrelPyecrPs] = — | 55 ST (1.73)

1 (H_TiewRe(UHe—me(U))
P+

with py = 1/2[1 & (cos ¢7r + sin ¢77)]. Their eigenvalues are

1 1=+ cos(bk — @)

= —
k271 4 (cos ¢tr + sin ¢7y)

where we have used the eigendecompositioti off = 3 e%316,)(0;|. For a typical
U and largen, thed, are uniformly distributed iff0, 27] and we getr, 77 < 1, hence
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pr~1/2, A\ = 5= (1 & cos(f, — ¢)). The results are approximately independent of
¢ and we can choosg = 0. The conditional entropy df givenC' is computed as

sr (1 i) log(1+ e)/2") + (1 — ci) Tog(1 — c4)/2")
k

S(Tms) ~ —

SinceS(ocr) = n, S(oc) = Hg(l’Q‘T‘) ~ 1 we finally find D(T'|C) ~ 2 —loge. For
generaky, one finds

D(T|C) ~ 2 — Hy(> ;0‘) —log(1+V1—0a2)— (1—V1—a2)loge (1.74)

Thus, for atypical unitary U there is non-vanishing discord betwe@€rand T for all
values ofa. This supports the hypothesis that quantum discord isweebin the quan-
tum speedup offered by the model. A contrary position wad bglDakicet al, o
proved [49] that for unitaries such thét = ¢ UT the quantum discord(7'|C) ex-
actly vanishes. However, Datta and Shaji [47] later notitteat discord among the
parties can be created during the computational process ¥teas to be realized by
subsequently applying a series of (one and two-qubit) gates- W, ... W, sug-
gesting that for all unitaries discord is created duringdbmputational process. The
idea that quantum discord must be created if the computaitmoffer an exponen-
tial speedup is further supported by a completely genegairaent by Eastin [68]. He
devised a general procedure and showed that computatitinslagsical states (states
with vanishing discord among all qubits) can be efficienitpdated by a classical
computer. Such a result, though strong, only concernslg@assical state. Therefore
it does not suffice to qualify discord as a resource for quartamputation, because
it remains to be shown that a minimum amount of discord (digtuainimum scaling)

is necessary to achieve exponential speedup.

At the time of this writing, the role of discord in quantum cputation is still contro-
versial. Following a penetrating discussion by Jozsa [188]ny lean to the opinion
that it is meaningless to look for a single “source” of the@xgntial speedup in quan-
tum computation. In particular, there is no need to assetiet speedup to a measure
of correlations (entanglement or discord). In principlerthare several different ways
to classically describe a quantum computational procegsertding on how states and
operations are represented. For instance, one can repstats as amplitudes (in a
given basis) and reproduce classically the quantum ewniwtith respect to this de-
scription. Unless the states are sufficiently entangldd \tields an efficient classical
description of the quantum computation, and no exponespieédup is possible. An
alternative formalism is the stabilizer formalism [140]heve one considers the Pauli
group onn qubits and classifies states according to the subgroup etsrtieat leave
them invariant. In the stabilizer formalism, one can idigndi classX’ of states that
have a polynomial-sized stabilizer description. In thisifalism, computations admit
an efficient classical description whenever computatiensain inX', regardless of the
amount of quantum correlations among qubits. Thug(X) stands for the property
of a state that does not have a polynomially sized stabiliescription, then one can
say thafp(X) is responsible for guantum-computational power.
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1.4.2 Discord-assisted information processing tasks

Quantum discord has been found to be qualitatively, andiimescases quantitatively
related to “quantum enhancements” in several quantumrmdtion processing tasks
(by “quantitatively” | mean that discord proves a valid figwof merit to measure the
quantum advantage of these protocols).

Discord (as a property) is arguably a resource for protoocblemote state prepara-
tion [70], whose efficiency can be quantified, at least in saages, by geometric
discord. Discord (as a property) is needed to perform qumastate discrimination of
nonorthogonal states [76]. Discord (as a measure) is gatingly related to the quan-
tum enhancement of different tasks involving the discrition of local channels: the
performance gain of quantum illumination [128, 74], thesivity enhancement of
guantum metrology schemes [127, 75], and the advantagelodlgbver local measure-
ments in a scheme involving local encoding of informatioh][7Discord (as a mea-
sure) quantifies the amount of correlations that can be @Wkald” in the phenomenon
of locking of classical correlations [72]. Discord (as agedy)is necessary to perform
quantum key distribution, sinc€C' correlations between the communicating parties
can be locally duplicated by an eavesdropper without diggrthe system. Further-
more, discord (as a measure) is an upper bound to secuity irahoise-assisted key
distribution protocols [73]. Finally, discord (as a progghas a deep thermodynamic
meaning [78, 77, 79]. The presence of discord implies thatt@jlstrategies involving
joint coherent operations allow for the extraction of momkthen purely local strate-
gies in different settings.

Intuitively, what groups all such cases together is a nasital effect where global
measurements are insufficient for a better extraction efinétion than local measure-
ment assisted by classical communication. Discussing ehtfese cases is outside
the scope of this chapter, and | shall just describe a simg@enple, an instance of a
quantum protocol which | consider the most convincing exenopa discord-assisted
process: quantum locking of classical information.

As we explained above in detail, some correlations are noéssible to local
POVMs, as if they were “locked” in the global state. The asitde correlations are
measured by thaccessible informatigrdefined as

I..(A:B) = max I'(A: B) (1.75)

whereg’, z = I' ® 1% (pap). For aC(Q state, the accessible information just coin-
cided with the classical correlatiods..(4 : B) = J(A|B). The amount of locked
correlations is given b (A : B) — I...(A : B), that coincides withD(A|B) for a
CQ state. DiVincenzet al.[124] discovered that the locked correlations can be “un-
locked” by allowing a small amount of classical communigatbetween the parties.

If sendingn bits of classical communication, the parties can incr&abg at mostn
bits, but they can increadg.. by n’ > n bits, unlockingA = n’ — n bits of informa-
tion. This is a purely quantum phenomenon that has no clElssi@logue. 1A and B
originally share a&C'Q) state, we havé\ = D(A|B) as proved by Boixet al.[72]. Let

us illustrate this with a simple example.
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Party A aims to sent a classical message of lengtifa bit string of lengthm to a
receiving partyB. The message can be encoded in a string @fubits

la)a = 814, --.514,, (1.76)

whereA; ... A, are A’s qubits ands;, = 0,1. A can copy the string and send it to
B via a quantum channdl. If all strings are produced with equal probability, tAé3
state is

1
oy = om Z laya(al @ o (1.77)

whereo, = ®(|a)p{al). The maximal information thaB can gain aboutl’s message

by making a POVM on his qubits is given I QZ;(A : B) = J(A|B) < m. Letus
consider an ideal channel for which we haxve= |a) z(a| and hencdéSZ;(A :B) =
JO(A|B) = I(A : B) = m, i.e., the message can be perfectly decoded. In order
to improve the communication security,can encrypt the message with a classical key
K. Before sendindu) to B, she applies a unitad on |a) depending on the key. She
can choosé/;, to be such thal/;|a) are mutually unbiased bases for &llIf the key

is just one bit, thed B state is

1
oy = g 2 O lask)ala k@ Urla)p(alU] (1.78)
a k=0,1

whereU, = I andU; is such that/;]a) is maximally unbiased with respect (o).
After the encryption, we now havBV) (A : B) = m, I\0M(A : b) = JWD(A|B) =
m/2. Thereforem/2 bits of information are now locked. They can be unlocked by
sending only one bit of information. Indeed Afcopies and sendk to B, their state
becomes

1
ok = gt 2 2 la k) afa, b @ Ukla) s (alU] k) (k] (L.79)
a k

Now B can perfectly decode the message sifi€€(A : B) = I,E%?;(A : B) =
J@(A|B) = m + 1. Thus by sending only. = 1 bits of information,4 can effec-
tively increases the accessible correlations’of m /2 + 1 bits, unlockingA = m/2
bits of information. The amount of unlocked correlationgdgiivalent to the discord
of the encrypted statd)") (4| B).

1.5 Background on quantum correlations

1.5.1 Definition of subsystems

The statement that a physical body is moving is incompletkss we specify which
reference frame we are considering. Analogously, therset¢that a quantum state is
correlated (e.g., entangled) must be complemented withduinformation. In order
to define and assess correlations a prior definition of howdts system is divided
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into two or more subsystems is necessary. This divisiongets‘reference frame” for
correlations, calledensor product structurelndeed for a quantum system, a division
into subsystems is expressed by a tensor factorizatioreddibert spacé{ intor > 2
factors:

H=H10H2® - -QH, (1.80)

to which a tensor factorization of the observable algebreesponds,

End((é??—[i) o @End(%i) (1.81)

In general a large variety of tensor factorizations are iptesfor any system [4]. First,

one has to specify the dimensions of the subsystems. Asdwenidibert space has
dimensiond. Then the possible choices of the subsystem dimensions areeito-one

mapping with the possible ways to factorize

Fa={FcN/ [[ m=d} (1.82)

meF

Any factorizationF = {m; < ms < ... < m\Fl} € Fy of d provides a possible
choice of the subsystem dimensions.

Second, givert’, one has to specify which are the product vectorg/inChoose any
orthonormal set of vector§i)},7 = 1,...,d. By using|F| indicesi; € {1,...,m;}
we can relabel vectors as

and identify the sef|i1i2 .. .i,)} as an (orthonormal) set of product vectors:

Upon rotating the given set by € U/(d), we generally obtain a different set of vec-
tors. However, that are two kinds of unitary operators teawvé the set of product
states invariant: i) factorized unitaries in the folih = @’_, U; where eachl;

acts only onH; = span({i;)}) ii) “exchange” unitaries that permute the tensor
factorsHy,...,H . Thus possible choices of product vectors are parametliyed
U(d)/(U(mq) x---xU(m,) xP) where’B is a discrete permutation group. A choice
of F, together with a choice of the product vectors, identifiesaor product structure
(TPS) onH.

What the meaningful TPS are depends on the context. In maggca TPS may natu-
rally reflect the fact that the degrees of freedom (DOF) ofystem are naturally split
among different physical entities. For instance, if we hiave spins (e.g. two atoms,
neglecting the orbital DOF), then the four DOF of the joinstgyn can be naturally
divided into two pairs, each pertaining to one spin. Coroeslingly, we identify a
natural TPS in the total Hilbert spagé = C* = C? @ C?, that also induces a tensor
factorizationEnd(C*) = End(C?) ® End(C?) of the observable algebra. More in
general, a partition of the DOF into separated sets may depermour ability to mea-
sure and manipulate the system [5]. If the DOF can be splitiingets that can be
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separately, but not jointly addressed, then the actiortssbacan perform on the sys-
tem have a factorized form; ® --- ® A,, and correspondingly the Hilbert space has
a meaningful tensor factorizationa§ ® - -- ® H,. .

1.5.2 Correlations and mutual information

Upon fixing a tensor factorization, and hence a definitiorubsystems, we are able to
define correlations. IH = H; ® - - - ® H,., a state represented by the density madrix
is uncorrelated whenever it is in the product form:

0=01® Qo (1.85)

else itiscorrelated For a pure state represented by vector, the above definiiuces
to

) = [Ph ® - @ [¥), (1.86)

Correlation implies that the subsystems are not statlstizadependent. In classical
information theory, a general measure of statistical ddpeoe is thenutual infor-
mation Letp,p be the joint probability distribution of random variabldsand B,
andp 4, pp the marginal distributions oft and B. The classical mutual information is
defined as

I(A: B)=h(pa) + h(ps) — h(pag) (1.87)
whereh(p) is the Shannon entropy
h(p) = pilogp; (1.88)

I(A : B) vanishes only ifA and B are independenjap = paps. The quantum
analogue of this function can be obtained by replacing guibadistributionsp with
density matricep and Shannon entropiégp) with von Neumann entropieS(p),
where

S(e) = —Trleloge] (1.89)

Marginal probability distributions are to be replaced witduced states

04 =Trgloas), o = Tre[oaB] (1.90)

This prescription has its origin in a classical study by Sohaoher [115], where he
proved the quantum noiseless coding theorem: jugf @s represents the number of
bits (asymptotically) required to encode a signal represkbyp, the von Neumann
entropyS (o) represents the number of qubits necessary to represenhtugquaignal
represented by. Starting from (1.87) and applying this prescription, weaii the
quantum mutual informatiofi18]:

Z(0aB) = S(0a) + S(0a) — S(0aB) (1.91)
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This quantity vanishes if and only if the state is uncoredad sz = 04 ® op. Indeed
Eqg. (1.91) can be rewritten as

T(0aB) = —Trafoalogoa] — Trploplog o] + Traploaslog oan] =
= —Traploaplogoal — Traploaslog o] + Trloaplogoas] =
= Traploaplogoap — 0aplog(oa ® o) = S(0aBl|loa ® oB)

whereS(o||o) = Tr[plog 0— elog o] is the quantum relative entropy that measures the
“statistical distance” between statesindo (with S(g||o) = 0 if and only if p = o).
ThusZ represents a “statistical distance” betwegr and the fully uncorrelated state
04 ® op. I can be regarded as a measure of total correlations, sireediivalent

to the amount of local randomness necessary in order t bnmgtate to an uncorre-
lated form [28] (this is the most important operational iptetation, but other exist,
for instance as the maximal amount of classical informatit can be securely ex-
changed in a one-time pad cryptographic protocol betweerpavties sharing a state
0ap [133]). The fundamental idea behind all notionggofantumcorrelations is some
of the correlations accounted for Bycan neither be created nor extracted by local op-
erations on the subsystem — joint quantum operations agdémum communication
between subsystems is required. The notion of entangliomrdes on the preparation
of states, while that of discord focuses on informatioriegll by measurements.

1.5.3 Entanglement for pure states

Given an arbitrary tensor factorizatidd = H; ® --- ® H, of the Hilbert space,
the general notion of entanglement for pure states is faatadlas a straightforward
algebraic condition. By definition, a pure stateseparableif and only if it can be

written as a product vector:

V) = [1)1 @ -+ @ [Yr)r (1.92)

else it isentangled Thus any correlated pure state is entangled. Entanglesheays
implies that contrary to the global system, each subsystemat be ascribed a state
vector but only a density matrix. It has recently been prowetull generality [8]
that all entangled pure states are “nonlocal” in that theyate a Bell’s inequality, a
result referred to as “Gisin’s theorem” since Gisen was tist fo prove it, albeit for
the restricted case of bipartite states of two qubits [7]r = 2 (bipartition), it is
easy to characterize entangled states and even assesiingt afitheir entanglement.
Let us start from an arbitrary bipartite stdte) = 3°,. M;;|i)4 @ |j)5. The matrix
M admits a singular value decompositidh = UAVT whereU, V' are unitaries and
A = diag(\;). Upon defining new local orthonormal bageg) 4 = Uix|i) a, | fx) B =
Vjk|j) B, we can brindy) in a standard form calle8chmidt form

) =D Aklex)a ® | fx)n (1.93)
k

The numbem, of nonzero singular values dff is calledSchmidt rank Whenever
ng > 1, the state is entangled. The reduced states of the subsystermm, =
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Yo Akler)aler| andop = 37, Akl fr)B(fr| and wheneven, > 1 they are mixed.
The extent to which the reduced states are mixed can be seemaasure of the de-
gree of entanglement present in the global state It can be assessed by the von
Neumann entropy of the reduced states, cadiednglement entropF'r):

En(19)) = S(oa) = S(o) = — 3 Aelog A (1.94)
k=1

The entanglement entropy holds as a universal quantifientahglement for pure bi-
partite states. Whem, = n = min(dim H 4,dim H ) and\; = \/Lﬁ the entanglement
entropy reaches its maximum valug& 1) = S(ep) = logn and the states are called
maximally entangled For a generic bipartition, almost all states with respedhe
uniform measure on the complexsphere are entangled (i.e., separable states are a set
of null measure). For large Hilbert space dimension, alnatigture states are even
close to being maximally entangled [9].

1.5.4 LOCC and entanglement for mixed states

The definition of entanglement for mixed states cannot beeget by simply identify-
ing the set of entangled states with the set of correlatéésstas in the pure state case,
lest entanglement lose its characteristic traits. A definiait of pure entangled states
is that they cannot be prepared by means of a product of Ipeabtor<! ® - - - ® £7,
but only through a global, non-factorized operator acting subsystems jointly (for
instance, a unitary operator that couples all subsyste@shsider now a correlated
state that is simply a mixture of separable (product) puatesis; ):

0= Zpi|¢i><¢i|’ |9i) = lp1)1 @ @ |r)r (1.95)

Such a state can be prepared from an uncorrelated state lyyrapjor each: a dif-
ferent set of local operato&y @ - - - ® £!" with probabilityp; — a procedure involving
only local operations and classical communication (LOQ@ye precisely described
later). In fact, Werner proved [10] that states in the forn®§) are “local” in the sense
that they cannot violate any Bell inequality (and hence a@niocal hidden variable
model description). For this reason, Werner defined thefsspmarable states as those
states that can be written as mixtures of product statectwddso matches the intu-
itive expectation that a statistical mixture of separatdées should be itself separable).
Conversely, if a state cannot be written as a mixture of pcodtates it is entangled.
This definition of separable and entangled states obvigeslyces to the previous one
in the pure state case.

This definition of entanglement is fully grounded within tbperational framework
of local operations and classical communication (LOCC)e TIOCC paradigm is
meaningful in the “distant lab” scenario [10, 11], where gubsystems are at dif-
ferent locations (widely) separated in space, so that éxeeters ad different lo-
cations cannot perform joint operations, but only localragiens, possibly assisted
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by classical communication among them. LOCC are definedlsvi® (we describe
the bipartite case, but the following discussion triviajlgneralizes to more than two
parties). A generatjuantum operations defined by a trace-preserving, completely
positive (TPCP) map\. For any such\, there exists a set of Kraus operat¢r4; }
such that) ", AlA; = TandA(o) = Do A;pAl. Any operation can be seen as a
measurement, followed by a unitary “feedback” [129]. Indidey virtue of the polar
decomposition we havel; = U,;P; whereP; is positive and/; is unitary. We thus
obtainA(o) =3, UiPigPiUiT. This can be seen as a measurement whereby outcome
i is obtained with probability; = Tr[P;0P;], projecting the state tp; = p%- 0P
Depending on the outcomethe state is rotated by;: A(o) =", piUigin. Given

a bipartitionH = H4 ® Hp, separable operationare such thatd; = A4 @ A5.
LOCC form a subset of separable operations in which the KopesatorsA; ® B;
are restricted by the requirement that they be generatexiding to the following pro-
cedure.A performs an operation™) with Kraus operator$,4§1)} and transmits the
measurement outcornigo B via a classical communication channel. On the basis of
i, B chooses and performs operatidf-*) with Kraus operatorgf’”, and transmits
the outcome back toA. A’s next operation can depend oandj, and so forth. The
final result of this procedure is a separable operation thsiviery difficult to describe

in precise mathematical terms what distinguishes LOCC fnwone general separable
operations [13, 14].

Entanglement of a state is equivalent to the impossibilitgreparing it with the sole
aid of LOCC starting from an uncorrelated state. Statescénabe prepared by LOCC,
and hence are separable have the general form of a convexrainb of product
states:

0# Y piot @@l (1.96)
1=1

(with no loss of generality, the; can be chosen to be pure). The set of separable
states is by definition convex, and hence compact. Therefothe space of density
matrices there is a clear boundary between separable aanigéed states. In general,

it is very hard to decide whether a given state is separabdmiangled, i.e., whether

a state admits a decomposition of the type (1.96). This isthealled separability
problem In fact, it has been proven that for states that are clodeetboundary of the
separable set (i.e, states that are slightly entangledjgparability problem becomes
NP-hard [15].

1.5.5 Entanglement monotones and monogamy

Another closely related, and hence difficult task is to asemmount of entanglement
presentin a state. For general bipartite states, therdass of entanglement measures
calledentanglement monotonfss]. Any such measurd1(A : B) is required to have
the following properties:

1. M(A: B)>0andM(A : B) = 0 for all separable states

2. M(A: B) isinvariant under local unitarid$, ® Ug
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3. M(A: B) is non-increasing under LOCC
4. M(A: B) = Eg(oag) for pure states

In addition, one may demand that the entanglement monoteffeitbful, modifying
1)in1): M(A: B) > 0andM(A : B) = 0if and only if the state is separable.
In general, entanglement monotones are very hard to corbpatise some optimiza-
tion procedure is involved in their definition. An examplefaithful entanglement
monotone is theelative entropy of entanglemefit8]

Es(oap) = infocsppS(0anl|o) (1.97)

defined as the minimum statistical distance between a gigieand a separable state
o. Another faithful monotone is thentanglement of formatioil 7]

Ep(oap) = mind_ piBr(|s) (1.98)

where ", p;|¥;)(¢;| is a given ensemble realization ofiz. The entanglement of
formation corresponds to the minimum number of maximallaagled qubits (singlets
or ebits) needed to synthesizgs by LOCC. A third faithful entanglement monotone
is thesquashed entanglemdgtl, 122] , defined as

1

Ecmi(oap) = 5 nin I(ABI|C), (1.99)
QABC

wherep 45 is an extension af 4 5 (a state such that &foapc] = 0ap) andZ(AB|C)

is the conditional mutual information (CMI(AB|C) = S(oac)+S(epc)—S(0c)—

S(oapc). A widely used, though non-faithful monotone is thegativity[19]

I'a -1
o) =120

(1.100)
wherep'4 is the partial transpose ofwith respect to subsyster. The negativity is
based on the fact th&t* is a positive map when acting on separable states, but it can
be negative on entangled states. Therefdre has in general negative eigenvalues.
Sincel'4 is trace-preserving, Jo' 4] = 1 and hencéo™||; > 1.

For two qubits, there exists a faithful entanglement monetihat can be expressed in

a simple analytical form for all states. Thencurrencg20] is defined as

K(pap) =max(0,A\; — A2 — A3 — \yg) (1.101)

where\q, ..., Ay are the eigenvalues, in decreasing order, of the Hermitiatrixn
R = \/\/oaBoaB+\/0aB With g4 = (0y ® 0yy)0% 5(0y ® 0,) the spin-flipped state
of pag, oy a Pauli spin matrix, and the eigenvalues listed in decrgasider (alter-
natively, the);’s represent the square roots of the eigenvalues of the rwmitlan
matrix pag045). From the concurrence, the entanglement of formation eacakcu-

lated as
Er(oap) =h <1 VI QK(QAB>2> (1.102)
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where h(z) = —zlogz — (1 — z)log(l — x).

An important property of entanglement is that two maximalyrelated systems
cannot be entangled with a third system: if a tripartiteestatz ¢ is such thab g =
Treloase] = |ém){dm| Where|g,,) is a maximally entangled state, then we must
haveoapc = |¢om){dm| ® 0c. Such a property is calladonogamy of entanglement
More in general, two strongly entangled systems cannoedhatra limited amount of
entanglement with other systems. This limitation can castbymonogamy relations
i.e., inequalities involving entanglement monotones enftirm:

M(A:BC)> M(A:B)+ M(A:C) (1.103)

where M (X, Y) represents the monotooe! calculated across the bipartition, Y.
This inequality may be extended for an arbitrary number ofigsas

M(A:By...Br) > M(A:By)+---+ M(A: By) (1.104)

Eq. (1.103) was proved to hold for the squared concurrénten Ref. [22], and the
proofwas later extended to a multiqubit system proving BEdL@4) [23]. In Ref. [122],
it was proved that squashed entanglement is monogamoulsdimednsions. Not all
entanglement measures satisfy monogamy inequalitiesn$t@ance, Eq. (1.103) is not
satisfied for the entanglement of formation nor for the re¢entropy of entanglement.



Chapter 2

Quantum discord in the
extended Hubbard model

2.1 Introduction

A very fertile interplay between the theories of quantuf@imation and condensed
matter has developed during the last decade. On one siddegsed-matter theory has
suggested a wide range of possibilities for the implemé@ntaif quantum communi-
cational [137] and computational [142] tasks. On the ot squantum information
theory has yielded novel insights into the physics of cosddrmatter systems.

One of the main intersection points between the two fieldeédsstudy of the ground
state structure of many-body systems. As several modelg-skeog., the Laughlin the-
ory of quantum Hall systems and the BCS theory of supercdiwtue ground states
can be dominated by quantum correlations, which frusttesnpts to describe them
by means of simple and classical-like ansatze. Quantuanrivdtion theory provides
a conceptual toolkit that facilitates addressing the rdleasrelations in many-body
states within a general perspective. In particular, quaribformation theoretical no-
tions have become relevant in characterizing quantuncatithenomena [84]. Quan-
tum phase transitions (QPT) occur in quantum systems ateemeerature. For critical
values of some parameters (quantum critical points), tluetsire of the ground states
changes abruptly. QPTs are usually associated with a singahavior of correlation
functions and the correlation length. These indicatorofatations should not be in-
dependent from the behavior@fiantum correlation the sense outlined in the previ-
ous chapter, e.g., entanglementand discord. Thus onetexpdind a critical behavior
of quantum correlations measures, too. The critical bemafiquantum correlations
has been extensively studied, mainly in one-dimensioniagiable spin models that
offer the advantage of analytical tractability. Two piorieg works [85, 86] addressed
entanglement (as measured by single-site entropy anditeseencurrence) in simple
spin chain models. These works showed that entanglemeati@s-analytic behavior
at the transition points, where it generally has a peak. Niogportantly, it exhibits
universal behavior, e.g., in the finite-size scaling. Astyer sign of universality came

32
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from analyzing the entanglement entropy between a blodksifes and the rest of the
chain (block entropy) [87]. In the noncritical regime, therepy saturates a — oo,
while in the critical regimé. has a logarithmic divergence. The coefficient of the log-
arithmic divergence is manifestly universal, and it is tethto the central charge of
the associated + 1 conformal field theory. Thus the entanglement entropy df cri
ical spin chains behaves like the entanglement entropyef/étuum in conformal
field theories [88]. As was later shown in [89], the non-atialpehavior of quantum
correlation measures at quantum critical points is a géfeature, which implies a
capability of entanglement to mark quantum phase tramst{@PT). Moreover, the
logarithmic divergence in the critical regime suggests émanglement spreads over
all scales, a hypothesis that was given support in [90]: Atgbantum-critical point,
a deep minimum in the pairwise-to-global entanglemenbrsttiows that multipartite
entanglement between the spins is strongly enhanced.

In all these studies, quantum correlations and entangleimaee been usually identified
as one and the same concept. However, as we have discuseedtatih the former
chapter, the notion of entanglement is unfit to wholly captine quantum character
of correlations present in a system. The theory of quantwmodd has shown that a
part of the total correlations present in quantum statesm@stable under (and inacces-
sible) under local measurements — a highly nonclassicalifeavhich qualifies these
correlations as quantum. Quantum discord has proved effgntbetter explaining the
nonclassicality of several phenomena, including the quaragdvantage of many quan-
tum information processing tasks. Therefore, it is nattoéhquire whether quantum
discord can be also useful in characterizing quantum feataf many-body systems,
in particular critical ones . Unsurprisingly then, the bébaof discord has been an-
alyzed in several one-dimensional many-body systemsceslyein relation to QPTs
and thermal effects [100, 101, 102, 103, 104, 106, 105]. Th&émesults of these
analyses show that two-point discord and classical cdioaks between near as well
as distant sites show clear signatures of QPTs (discotigsur divergences), which
can be understood within a general framework [100] and agitefinite-size scaling
theory in the case of finite chains. Research has mostly otrated on spink/2 mod-
els [100, 101, 102, 103, 104, 105] (except for the Lipkin-kles/-Glick model [101]
and the Castelnovo-Chamon model [106], where a topolo@Pdl occurs). Therefore,
a thorough analysis of discord and classical correlatiom®irelated electron systems
was still lacking. The latter, at variance with the simplgsin systems, requires the
evaluation of the discord for pairs of g-dits and hence prissmore difficulties. A first
step in filling this gap was taken in our paper [107], upon Whiee present chapter is
based.

The subject of this chapter is the behavior of discord ansisital correlations for the
ground states of the one-dimensional bond-charge extdthaleldard model [162, 160],
which is a reference model in correlated-electron theorjpe Thodel has an inte-
grable point, and its entanglement properties have beeaubject of recent studies
[95, 97, 98, 99, 161] where use of two-point and multiparittanglement measures
led to a classification of QPTs into multipartite or two-padiniven. These studies left
open the problem of addressing the general role of bipartiteelations for all two-
points driven QPTSs, as well as their relation with the preseof off diagonal long
range order (ODLRO) which characterizes some ordered pldgbe model. The in-
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troduction of discord and classical correlations allowsdtve this problem in a proper
framework. We will systematically consider the quantuncdisl and the classical cor-
relations, in direct space between two-sites and in monmespace between two cou-
ples of modes, and we will study their interplay and theiligbio properly describe
the rich zero temperature phase diagram and the various plaasitions exhibited by
the extended Hubbard model under consideration. We willvdtnmw that discord and
classical correlations can highlight the presence of aafledentanglement transition,
where a different role of quantum and classical correladitantransition is revealed by
the different behavior of discord and classical correfaidoth in their maxima and
in the divergence of their derivatives (subsection 2.3ThHe study of the derivatives
of discord and classical correlations close to the crititeds allows to confirm the
two-point/multipartite nature of the various transiticsmsd to distinguish transitions
that are physically different based on a different role efgagange quantum correla-
tions(ODLRO) (subsection 2.3.3). | will demonstrate tiegste long-range correlations
correlations, which are at the basis of superconductigity,related to two-point dis-
cord rather than two-point entanglement: indeed a dirdatiom between ODLRO and
discord can be found (subsection 2.3.2). This relationuis broth in the direct and in
the reciprocal lattice picture, since a functional relatietween the two-site discord
and the two mode discord can be established (subsectiat).2Ax an example of how
condensed matter systems constitute a natural playgrouedttquantum information
concepts, the ground state properties also shed light ontspect of the quantum
correlations that is very relevant in the general contexfuaEntum information theory:
the monogamy property (I will address this issue in detathi@ self-contained sub-
section 2.3.5). Upon considering ground states of the maldelat finite system size,
I will extend previous analyses of the monogamy relationrtavgartite setting with
n > 3. In a phase of the model the ground states coincide with a ofggermutation-
invariant states, for which | will show that the monogamyatin is always violated,
both in presence and in absence of entanglement. In the T®krtanglement van-
ishes and the violation of the monogamy property for distmdomes maximal: due
to the presence of ODLRO, a single qubit can exhibit finite amof discord with an
infinite number of other qubits. The monogamy relation canibkated also in absence
of ODLRO, but in this case the violation is not maximal.

This chapter is organized as follows2.2 is a brief review of the main features of
the extended Hubbard model: Hamiltonian, phase diagram.$e2.3 is the core of
the chapter, where the behavior of discord and classicatkedions in the whole phase
diagram of the model is analyzed, with a special focus on tunagritical points/lines.
In § 2.4 | will highlight and summarize the main conclusions. STthapter essentially
reproduces an article of ours already published in PhyBegiew B [107].

2.2 The bond-charge extended Hubbard model

2.2.1 Basics of the model

The bond-charge extended Hubbard model was derived asstiesfone-band Hamil-
tonian for the description of cuprate superconductors]1B2e model is described by
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the following Hamiltonian:

Hpc = - Z (1 —z(niz + njg)]cjacjg - MZ”W

<i,j>0 i
+UZ Nip — 1 niy — 1 (2.1)
— T2 U e '

wherec] andc,, are fermionic creation and annihilation operators on adingensional
chain of lengthL; o =1, | is the spin labelg denotes its opposite,;, = cl e, is

jojo
the spine electron charge, and, j) stands for neighboring sites on the chairand
2 (0 < 2 < 1) are the (dimensionless) on-site Coulomb repulsion andlotrarge
interaction parameterg;is the chemical potential, and the corresponding term allow

for arbitrary filling.
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Figure 2.1: Ground-state phase diagramtof LEFT: n-u plane; empty circles stand
for empty sites, slashed and full circles stand for singlgl doubly occupied sites,
respectively. RIGHTu-u plane.

The model is considered hereat= 1, in which case the system becomes inte-
grable. This happens for two reasons. First, the z(n;s + n;5) term suppresses
several hopping possibilities. As a result, we can sepdhnatdour possible states at
site4 into two groups, namelyl = {| 1),| })} andB = {]0),| 1) }: hopping per-
mutes states of grougp with states of grou3, but not states of the same group. The
role of spin orientation becomes dynamically irrelevang ¢he system behaves as if
at each site the local space had dimension 1) and| |) can be considered as the
same state. Second, the hopping term commutes with the termgs and the number
of doubly occupied sites becomes therefore a conservedityuan
The physics of the system described Byis basically that ofV, spinless fermions —
singly occupied sites— which move in a background.of N, bosons, of whichv,
are doubly occupied sitesand the remaining are empty s@eth.N, and N, are con-
served quantities, and determine the total number of elesfy, = N, + 2N,.

The situation may be understood in the formalism develope&utherland in Ref.
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[158]. We can say that, apart from constant terfdsacts as a permutator of just two
Sutherland specig$Ss), theV, fermions, and thé, — N bosons. In practice, empty
and doubly occupied sites —though different as physicatisge— belong to the same
SS, since the off-diagonal part of the Hamiltonian (i.ee llopping term) cannot dis-
tinguish between them. It is only the constant term countiogbly occupied sites

which depends on the actual value/gf.

It is convenient to rewrite both the Hamiltonian and the la@tor space in terms of

the Hubbard-like projection operataks™” = |a); (4], with local aIgebraX‘lBX“

83, X *° and nonlocal (anti-)commutation relations given by

XPOX) = ()P0 XX it s (2.2)

herea = 0,1,2, |0); = |vac), is the local vacuum|1); = X[°|0); is the singly
occupied state (with odd parity), ang); = X?2°|0), is the doubly occupied state.
More precisely, as far as the ground state is concerned, dueinfHamiltonian in the
one-dimensional case can be fruitfully written as

H= — S (XPXY, - XPX12, +He) +u Y X2

i A

— (u n g) Z (XM +2x22) . (2.3)

2

The eigenstates are easily worked out [160, 95], and read
[ (Na, Na) >= (") X0 - X Ivag ; (2.4)

HereM = [(L — Ny — Ng)!/(L — N,)!N,!|'/? is a normalization factorX 1° is the
Fourier transform of the Hubbard projection operan‘P, ie.,

Z exp Z—]k)XlO

Moreover,nf = Zle X?0 is also known as the eta operator, commuting with
(n?)Na createsV, pairs which are fully spread over the chain. These are thers first
introduced by Yang [159]. This structure corresponds torg sienple physical picture:

eigenstates contaili; spinless fermions in momentum eigensta{téfg"—l, cey %}
and N, spinless bosong(pairs).
The energy eigenvalues are given by
u
E({nx},Ng) = 722(;05 nk = 2uNa — (p+ )N (2.5)

wheren; = 0, 1 is the number of fermions with momentu%ﬁ. For any givenV, =
>k N @and Ny the minimum is achieved by occupying witfi, fermionic particles the
momentum modeér (N, — 1)/L,...,n(Ns — 1)/L}, the corresponding eigenvalue
being

N,
E(N,, Nj) = —2sin <7rf> /sin (2) —2uN, — (u n %) N,
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whence we obtain the ground state energy density in the TDL

2
E(ng,ng) = - sin(mng) — 2ung — (u + g) N (2.6)

with & = E/L,n, = N,/L,ng = Ny/L.

The actual ground state is found by requiring thatindn, minimize (2.6).

Foru < 0 we haven, = 0, hence upon minimizing we get, = < arccos (—4 — %).
For—4 — 2y < u < 4 — 2u we have empty and singly occupled sites (phase 1), for
u > 4 — 2u we have only singly occupied sites (phase 1V) andfor. —4 — 2 we
have only empty sites.

Forp > 0 we haveng = (1—n,), hence upon minimizingwe get = L arccos (4 — %).
For—4 + 2u < u < 4 4 2u we have doubly and singly occupied sites (phase I), for
u > 4 — 2u we have only singly occupied sites (phase 1V) andfor. —4 — 21 we
have only doubly occupied sites.

Foru = 0 we getn, = < arccos (—%). For—4 < u < 4 we have empty, doubly and
singly occupied sites (phase II), while far> 4 — 2, we have only singly occupied
sites (phase 1V) and far < —4 — 2p we have empty and doubly occupied sites (phase
).

Hence we get in the-u plane the phase diagram depicted in Fig. 2.1, right. In tfie le
part, the same ground-state phase diagram is drawn in-thplane (withn = N;/L
average per-site filling). The phase diagram presentsus@PTs driven by param-
etersu andp (or n). Each transition is characterized by a change in the number
on-site levels involved in the state. Phase IV has just ovd [ger site since each site
is singly occupied. Phases | and I' (which is the particléehmbunterpart of phase
I) have two on-site levels: singly occupied sites and emptgaubly occupied sites
respectively. This holds for phase Il as well, where onlypgyrand doubly occupied
sites appear. Phase Il is the only phase in which all thresiterlevels are involved.
Phases Il and Il are characterized by the occurrence diaffjonal long-range order
(ODLRO)and superconducting correlations, evaluated as:

hm (XZQOXZO_E,> =ng(l —ng —ns). (2.7)
Note that ODLRO —though not allowing real superconductingeo atz = 1 due

to spin degeneracy, which implies the vanishing of spin dat the very root of
superconducting order, which occurseaf 1. [96]

Before discussing the various transitions in terms of tisealid behavior, let us recall
some feature of each of them in terms of standard theoryt digdl, sinceN; and N,

are both conserved quantities, the transitions shouldigemated from level crossing.
Indeed, they also occur at finife Nevertheless, none of them is of first order, since
it can be easily checked that the first derivativefs is always smooth. In fact, the
transitions | (I"'— IV and Il — IV and Il — Ill are second-order QPTSs, while the
transition 11— 1 (I') is an infinite-order QPT.

2.2.2 Reduced density matrices

The present work focuses on two-point correlations. Towatalthem, knowledge of
the ground-state reduced density matrices is necessatyyarshall report their ex-
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pression for completeness (for a full derivation, the readl®y refer to Refs. [97, 99]).
Correlations can be analyzed within two different and canpntary pictures. Obvi-
ously, one can examine correlations between sites of thiedqtirect lattice picture).

In addition, the structure of eigenstates in the model ssiggget another approach,
namely to consider the reciprocal lattice, whose elemgntades are momentum
modesk; = Q%j, j=0,...,L—1. In some respects, the reciprocal lattice picture
affords a simpler description of the system [95, 98].

Let us start by giving reduced density matrices the dira@titlpicture. The one-site
reduced density matriy when expressed in terms of the ba§i®), |1), [2)}; is diag-
onal in all the regions of the phase diagram:

pi = diag{l — ns — ng,ns,na} (2.8)

the two-site reduced density matyiy in the basig|00), |01), |02),|10), |11}, [12),]20), |21}, |22) }+;
reads [97]:

Dy 0 0 0 O O 0 0 O
0 O 0 Oy O 0 0 0 O
0O 0 Q 0 0 0 Q 0 O
0 O3 0 O O 0 0 0 O
pi= 0 0 0 0 Dy 0 0 0 0 (2.9)
6o 0o o0 0 0 P 0 R O
0O 0 Q 0 0 0 Q 0 0
0 0 0 O 0 P 0 P O
0 0 0 O 0 0 0 0 Ds
Here

D1 = Pij 1-— 0)2 y 02 = Fij(l - C) s

D2 = n§—|1"ij|2, P1 = c(l—ns—Pij),

Dy = &Py, P, = Iy,

01 = (177157Pij)(176), Q C(lfc)ﬂj,

with ¢ = nd/(l — ns), Pij = (1 — 7’LS)2 — |Fij|21 andl"ij = % .
Let us now turn to the reciprocal lattice picture. To each rantam mode:; corre-

sponds a 4-dimensional Hilbert space, spanned by the basis

Bkj = |0>kj; | T>kja | \l/>kja | T\l/>kj7 (210)

The reduced density matrix for any such mode reads, in the, ®Dd in the basis
(2.10),
pr, = diag(a’, ab, ab, b%) (2.11)

whereq = 15=14 andb = 14

The two-mode 16 x 16) reduced density matrix for modds andk;, k; # k;, is

diagonal with respect to the local badis, @ By;. In the TDL, the eigenvalues are
a®b*=* with multiplicity m, = (%).

The casek; = —k; has to be treated separately. The two-maobeX 16) reduced
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density matrix for modeg; and —k; has support on & x 4 subblock. Indeed the

sole states that can be built by the action ofvt;;ﬁ]je operators belong to the subspace
spanned by:

Bi;,—k; = {10,005, [ 1,05, [ 405, [ 1T} (2.12)
wherela 8); = |a)r, @ |8)—r, -
In the TDL, and in this basis, the non-vanishing subblockefratrix reads:
a2 0 0 0
0 ab ab O
p|Bkj,—kj = 0 ab ab O (2.13)
0 0 0 b

2.2.3 Behavior of entanglement at QPTs

Two-point entanglement at the QPTs of the model was thorgugtalyzed in Refs. [95,

97, 98, 99], upon consideration of different correlationasigres: the two-point con-
currenceX (o;;) (1.101) or the two-point negativity/(o;;) (1.100) as measures of en-
tanglement (notice that definition of concurrence is atdédor two-qutrit systems),
the mutual informatiof (i : j) ( 1.87) as a measure of total two-point correlations, and
the single site entropg(o;) as a measure of multipartite entanglement between one
site and the rest of the chain. The behavior of all correfaticeasures was studied as

a function ofx (x = p or z = w) in the vicinity of the quantum critical points. Results
are briefly summarized in the table below.

dS(ei)

dK(0ij)

dNT(oij)

transition | x - - - - ent
1 T

=1V K X Ve Vi pie X Vie—n _ Q2

IN—l u | log(ue. —u) finite finite | QS

N—1 |u o ——— - finite | Q2

=1 |u X —o—— X —o—— finite | Q2

The analysis of divergences allows to classify the diffeteamsitions into those
driven by two-point correlations (Q2: W Il I — IV, | — II), where some two-
point correlation measures((;;), N'(0;;) or Z(i : j)) diverges, and those driven by
multipartite correlations (QS: H- 1) where onlysS; diverges. However, the two-point
character of the transitions+ I1I, Il — IV is only detected byZ (i : j) (a measure of
total correlations), whileV'(;; ) (the measure of quantum correlations used) is unfit to
discriminate between those transitions and the multifgadiiven one (1 I).

2.3 Behavior of discord and classical correlations

In the following, we will evaluate two-site correlationsigdord and classical corre-
lations) in all phases of the model. The two-site densityrixds symmetric in the
exchange of partiesy; = p;. Therefore, both discord and classical correlations are
symmetric, too, and we can use the notatiofi : j), 7 (i : j) introduced in Eq.(1.26).



CHAPTER 2. DISCORD IN THE EXTENDED HUBBARD MODEL 40

The difficult step in evaluating the discord is the minimiaatof the conditional en-
tropy S(p;;|I17) with respect all local measuremeihts (with no loss of generality, we
assume that the measurement is performeglmut the same results would be obtained
for measurement8’ oni). As we discussed if1.3.3, allowing for general POVMs
instead of just von Neumann measurements may allow for arbmtinimization, but
the results are not significantly different from the numalrgtandpoint. Therefore, in
the following we will restrict to von Neumann measurements.

The minimization can be done analytically for some simphkesaof two-qubits, namely
for the class of X states which have non-zero entries onljheritagonal and antidiago-
nal and include states with maximally mixed marginals (seisH52, 53] and [54, 55]
for recent developments). On the contrary, the two-quaisecmust be handled numer-
ically.

2.3.1 Regionl (I

We start our analysis by evaluating two-site correlatiatisqord and classical corre-
lations) in phase I. Results for phase I' are omitted, sifggy tare exactly equal (by
virtue of the particle-hole symmetry one just has to repkogty with doubly occu-
pied sites).

Phase | (I) is characterized by the absence of doubly oetLi@mpty) sites, so that
the effective number of on-site levels reducegtoConsequently, the 2-site reduced
9 x 9 density matrixp;; has nonzero entries only in thex 4 subblock spanned by
{100}, |01),]10), |11)};; . D andJ can be evaluated analytically through the methods
developed in Refs [52, 53, 54, 55].

Since in phases | and Ill the density matpix corresponds to an X-state for which
ming; S(p;;|117) can be easily evaluated with a fully analytical way by reisgrto the
method developed in [53], which we briefly review.

An arbitrary (single-qubit) von Neumann measurement isnéeffiby a couple of or-
thogonal projectorg’, and P;, which can be obtained fron®) (0] and|1)(1| by an
arbitrarySU (2) rotationV':

Py=VI|O)0|VT P =V[1)A|VT (2.14)

SinceV = tI + iy - & with t> + y} + y3 + y3 = 1, von Neumann measurements are
parametrized by three independent numbers.

The key result of [53] is that the minimum &f(p;;|117) is always attained for some
special values of the parametets= (ty: +y2y3)% n = (ty2 —y1y3) (ty1 — y2ys3).k =

t? 4+ y2, namely

{k=0,m=0,n=0}and

{(k=1/2,m=0,1/4,n=0,+1/8} (2.15)
Therefore the minimization procedure reduces to compahiegxpressions(p;; [117)
obtained in correspondence of these two sets of valueshémnbre, when the two-

site reduced density matrix eleméit;), + = 0, which is our casey andn become
irrelevant andS(p;;|117) depends only ork. Therefore, we only have to compare
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S(pi;|I17) for k = 1/2 andk = 0.
By the formulas in Ref. [53], fok = 1/2 we have

S(pisIV) = Si(pij) = (2.16)

1-9 1-9 146 146
— 2110g2 5+ — 21log2 5t

where

01 = \/[(Pz‘j)u — (pij)ss + (pij)2z — (pij)aa]® + 4|(pij)23]? (2.17)

while for £ = 0 we have

S(pii V) = Sa(pij) = (2.18)
—(1 = po)i52 log, 1522 — (1 — po) 422 log, 1422
7p017203 1Og2 1;93 — o 1203 1Og2 1203

where po = (pi;)11 + (p4ij)33 and

_ [pig)22 = (pig)aal ) |(pij)n — (pij)as]
02 = |(pij)2z + (pij)aal’ O3 = [(pij)11 + (pij)33] (2.19)

All we must do is take the minimum between (2.16) and (2.18):

ming S(pi;|T7) = min{Sy, So} (2.20)

Evaluating the mimimum of the reduced conditional entropguces, Eq. (2.20), to
taking the minimum among two functions, i.e., Ritd(p;;|117) = min{S1, Sa},
2 2

where Sy, S, depend orf; = /(1 + 4n? — 4n) +4|T;[? , 62 = ‘"_Lflr”' ,

14202 —3n—2|1;;|?|
03 = T (2.16-2.19).
We verify that for all values ofi — j| we always haveS; < S, and therefore two-point
classical correlatio (¢ : j) and quantum discor® (i : j) can be written in terms of
Sy.
In order to compare quantum discord and entanglement, weeatsluate two-point
concurrence [97]

K (0;;) = min {0,

Py = V- - TP - P} @2y

In the following, lettersD(i : j), (i : 7),Z(i : j), K(0:;) always denote quantum
discord, classical correlations, mutual information andaurrence respectively. The
values ofZ(i : j), J(i : j), D(i : j) and K (p;;) for region | and different values of
|i — j| are plotted in Fig. 2.2.

We first see that th®(i : j) and 7 (i : j) have the typical oscillating behavior already
shown by the mutual information [97]. At variance with theyipus analysis, where
the quantum correlations measured by the concurrence \iffeedt from zero only in
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Figure 2.2: quantum mutual informatidr: : j) (blue, solid), quantum discor® (i :
Jj) (red, solid), classical correlatiafi (i : j) (green, solid), concurrend€(o;;) (red,
dashed) as a function @fin region | w = 4), for |i — j| = 1 (top, left),|i — j| = 2
(top, right),|i — j| = 3 (bottom, left),|: — j| = 4 (bottom, right).

proximity of the borders of the regionsii.e., fer— —4, 0, here we see that the system
exhibits non zero discord within the whole region | excepgahe nodal points defined
by the equation’;; = (cl¢;) = % = 0 where all correlation measures
vanish,Z(i : j) = J(i : j) = D(i : j) = 0. Classical correlations show a similar
behavior. Therefore, in the central region of phase |, wHéfg;;) vanishesv|i —

jl > 1, two-point discord and classical correlations are stiélgemt. Correlations are
modulated by the sinusoidal behavior inducedIhy and at fixed i they all decay
algebraically with the distanc&(i : j), D(i : j), J (i : j) ~ |i — j|~2, see Fig.2.3.

In proximity of the transition - 1V it was shown in [97] that the system exhibits
anentanglementtransitig@1]: the entanglementrangey, i.e., the maximal distance
| — j| for which K (p;;) # 0, goes to infinity when approaching the transition. In
particular,K (o;;) have a maximum value fot; — 1 as|i — j| — oo. This behavior
is reflected inthat of (i : ), D(i : §), J (¢ : 5), which also exhibit a global maximum

atavaluex{™” ~ 1—1/(2]i — j|) which approaches, = 1 for |i — j| — co. Hence,
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Figure 2.3: quantum mutual informatidr : j) (blue, solid), quantum discor® (i :

j) (red, solid), classical correlatioff (i : j) (green, solid) as a function ¢f — j|

in region | forp = —0.1,u = 4. Upper dashed lines represent the envelope of the
respective maxima which exhibits a power law decayi{ — j|~2)

the behavior of discord mirrors that of the entanglemenis Behavior is depicted in
Fig.2.4. In fact, also the mutual information and the cleascorrelations exhibit the
same kind of behavior. However the values of the maxima fervdrious measures
Z(i:37),D(i:7),J(i:j) scalein a different way with the distance:

D, K
0.02¢|

0.02(

N o

Figure 2.4: maxima of quantum discal: : j) (solid lines) and concurrend€(p;;)
(dashed lines) fofti — j| = 16 (blue), |i — j| = 32 (red), |: — j| = 64 (green),
li — j] = 128 (black) as a function of/|u| in region | (u = 4)
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1

I li—dl) = gy (2.22)
i) e 1
D(n{,Ji—jl) = i (2.23)
i e log(|e — 7
Tl i —jl) = 7|¢(|j|2|) (2.24)
(2.25)

Therefore, when approaching the metal insulator tramsitielV the maxima of cor-
relation measureg(i : j), D(¢ : j), J (i : j)) decay in algebraic way along the chain.
Quantum discord dominates for high distances, since theadprg of the classical
correlation is suppressed by a factog(|i — j|)/|i — j|. This difference in the be-
havior of discord and classical correlations defines thieift role that they have at
the transition and can be further appreciated by studyiegl#nivatives of the different
correlation measures with respectitoln the critical limity — 0, —4 we have

1

0,D(:j) 2 ———m—— (2.26)
g T/ |1 = pel
while .
0uJ (i1 j) =~ ) log [p — ptel (2.27)

Therefore, while thé,, D(i : j) correctly agrees with the scaling behaviotpfZ (i : j)
andd, K (p;;) evaluated in [97]0,,J (¢ : j) though being singular has a lower degree
of divergence, so that classical correlations are subbegdithe vicinity of the critical
point.

We therefore see that the introduction of the new measuresroélationsD(i : j)
and7 (i : j) and the study of their derivatives allows on one hand to migpaentify
the metal-insulator transition and to properly classifgsta two-point QPT [97], and
on the other hand allows for a refinement in description ofQRg. The importance of
this feature will be more evident in the following paragrapfhere we will describe the
other two-point QPTs i.e., b+ IV and II— Il. We close this subsection by discussing
the role of the divergences of the different correlation sueas and their relation with
the divergences of the energy density of the system. In [8@],authors found a
direct relationship between the singularities (discaritias and divergences) in the
derivatives of the energy density of the systém E/L with respect to the parameter
A that drives the QPTs, and the singularities in the elemdritsectwo-point reduced
density matrixp;; or their derivatives with respect ta In our case the, the divergences
in 0,Z(i : j) anddxD(i : j) inherit the non-analyticities of the derivatives of the
elements op;; at the critical point. In particular the elements:

8)\D2,(9)\01,8,\02 — (2.28)

_
\% |)‘ - )‘c|
show the same divergences exhibited by the second degvatithe energy density
(2.6) with respect to\ = p (I=1V), i.e., 856 ~ 1/+/|p — pc|. However, as we have
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Figure 2.5: quantum mutual informatidn(blue), quantum discord (red), classical
correlation” (green) as a function af, in region IlI

seen above, classical correlations, though divergingwsihdogarithmic divergence
instead of an algebraic one, and accordingly one might\eetigat this is an acciden-
tal fact due to the definition of the correlation measure,(theat classical correlations
always display a lower degree of divergence). However, asvilesee in the next
sections, the classical correlatiafigi : j) behave likeD(i : j) andZ(i : j), in terms
of their derivatives with respect tb = w, at the transition H-+11l, and therefore they
coherently behave as the energy density at that transitg@$& ~ 1/1/|u — u.|. In
summary, while the derivatives of different elementggfand of some of the corre-
lations measures defined on thg show the same divergent behavior at the various
transitions, which agrees with that of the energy dendgg, the classical correla-
tions may show different kind of divergences and are thus bdliscriminate between
quantum phase transitions that are physically different.

2.3.2 Region lllI: discord and ODLRO

Phase Il is characterized by the absence of singly occugiied, so that the number
of on-site levels effectively reduces #p and the quantum discord can be evaluated
analytically in the same way as above. Moreover in this das@tmber of Sutherland
species reduces to 1. The quantum discord may be evaludtezisame way as above.
We have mify S(p;;|117) = min{S1, S2}, whereS;, Sz depend oy = (1 —ng)? +

n§ andS2onfy; = 1—2ny4,603 = 1—2n4 (2.16-2.19). Since two-site density matrices
pi; are equal for all, j, the values of two-site correlations are equal for each ghair
sites,Z(i : j) =Z,J(i : j) = J,D(i : j) = D. We haveS; < S, and therefore the
classical correlations and the discord can be written im$enf S, .

The values ofZ, 7 and D for region Ill are plotted in Fig. 2.5.

The first result of our analysis is that while in the TDL the comrenceK (p;;) =
min{0, —2n2(1 — nqg)*} = 0 vanishes everywhere in region Ill, the discord is always
different from zero in the region; we thus have that thgair states display two-point
quantum correlations, though not in the form of entangledetations but rather in
the form of discord. Moreover, we notice that discord, ad agtlassical correlations,
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between any two sites has the same value, irrespectiveiotiteance: this reflects the
way in which then-paring mechanism spreads the correlations equally almghole
chain. They-pairing is also the ground for the appearance of ODLRO, wifiatiow
directly from (2.7). It is intuitive to suppose that thes@srconducting correlations
might be related to some kind of two-point quantum corretsj and indeed many
authors have tried to find such a relation, see for exampleqS8R While a relation
with the entanglement propertiesirspace was found in [99] in the case of fppairs
and BCS states, in direct space this relation could not abksied in terms of the
concurrence since the latter vanishes in the TDL [97].

While ODLRO inn-pair states cannot be related to two-point entanglememt, o
analysis allows instead to connect the ODLRO to the two{pmqirantum discord. In-
deed we find thatin the TDID(i : j) = DIPL Vi, j and we have

DIPE = f(x) = o7 [4x arctanlfl — 2z) + xlog 16 + (2.29)

V1 —4zlog(—1 — ﬁ) + log(ﬁ) + log z]

where f(z) a monotonically increasing function af = n4(1 — ng4), i.e., of the
ODLRO. The above analysis allows to establisdigect relation between a funda-
mental quantum property such as ODLRO and the presence efdmb (two-qubit)
discord It therefore seems that the important two-point quantumetations neces-
sary in direct space for the appearance of the ODLRO aregepted by the discord
and not by the entanglement.

We finally note that the presence of the ODLROniparis states is reflected also by
the behavior of classical correlations, which also are aatanrically increasing func-
tion of n4(1 — ng). The relation between classical correlations and ODLRO lveil
important in the discussion of the transitions describettiénnext section.

2.3.3 Regionll

Region Il contains empty as well as singly and doubly ocalipites, so that there are
3 on-site levels. This means that the evaluation of discotdddassical correlations is
more difficult than in the previous cases. In order to evallt : j) and7 (i : j) we
used two numerical recipes. As for the two-qutrit case, weshhat the possible von
Neumann measurements correspond to unitary rotations,

Py =VI[0)(0VT, P = VI1)(1[VT, P, = V[2)2|VT (2.30)

where nowV € SU(3).

Unfortunately, to proceed forward in the computation ofdigeord, one cannot simply
mimic the procedure described for qubits. The main difficidtthat no easy, explicit
parametrization oV € SU(3) by 8 real parameters (the group dimension) can be
found. [222]. We therefore must compute the discoundnerically Our strategy is to
minimize S(p;;|117) over a (large) set of randomly-generated unitary matri2ed].
More precisely, we generate a large ensemble of unitaryiceattaken from the uni-
form distribution over theSU (3) group manifold, evaluating(p;;|117) for each ma-
trix. We then keep the minimum as our esteeniudf 5, , S(p;;|1I7). To be rigorous,
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Figure 2.6: quantum mutual informatidi(i : j) (blue), quantum discord(i : j)
(red), classical correlatioff (i : j) (green) as a function af in region Il forn = 1,
|i — 4] = 1 (top, left),|i — j| = 2 (top, right),|i — j| = 3 (bottom, left),|: — j| = 4
(bottom, right)

this esteem is to be regarded as an upper bound: howeves, wmare generating a
rather large set of random matrices we are confident thatdhadis very stringent.
Alternatively, we can use thgU (3) parametrization given in Ref. [223]. This allows to
parametrizeSU (3) in terms of trigonometric functions éfindependent parametess,
angles), 12, n3 and5 phasesy, 3, v, p, o. This parametrization makes it apparent that
the phasep ando are completely irrelevant for the computation of the disgsince
orthonormal projectors (von Neumann measurements) agpéerdient of the choice
of such phases. This method has the advantage that it is basednore transparent
parametrization of von Neumann measurements. Again, wergia large ensemble
of unitary matrices find the minimum &f(p;; |117)

In all cases under study, the two methods applied led to tine sasults, which pro-
vides us with full confidence on their reliability. In pamiar, the two methods show
perfect agreement in the value of the discord throughouii@e region, and this is

a first indication of their reliability. A further element abnfidence in the methods
used is the fact thab (i : j) and7 (i : j) must be continuous in the transitionsH

I, Il (since all matrix elements of;; are): when we approach the phase boundaries,
the numerical limits ofD (i : j) and7 (i : ) in region Il coincide with the analytical
values determined in region | and 111

In Fig. 2.6 and Fig. 2.7 we pld&(i : j), J(i : §), D(¢ : j) in region Il as a function
ofufor|i—j| =1,2,3,4,andforn = 1 andn = 0.5 respectively. In the Table below,
we summarize the critical behavior of the derivatives ofrquen discordD(: : j) and
classical correlationg/ (i : j) for the transitions Il— I, Il — IllI, IV. These values
are obtained as follows. We find numerically (with either lvé procedures sketched
above) the optimal measurement which minimizes the redeoeditional entropy.
Contrary to what happens in region |, the orthogonal measen¢ minimizing the
conditional entropy varies throughout region 1, i.e., faameters of the unitary rota-
tion V' are not constant throughout the whole region. However,@meighborhood of
the critical lines ¢ — —4 andu — —4 cos7n) they are found to remain constant at
any fixedn. We therefore use these constant values in the expressiotiefreduced
conditional entropy and obtain analytical formulas fofi : j) and7 (i : j) as a func-
tion of u. We then extrapolate the critical behavior by studying ¢hfesictions in the
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1,D,J 1,D,J 1,D,J 1,D,J
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Figure 2.7: quantum mutual informatidi(i : j) (blue), quantum discord(i : j)
(red), classical correlatiofr (i : j) (green) as a function af in region Il forn = 1,
|i — j| = 0.5 (top, left), |i — j| = 2 (top, right),|i — j| = 3 (bottom, left),|i — j| = 4
(bottom, right). We note that at the multipartite transitib—I| (v = 0) all the two-

point correlation measures behave in a smooth way

critical limit.

transition| n u % % %

Ih—1 1/2| =0 finite finite finite

1 1 1
=1 [1/2 ] ——4 T | Yz | =
=1V 1 —4 \/uC_u \/uC_u x log(ue. — )
In—1l 1 — —4 o o —1L
U—Uc U—Ue Uc—U

The results can be summarized as follows.
D@ :§),Z(: 5), TG :
multipartite nature.

As for the transitions H+1V and II—1ll, previous analyses [97] have shown that
both transitions have a two-point character. As a first testd see that at both tran-
sitions quantum discord is able to correctly detect therdiwece expected, whereas
negativity fails for this aspect[95] (see Sec. 2.2.3). The transitions are however
physically inequivalent, since they lead to two completifferent phases: transition
Il—IV is characterized by the disappearance of ODLRO, wheretarasition 1111
ODLRO is present. We now show how this difference can be ptpgescribed by the
study of the two-point classical correlations.

In the transition 1l— III, while 9, Z(i : j),0,D(i : j) > 0andd,J (i : j) < 0 all
the derivatives display the same kind of algebraic singtylaOn the other hand, in
the transition Il— 1V, we have thaio,Z(i : j),0,D(i : j),0.T (i : j) < 0, they
all diverge, but7(: : j) has a lower degree of divergence i.e., it is logarithmics thi
property allows to correctly describe the transition as @ pwsint one and furthermore
to assimilate it to the metal-insulator transitior IV, where the classical correlations
show the same kind of divergence.

The result can be further deepened by considering the foltpargument. All two-
point correlations in region Il can always be split into atenand an infinite range
contributions:A/, = A;j+ ALl whereA = 1,7, D andAll = limj;_; AfL.

The infinite range contributions can be analytlcally evtddaand they all explicitly

In the transitien | o (or I') two-point
j) are regular, thus confirming that this transition has a
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depend on the value of the ODLRO in this phasg,l — ns — n4). Therefore, their
derivatives with respect to have all the same behavior: they display the same type of
algebraic singularity in case of transition-+1l (ODLRO), while they do not display
any singularity in case of transition-#1V (disappearance of ODLRO).

On the other hand, as for the finite range contributions we tiadd, 7; ; diverges
at both transitions but with a logarithmic behavior that srdnant only in the tran-
sition lI—1V (whered, J., is regular) while its quantum counterp@gtDi_j diverges
algebraically. The above results show that the introdaatibthe discord and classi-
cal correlations allows to discriminate between two appyesimilar but inequiva-
lent two-point QPTs, and to root their difference in the pesice (disappearance) of
ODLRO at the transitions.

2.3.4 Reciprocal Lattice

We now consider quantum discord between two momentum maodieireciprocal
lattice; the analysis is significant in region Il and 1ll, whe)-pairs are present, and
for values ofk; > ks wherek, = % is the maximum single-fermion momentum,
since the portion of k-space pertaining to single fermiarfactorized. Let us fist con-
sider two modeg; # k;. From the results derived in [98] we have that the measures
of correlations all depend on a single parametdinked to the average occupation
number of a generic mode;, a = (ng;)/2 = nq/(1 — ns), Vkj;. In particular, the
only pairs of modegk;, k;) which are correlated are the ones for whigh= —F;,
while if k; # —k; the relative momentum modes are completely uncorrelaged i.
Z(k; : kj) = 0 and thereforeD(k; : k;) = 0. Whenk; = —F; the single-mode von
Neumann entropy readfpy,) = —2(aloga+ (1 —a)log(1l —a)), the two-mode von
Neumann entropy iS(px, ;) = S(px;)+2a(1—a) and hence the mutual information
iSZ(k; : k;) = —2(aloga + blogh — ab).

In order to evaluate the quantum discord, we should now denshe reduced condi-
tional entropy after a generic measurement is performed oterh;, and minimize
with respect to all measurements. It turns out that, a vonrhNnn measurement
B = {1, 14,11, 114, } onto the trivial basid3_;, yields

1
po = —Tr g Topk, ko = a?(0)(0|
Po
1
pr = —Tr_ I pp, i, 11y = ab| (T |
P
1
PL = p—lTr_ijw,%_kjm = ab Ll |
1
pre = 5T epn o Ty = B TN | (2:31)

so that) ", paS(p~) = 0 and the minimum is immediately attained. Consequently we
have that the quantum discord has a simple expression

D(kj : —k;) = I(kj : —k;) — S(px;) = 2a(1 — a) < N'(0k;,~k;) (2.32)
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Figure 2.8: Left: monogamy rati&,, in phase Il for chains of varying length, with
Ny = 1/L (red),N; = | L/2]|/L (green). Right: monogamy ratiB,, in phase | in
the TDL.

and it is simply proportional to the negativity (ox,,—«,)[99]. . This result allows
us to derive some important conclusions. On one hand, taéarship found in [99]
between ODLRO and negativity in region Il can be rewrittenierms of the discord
D(k; : —k;) showing once again the quantum roots of the ODLRO:

. li_lm (XP°X7%) = (1 —ng)?a(l —a) = (1 —ny)*D(k; : —k;)/2.  (2.33)
1—J|—00

This result, together with Eq. 2.29, allows to establish racfional relation between
the two-site discord (i : j) and the two mode disco® (k; : —k;).

On the other hand, the line = 1 is aniso-correlationline [98]: sincea = 1/2 =
const, and therefore the momentum particle density, ), and all the correlations
between subsystem in the momentum picture are maximal amstartt in the whole
phase Il. In particular, they are constant at the transitieslll, therefore this transi-
tion cannot be identified by studying the derivatives of therelation measures ik
space. On the other hand, at the transitionIV there is a sudden change in all corre-
lations that discontinuously drop to zero in corresponderithe insulating phase that
is characterized by a ground state which is factorized al$bbd momentum space i.e.,
[¥) = ®g;|o)k,, With o =1, |. We therefore see that the two-point transitions Il
and ll—1V can be distinguished even in momentum space, and thiforegs the re-
sult obtained in the previous section in the direct latticeyve, where the difference
between the two transitions is highlighted by the behavig7 @ : j).

2.3.5 Monogamy of quantum discord

The study of the ground state properties of the extended &hdhinodel can be fruit-
fully extended in order to assess a relevant quantum infoomaroblem: the relations
between entanglement and discord. In this framework amestiag question to ad-
dress is whether the discord may satisfynanogamyrelation like (1.104). As we
know from §1.3.5, this relation cannot be satisfied for all states (wtlse the quan-
tum discord would vanish for all separable states). Needets, it is still possible
that the relation holds for a given class of states. In faet satisfaction/violation of a
monogamy inequality highlights the structure of multiftartorrelations in the state,



CHAPTER 2. DISCORD IN THE EXTENDED HUBBARD MODEL 51

as we will now show by focusing on the ground states in rediloand .
In Region lll, then-pairs states coincide with class of two-qubits permutatitvariant
states that can be written as

-1
[(Na, L)) = ( ]\I;d ) > PINu, L— Ny (2.34)
P

where( ]]\7 is the binomial coefficien{,N,, L — Ny) is a fixed state with a given
d

sequence ofV, ones (pairs) and. — Ny zeros (empty sites), and the sum is taken
over all possible permutatiorfss (the3-partitelV state belongs to this class of states).
For states of these form, at fixed; < L the single and two site reduced density
matrices can be easily evaluated from (2.8) and (2.9) andaheequal for all sites,
i.e.,p; = p1 andp;; = p and the discord can be evaluated as described in the previous
sections. Sincéy(Ny, L)) is a pure state the discord between one site and the rest
of the chain is equal for all siteB(1|2,---, L)) = D; and it simply coincides with

the entanglement between the site and the rest of the chairs S(p1). ThusD;

is a function ofn, only and and it is bounded bly. Both for finite Ny, L and in the
TDL the two point discordD(1 : j) = Da(ng4, L) does not depend ghand therefore

>_j Da2(na, L) = (L — 1)D2(nq, L). As already mentioned, similar arguments can be
applied to the concurrendé€: with n, = 0 the dependence din— j| disappears and, in
particular for largel, one hasi (o1 ;) =~ 1/L; for finite Ng4, L the concurrence is small

but different from zero, and the monogamy property is alvwsatisfied by the squared
concurrence. On the other hand, a direct evaluation of tbeeauantities shows that
VN4 andL > 3 one has

Ry = Dl/[(L — I)Dg(nd, L)] <1 (235)

In Fig. 2.8 (left panel) we show theonogamy ratioR,, for Ny = 1/L,|L/2|/L
and different values of.. While a general analytical demonstration of this resutids
straightforward, one can note that in the case of permutatieariant states, for any
fixed value ofn, it is always possible to find an infinite number of statésN,, L))
with L = Ny/ng and such thaD; < (L — 1)D2(ng4, L), i.€., the monogamy relation
is violated. Indeed, whil; just depends on,, D2(Ng4, L) is a decreasing function
of L which is lower bounded by its TDL expression (2.29). Therefall the states
for which L = Ny/n4 satisfies the relatio; < (L — 1)DIPL will violate the
monogamy relation.
As for the TDL, whileK; ; — 0, D, is constant at fixed; and Dy = DIPL asin
(2.29) and therefor&,, — 0.
Since the above arguments apply to a whole class of permontavariantn-partite
two-qubit states (2.34), we can state in full generality @perty of two-qubit discord:
for n-partite states#{ > 3) discord can be polygamous both in presence (for finite
Ny, L) and in absence (TDL) of two point entanglement

While it is tempting to relate the violation of a monogamyate&n by the discord
to the presence of those correlations that are typicatpdirs states, and that give rise
in the TDL to ODLRO, our model shows that there are other elasf states in which
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such violation can occur. Indeed, in Fig. 2.8 (right paned) neport the ratid?,, for
the ground state of region I, which reads:

[W(Ne, L)) = |ka, ... kn,) = X420+ X9 |vag) (2.36)

i.e., containgV, fermions in momentum eigenmodés (. . ., ky.), created by action
of the Fourier transform of the Hubbard projection operéff@? onto the vacuum. The
results refer to the TDL case and they show that for suchsstalehoughD(i : j)
does depend on the distanige- j|, the monogamy property is violated by the two
point discord in proximity of the QPT- IV. This feature reflects the fact discussed in
Section 2.3.1 that whem — 0, there is a spreading of the quantum correlations over the
whole chain. Indeed, the violation of the monogamy condigitarts in correspondence
of u ~ —0.2, where the entanglement has already started to spreadthl®ogain and
has a finite rangeR v diverges only at the transition).

This result has two interesting consequences. On one hamptdlind states in region |
show that, depending on the parameters that define thein this case) for the same
class of states the discord may or may not violate a monogatation [32]. On the
other hand the behavior of the discord allows to refine theri®fon about region |
carried out in [97]. There, by means of the entanglement ancklation ratio it was
pointed out that the ground states in region | have a trulytipartite character in the
center of the region, while when approaching the transitienweight of the two-
point correlations starts to increase; and this agreesthétitwo-point character of this
transition. Here this picture is revealed by the violatidrttee monogamy property
displayed by the discord: In order to prepare the two-pogmdition aty = 0, the
system reorganizes its correlations in such a way that teipoint character starts to
prevail; one can therefore identify the point in which thisgess starts with the value
of the parameters i.ey, ~ —0.2 at which the monogamy property is violated by the
discord.

We finally compare the two above cases in terms of the vialaifdhe monogamy
property. Here the key observation is the different kind iofation exhibited by the
discord. In region | the discord can be polygamous but theuarinaf quantum correla-
tions shared by a single site with the other sites of the cisdinite i.e.,0 < Ry, < 1
for ;o # 0 and it vanishes at the transitipn= 0 becauseéD, — 0, while 37, D(i : j)
tends to a finite value. On the contrary, fgpair states the violation has a completely
different nature: Each site can be equally correlated witihe other sites of the chain:
Ry = 0V ngy. This difference is indeed rooted in the presence of ODLR®éNTDL
and in the previously found relation between discord and RDLThis kind of vio-
lation is associated by the disappearance of the two-sitesiglement, while for the
state in region I, the violation occurs in presence of bipaentanglement.

The above results allows to give a general statement abauitgpn discord for mul-
tipartite pure states: It can be non-monogamous both inepeesand in absence of
bipartite entanglement. However the violation of the maray property can be max-
imal when ODRLO is established in the TDL and no bipartiteaegtement is present
in the state.
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2.4 Conclusions

In this chapter we have addressed several important questédated to the ground
state correlation properties of a reference fermionic mdtle bond-charge Hubbard
model. We have applied quantum discord and classical edioak to study how these
relate to quantum phase transitions displayed by the mdélglmeans of analytical
and numerical analysis we have derived and analyzed thessipns of discord and
classical correlations for two-qubits and two-qutritsteyss both in the direct lattice
and in momentum space. Our results allow to describe therdiit quantum phase
transitions in terms of the divergences of the various ¢atim measures. As shown
in [95, 97, 98] the transitions can be classified on the basth@relevance of the
two-point and multipartite correlations involved. At vamice with other entanglement
measures [95], such as negativity, discord (and classara¢lations) exhibits the ex-
pected non analyticities that define the two-point traos&i Moreover, the comparison
of their behavior allows to discriminate between two app#yesimilar kind of two-
point transitions. In particular, a careful study of the ritoutions in which classical
correlations can be decomposed gives the possibility ctléie presence (disappear-
ance) of the off diagonal long range order (ODLRO) and tofifigits consequences
at the various transitions.

Furthermore, the study of the discord between two gendgssij and two momenta
modesk;, —k; allows to establish a direct relation between ODLRO and the- t
site/momenta modes discord, which turns out to be a monofanttion of ODLRO.
This result is remarkable, since in the TDL no two-site egtament is present in this
states. By means of the same analysis it is possible to estabfunctional relation
between the two-sites discord in direct spdeg : j) and two-modes discord in mo-
mentum spac®(k; : —k;).

The study ofD(i : j) for n-pairs states is also important for describing the be-
havior of the discord with respect to timonogamyproperty. [22, 23]. Indeed, the
n-pairs states are isomorphic to a relevant class of perinottinvariant multipartite
qubit states. While in the finite size case, all the statefiénclass display non-zero
two-qubit entanglement, in the TDL the latter vanishes. Ewsv, in both cases we
have shown that two-qubit discord is in general differentrfrzero and furthermore
it violates a monogamy relation. Finally, we have shown foother class of states,
the non-interacting fermionic ground states in regioné, discord can be polygamous
depending on the values of the parameters. The main differeetween the two class
of states analyzed resides in the kind of violation of the agamy property: only for
then-pair states the single qubit can be arbitrarily correlate all the other infinite
sites, thus leading to a maximal violation of the monoganopprty. This factis rooted
in the presence of ODLRO in these states and in the diredioelbetween ODLRO
and discord.

Our results confirm that the application of quantum infoioratoncepts to con-
densed matter systems can fruitfully lead to a precise gefar of the role of corre-
lations in quantum phase transitions and at the same tinfetdevelopment of useful
relations that shed new light on the nature of quantum caticels as measured by
discord.



Chapter 3

Non-Gaussian quantum discord
for Gaussian states

3.1 introduction

In the realm of continuous variable (CV) systems, initiadgarch efforts on quantum
discord have focused on Gaussian measurements. The Geagsaigum discord, pro-
posed in [59, 60], is defined by restricting the minimizatiovolved in the definition
of discord to the set of Gaussian POVMs [125] and it can beyéinally computed for
Gaussian states. Its behavior in noisy channels has bediedtin Ref. [109, 110] —
where it was shown that it is more robust than entanglemehgtdecorrelating effect
of independent baths and more likely to yield non-zero aggtigovalues in the case
of a common bath — while its relation to the synchronizatiooperties of detuned,
correlated oscillators has been analyzed in Ref. [80].

It is natural to investigate CV quantum discord beyond Gansseasurements:
non-Gaussian ones may indeed allow for a stronger miniiizatf discord, and in
this case the Gaussian discord would be an overestimatitmedfue discord. Here
we focus on Gaussian states and ask whether Gaussian nreastseare optimal in
this case, i.e.whether the Gaussian discord is the true discord for Gaussiates
This question is relevant for two main reasons: On one h&disdord is a truly useful
resource for quantum information protocols [71, 82], thes ¢rucial to have a reliable
estimate of its actual value. On the other hand, from a furedtaah point of view it is
important to establish how different kinds of measuremeatsaffect correlations in
quantum states. A further motivation comes from the fact itthdeed for some non-
Gaussian states e.g., CV Werner states, non-Gaussian nee&sus such as photon
counting have been proven to lead to a better minimizati@h [6

The optimality of Gaussian measurements has already beegarmpanalytically for
two-mode Gaussian states having one vacuum normal modejp0%e of the Koashi-
Winter relation (1.56), but no analytic argument is avd#éh the general case. We ad-
dress the question numerically, for the case of two-moda®) gonsidering two large
classes of Gaussian states, the squeezed thermal sta®sdi$I the mixed thermal

54
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states (MTS), and allowing for a range of experimentallysiiele non-Gaussian mea-
surements based on orthogonal bases: the number basigjuiezed number basis,
the displaced number basis. As a result, we provide eviddrateGaussian quantum
discord is indeed optimal for the states under study. Intamdiwe also investigate the
CV geometric discord [63], comparing the case of Gaussiahram-Gaussian mea-
surements.

This work is structured as follows. 3.2 we review Gaussian quantum discord;
in § 3.3 we thoroughly describe the basic question we want toesddn this work
and introduce non-Gaussian measurements and non-Gadsstand; in§ 3.4, 3.5,
3.6, we present our key results concerning non-Gaussiaordisipon measurements
in the number basis, squeezed number basis and displacduenbasis; ir§ 3.7 we
discuss the behavior of non-Gaussian geometric discomlfjj 3.8 closes the paper
discussing our main conclusions.

This chapter essentially reproduces our paper [64], puslyopublished in Physical
Review A.

3.2 Gaussian discord

In the realm of continuous-variable systems, @aussian discord59, 60] is defined
by restricting the set of possible measurements in Eq. Jt®1he set of Gaussian
POVMs [125], and minimizing only over this set. The Gausdi&tord can be ana-
lytically evaluated for two-mode Gaussian states, whererande is probed through
(single-mode) Gaussian POVMs. The latter can be writteremegal as

®%,(n) =7 'Dp(n)on Dl (n)

whereDg(n) = exp(nb’ —n*b) is the displacement operator, ang is a single-mode
Y

Gaussian state with zero mean and covariance majiix= 5 ) Two-mode
. . . N A C
Gaussian states can be characterized by their covariandg mas = cT B

By means of local unitaries that preserve the Gaussian ctearaf the state, i.e. local
symplectic operationgs 45 may be brought to the so-called standard form, de=
diag(a, a), B = diag(b, b), C = diag(c1, c2). The quantitied; = det A, I, = det B,

I3 = det C, I, = detoap are left unchanged by the transformations, and are thus
referred to as symplectic invariants. The local invariaotcthe discord has therefore
two main consequences. On the one hand, correlation maaswag be written in
terms of symplectic invariants only. On the other hand, wereatrict to states with
already in the standard form. Before the measurement we have

S(oag) = f(dy) + f(d-), (3.1)
S(ea) = f(VT), S(eB) = f(VI2) (3.2)

wheref[z] = (z+1/2)log(z+1/2)—(x—1/2) log(z—1/2) andd . are the symplectic
eigenvalues 0b 45 expressed by = 1/2[A++/A2 — 41, A = I, + > +213. After
the measurement, the (conditional) post-measuremest atahodeA is a Gaussian
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state with covariance matrixp that is independent of the measurement outcome and
is given by the Schur complement = A — C(B+ o)~ 'CT. The Gaussian discord
is therefore expressed by

DY(AIB) = f(VI) — f(d-) — f(dy)
+min,,, f(det \/op) (3.3)

where we use two key properties: i) the entropy of a Gaussaa depends only on
the covariance matrix, and ii) the covariance matrjx of the conditional state does
not depend on the outcome of the measurement. The minimizatiero; can be
done analytically. For the relevant case of states with= diag(c, +c), including
STS and MTS (see below), the minimum is obtaineddo= g = 1/2,v = 0 i.e.
when the covariance matrix of the measurement is the igeittitis corresponds to the
coherent state POVM, i.e. to the joint measurement of caabaperators, say position
and momentum, which may be realized on the radiation field bgma of heterodyne
detection. Foseparablestates the Gaussian discord grows with the total energyeof th
state and it is bounded)9 < 1; furthermore, we hav®Y = 0 iff the Gaussian state
is in product formoap = 04 ® 0p.

3.3 Non-Gaussian discord

In this work we consider Gaussian states, and ask whetheGanissian measurements
can allow for a better extraction of information than Gaassines, hence leading to
lower values of discord.

The optimality of Gaussian measurements has been alreaghgrpfor a special
case [60]: that of two-mode Gaussian states having one wacoumal mode. Indeed
any bipartite state 45 can be purifiedpas = |¢) ac; then, the Koashi-Winter
relation (1.56),

D(A|B) = Er(A: C) + S(oB) — S(0as) (3.4)
relates the quantum discofdland the entanglement of formatiéh- of reduced states
0ap ando ¢ respectively. Given a (mixed) two-mode Gaussian siate, there exists
a Gaussian purificatiof) 4 . In general, the purification af4 5 requires two addi-
tional modes, so that, ¢ is a three-mode Gaussian state. In the special case when one
normal mode is the vacuum, the purification requires one noodle In this casepac
represents a two-mode Gaussian state BpdA : C') can be evaluated [24]. From
Er(A: C), by means of Eqg. ([39]), one can obtdin A|B) (the exact discord) and a
comparison withD9 (A|B) proves thaiD(A|B) = DY(A|B).

In the general case, there is no straightforward analyiesi to prove that Gaus-
sian discord is optimal. Therefore, we perform a numeritady Since taking into
account the most general set of non-Gaussian measuremmantgktremely challeng-
ing task, one can rather focus on a restricted subset. Wesehiodocus on a class of
measurements that are realizable with current or foresegalntum optical technol-
ogy. These are the the projective POVNIE,= {P,}, represented by the following
orthogonal measurement bases:

P, = D(a)S(r)|n)(n|S(r)TD(a)T, n=0,---,00 (3.5)
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whereS(r) = exp (—r*“; — (“ & yandD(«a) = exp(aa’—a*a) are respectively the
single-mode squeezing and dlsplacement operators [15@]s@t of projectors in (3.5)
is a POVM for any fixed value ok andr. If « = » = 0 we have the spectral measure
of the number operator, describing ideal photon counfing= |n)(n|. If & > 0,7 =0
we are projecting onto displaced number states [151,# 0,r > 0 onto squeezed
number states [153, 154, 155]. While more general non Gasseasurements are in
principle possible, the class (3.5) encompasses most oh#esurements that can be
realistically accessed.

In the following, we will evaluate the non-Gaussian quantiistord defined by

DNY(ANP) = f(VI2) - f(d-) — f(ds) + SNO(ATP) (3.6)

where the non-Gaussian measurements are given by Eq. (®%g.aFor the non-
Gaussian conditional entropy we have

SN9(AT?) an 04fn)

1
QA|n = p_TrB [PnQABPn] 5
Pn = TraB[ProaBPy] (3.7)

In the following we consider two classes of Gaussian statesder to assess the perfor-
mances of the above measurements. These are the two-maskzeduhermal states
(STS) [146, 147, 148]:

0=S\va(N1) ®vp(N2)S\)T (3.8)
and the two-mode mixed thermal states (MTS) [149]
p=U(d)va(N1) @ vp(N2)U(¢)" (3.9)

wherevy (N;) are 1-mode thermal stateX (= A, B) with thermal photon number
N; (i = 1,2); S(\) = exp{)\(aTAaT9 — aasap)} is the two-mode squeezing operator
(usually realized on optical modes through parametric doamversion in a nonlin-
ear crystal); and/(¢) = exp{gb(aZaB - aAajg)} is the two-mode mixing operator
(usually realized on optical modes through a beam splitter)

In particular, in the following we will focus on the simplesase of symmetric
STS withN; = N2 € [107°,1] X € [0,0.5]. As for MTS, we cannot consider the
symmetric case (since if; = N> then the mutual information vanishes and there are
no correlations in the system), therefore we consider thalamced case and focus on
¢ € [0,7/2] and Ny, N> € [1075,1].

3.4 Number basis

Let P, = |n)(n|. In this case, the post-measurement state is

0 = @)l = [ D o), ) (k] | @ [n)(nl (3.10)
h,k
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and we have the following expression for the density matexents

O(h, k), Zpth (N1)p"(N2)Opn (st) O, (1) (3.11)

wherep!(N) = N*® (1+ N)~*+D andOy,, (st) = (hn|O|st) with O = S(X), U ()
for STS and MTS respectively. The post-measurement state

04ajn = Tr[I® [n)(n| 0 1@ |n)(n|]/pn (3.12)

(here,p, = Tr[pl ® |n)(n|]) of STS and MTS after local measurement in the number
basis is diagonal,
(hloanlk) = Onk O(h ), (n.m) (3.13)

Proof. We have indeed:

0= Zpth (N1)pt"(N2)O|st) (st|]OT =

= > |n)km)| (Zpgh O ( st)Okm(st)> (3.14)

(h,n),(k,m)

wherep!"(N) = N* (1 + N)~+D whereOy,,(st) = (hn|O|st) andO;, (st) =
(st|Ot[km) = (km|O|st)*, whereO = S()\), O = U(¢) for STS and MTS respec-
tively. The post measurement states can be written as:

h,k

04l ® [n)(n| = (Z O(h, k). (n, n)|h><k|> @ [n)(n| (3.15)

and therefore we need to evaluate the matrix elements

O(h.k), Zp P Opn(t)O5,, (s1) (3.16)

The elements of the two-mode squeezing operator are givdd4) (Eq. 22):

<h7’L|S()\)|St> = 6t+h,s+nf)\(h7n; S, t) = 6t+h,s+n X
min(s,t) min(h,n)
Z a+b Sech)\)tJrh a—b— 1Ma b+h— 5w

a=0
(t +h —a —b)![s!t!hIn!]/?
al(t —a)l(s — a)lbl(n — b)!(h — b)!

(3.17)
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wherey = ¢, while the elements of the two-mode mixing operator

min{h,s}

(hn|U(o)|st) = Ohn, s+t Z A th—a
a=max{0,h—t}

mm{h s} I
Ih 5 _
- 6h+n,s+t S't'

a= max{O h—t}
t
<2> < . a) sin ¢° 120 cog gt+2a—h (3.18)

In order to evaluate (3.16), we neéxl,, (st)O;,, (st). Due to thej’s appearing in both
(3.17) and (3.18), the following relations must be satisfied

t—s = n—h
t—s = n-—k.

and this implies = k; therefore the post-measurement state is diagonal in timau
basis:

(0ajn)h, 5hk2pth N1)pi*(N2)|Opi ()| (3.19)

QED.

As a consequence, the entropy of the post-measurementatatee expressed as:
S(ofh) = H({o(h.ny,(nm}) = H(B(A|B = n)) whereH is the Shannon entropy of
the conditional probability(A|B = n) = (p(0,n),p(1,n),---)/p,, and therefore
the overall conditional entropy can be simply expressedrims of the photon number
statistics:

S(AIP.Y) = an P(A|B =n)) =
~ h(HAB) - H(AB) (3.20)

with p(A, B) = {p(A = n,B = m)} andp(B) = {p(B = n)}. In view of this
relation, the only elements of the number basis representat the density matrix
that are needed are the diagonal ones, i.e. one has to detetinei photon number
statistics for the two-mode STS or MTS state. The requirettimmalements can be
obtained in terms of the elements of the two-mode squeernidgexing operators (see
Egs. (3.17) and (3.18) above). One has of course to define# ountthe dimension of
the density matrix. This can be done upon requiring that thar en the trace of each
state considered be sufficiently small;, =1 — Tro < 1073.

We have compared Gaussian and non-Gaussian quantum d{gdgtrahe non-
Gaussian measurements corresponding to photon numbeunragesnts) for STS and
MTS states with a wide range of squeezing, mixing and thepaedmeters. In Fig.
3.1 we show results for STS with varyingandN; = Ny = 1072, N; = N, = 1. The
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Figure 3.1: Gaussian and non-Gaussian quantum discordlferaS a function of\,
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Figure 3.2: Gaussian and non-Gaussian quantum discord T& $thtes as a function
of ¢ for different values ofV; andg = No/N;

key result is that the non-Gaussian quantum discord is a\gegater than its Gaussian
counterpart for all values a¥V; and . The gap grows with increasiny; and\. In
Fig. 3.2 we show results for MT®; = {0.1,1} andg = No/N; = {0,0.1,0.4,0.5}.
Also in this case, the non-Gaussian discord is always hitjfaer the Gaussian one.
Both results indicate that the Gaussian (heterodyne) measnt is optimal for STS
and MTS states, at least compared to photon counting, inethgesthat it allows for a
better extraction of information on modeby a measurement on mode

3.5 Squeezed Number basis

We now analyze the case of non-Gaussian measurementsaetgedy the squeezed

number basi$n,.)(n,.| = S(r)|n)(n|S(r)’, whereS(r) = exp (—r*“—; — r(a;)z) is
the single mode squeezing operator. A local measuremenre soiueezed number basis
is equivalent to a measurement in the number basis, pertbomex locally squeezed

state. In formulas, the probability of measurimgon one subsystem when the state is

thepis

po(ny) = Tr(I@ |ne)(nrlo) = TrIL® [n)(n|S"(r)oS(r)) =
Tr([ @ [n)(n]e") = per(n) (3.21)
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Figure 3.3: Gaussian and non-Gaussian quantum discordlf®mnéth N; = 1 as a
function of A and for different values of local squeezing
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Figure 3.4: Gaussian and non-Gaussian quantum discord T&@ $fates forV, = 1,
N> = 0 as a function ofp and for different values of local squeezing

i.e., is equal to the probability of measurimgon the locally squeezed staté =
S(r)eS(r)t, and the relative post-measurement state is

QAln, = Trp[l® |ng)(neol @ [ne)(ne|]/po(nr) =
= Trp[l® [n)(nle"I® [n)(nll/py(n) = o (3.22)

The general idea is that measurements on a giata basis that is obtained by perform-
ing a unitary (Gaussian) operatidhon the number basija) (n| can be represented as
measurements on the number basis of a modified gtate V oVt on which the local
unitary operation acts.

In the case of the squeezed number basis, the post-measuigate is not diagonal,
therefore the reasoning leading to Eq. (3.20) does not hdle post-measurement
state matrix eIements_o’f;'n)h,k = 0(h,k),(n,n) CaN be obtained directly by evaluat-
ing the expression (3.11) where now the expressign(st) = (hk|O|st) (where
O = S(\), U(¢)) must be replaced with

Ohi(st) = (hk|S(r)Olst) = Y (k| S(r)lq) {ha|Olst)

and the elements of the single mode squeezing operatoname igi [156] (Eq. 20) or
in [153] (Eq. 5.1).
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Figure 3.5: Gaussian and non-Gaussian quantum discordlf®mé&th N; = 1 as a
function of A and for different values of local displacement

We have evaluated the Gaussian and non-Gaussian quantorddigr STS and MTS
states with a wide range of two-mode squeezing and thermaftpters. Non-Gaussian
measurements are done in the squeezed photon numberBasisS (r)|n)(n|S(r)!

with variabler € [0, 0.5]. The effect of local squeezing on non-Gaussian quantum dis-
cord is negligible in the whole parameter range under cenattbn: we compare the
non-Gaussian discord for different valuesrodnd find that all curves collapse. This
can be seenin Fig. 3.3 and Fig. 3.4 where plot the behavidvfoe N, = 0.01 (STS)
andN; = 1, N, = 0 (MTS). The same behavior is observed in the whole parameter
range under investigation. We have verified numerically tha post-measurement
states of model 0’4, are not equal ag varies (i.e., the post-measurement states cor-
responding to measurement resultchange withr), yet the sumy_ an(gg‘n) is
equal for all values of under investigation. Therefore, the squeezing in the measu
ment basis has no effect on the discord, at least for the salisgueezing considered:

in particular, it cannot afford a deeper minimization thhattobtained without local
squeezing. This indicates that the heterodyne measureeraatns optimal also with
respect to measurement in the squeezed number basis.

3.6 Displaced Number basis

We finally analyze the case of non-Gaussian measuremenssegyted by the dis-
placed number basjg,, ) (n.| = D(a)|n){n|D(a)t, whereD(«a) = exp(aa’ — a*a)
is the single mode displacement operator. According to #meerpl considerations
above, a local measurement in the displaced number bastuigaéent to a mea-
surement in the number basis, performed on a locally displatateo®. As in the
case of the squeezed number basis, the post-measurenterisstat diagonal and
we need all matrix elemen(@j‘n)h,k = 0(h,k),(n,n)- They can be obtained directly
by evaluating the expression (3.11) where the expresSign(st) = (hk|S(A)|st)
(whereO = S(\),U(¢)) must be substituted witl;, (st) = (hk|D(a)O|st) =
>, (k|D(a)|g)(hq|Olst), and the elements of the single mode displacement operator
are given in [145] (Eq. 1.46).

The evaluation of the non-Gaussian quantum discord canrbplifed by first
noticing that one can consider real valuesnobnly. Indeed, we can prove that the
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Figure 3.6: Gaussian and non-Gaussian quantum discord T@ &fates forV; = 1,
N> = 0 as a function ofy and for different values of local displacement

quantum discord only depends on the modudus Before proceeding to the detailed
proof (that requires the characteristic function fornmalislet us just sketch the argu-
ment. Considep?, ,,, the post-measurement state of motlafter measurement result

ne is obtained orB. If we change the phase of o — o/ = ¢’ we find that
0% = U0h,U" (3.23)
whereU is a unitary operation corresponding to a simple quadraiegion
as — ase’? aL — aLe‘w (3.24)

Therefore, we havgfj;'n + 0% n butgj‘n andg‘jm have the same spectrum, since they
are related by a unitary. Therefore, the entropy of the redypost-measurement state
%% n does not depend on the phasediut just on«|. If follows that the non-Gaussian
quantum discord o does not depend on the phaseof

Proof. We show that the (non-Gaussian) discord in the displacedeutrasis does
not depend on the phase of displacement for STS and MTS. Thenants is best
given in the characteristic function representation of stedes [145]. The STS and
MTS states have a Gaussian characteristic funatjol(A) = exp(—3AToA) where
A= %(Re)\A, ImA 4, Re\g, ImA ) and the covariance matrix is given by

a 0 ¢ O

A C 0 a 0 =c
U_<CT B)_ c 0 b 0 (3.25)

0 ¢ 0 b

whereZtcis —cin the case of STS anéc in the case of MTS. For STS we have
Xlel(Aa, Ap) = exp(—aldal? — blAp[> + 2cReA4A5]) (3.26)

while for MTS the same expression holds upon chanBiREA a4 Ap] — 2cREA, Ap].
In the following, we shall carry on the argument for STS, the MTS case is fully
equivalent. If we perform a displacement on one made; D(a)oD'(a) = ¢%, the
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effect on the characteristic function is easy to evaluaginglthe relatiorD(a) D(A\) D (a) =
D(X) exp(—2ilm[Aa*]) [145] we obtain

x[e"](Aa, As) = x[el(Aa, AB) exp(=2ilm[Apa’]) (3.27)

Suppose we perform a measurement on mBde the number basi§P,, = |n){(n|}.
The post-measurement state of matis gi‘n = plnTrB[gaHn] wherep,, = Tr[o“IL,,].
By use of the trace formula [145]

™

1
T1(0,0] = * / @™ A X[O1](NX[Oa](~ )
we obtain the characteristic function

1
x[e%n(Aa) = p— CdQ)\B X[Mn](As) x[0*](Aa, —AB) (3.28)
Sincex[IL,J(Ag) = e~ 221" L,,(|]Ap|?), whereL,, is the Laguerre polynomidl, (|Ap|?) =
D )M we have explicitly

n—i !

1
A2ialO) = = [ 35 LA ) exp (el

—(b+1/2)|A|* — 2cREA 4N 5] — 2ilm[Apa™])
(3.29)

In order to see that this expression depend&omnly we can implement the change
a — o = ea and we have

, 1
x[eaml(Aa) = p— CdQAB La([Ap[?) exp (—a|xal?

—(b+1/2)[Ag|* — 2cReAaNB] — 2ilm[Agate "))
By changing variable.z — e~ \5 we see that
X%l (M) = x[% ] (Aae™™) (3.30)

Therefore, we havg[o%,] # x[0%),]. henceos, # 0% . Howevero%  ando%
have the same spectrum. Indegf?, J(A4) and X[gi‘n]()\Aei‘g) are related by a
simple quadrature rotation

aa — aqe? aL — aLe‘w (3.31)

which means that )
% = Uo%,, U (3.32)

whereU is the free evolution of model, U = eifahaa, Sinceo?,, and 0%, are
related by a unitary, they have the same spectrum. Theref@spectrum (hence, the
entropy) of the reduced post-measurement sigte does not depend on the phase of
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« but just on|a|. If follows that the non-Gaussian quantum discordo&fdoes not
depend on the phase af QED.

We have evaluated the Gaussian and non-Gaussian quantconddier STS and
MTS states with a wide range of two-mode squeezing and tHgramameters. Non-
Gaussian measurements are done in the displaced photorenbatis,

P, = D(a)[n)(n|D(a)f

with variablea € [0,2.5]. In Fig. 3.5 and Fig. 3.6 we plot the Gaussian and non-
Gaussian quantum discord. We see that greater displaceieadtto lower values of
the non-Gaussian quantum discord, but the decrease ifiasotf to match the Gaus-
sian quantum discord, which remains optimal. However, the-Gaussian quantum
discord approximates the Gaussian one.as co. Indeed, we find that for both STS
and MTS

Qi‘n = 0%)0 as a— oo (3.33)

Proof. In order to show thapﬁ‘n — 0% @S — oo we adopt the characteris-
tic function formalism. The post-measurement state of médes the characteristic
function (3.29). Since the phase®fs irrelevant for the discord, we will assumes R

in the following. The post-measurement state characiefisiction, Eq. (3.29), is the
Gaussian integral of a polynomial. By using a well-knownkrdf Gaussian integrals,
we can rewrite

1 g
KialO) = e [ g L)

exp (—y|Ag|* + 2cReA 4R — (2cim[A 4] + 2ic)Im[Ag])
wherey = b+ 1/2 and the formal expressioh,,(d/dv) means i (," ;) § 4=
This expression can now be moved outside the integral, savaare now left with a
purely Gaussian integral of the form

/d2AB e*%AqB“MAB+A£B
R

whereM = diag{4, 47}, B = (2cReh 4, —2clmAy + 2ia), A = (Re\g, ImAg).

The integral gives\/%_wezﬁTMflﬁ so that we finally get

1 )
X[0%) (M) = p—e*%a'“‘ Ly (—d/dy) x (3.34)
1 <62|)\A|2a22iaclm)\A>
—exp
2y

Let us definer = c?|\4|?> — a® — 2iaclm) 4. Then we have

1 212412 — a2 — 2iaclm)
Ln<d/dv>—exp<c Aal” = o~ Ziadm A)
Y 2

1
= Ln(id/d’}/)_ex/zv = Fn('y, :L')ez/QFY
0
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(a) Re (b) Im
Figure 3.7:X[g;§|n]()\) for a = 0.1 (red),a = 1 (green),a = 5 (blue) andn = 0

(solid), n = 1 (dashed)» = 2 (dotted). Here, we havd = (N + 1/2)cosh A,
C = (N 4+ 1/2)sinh A with A = 0.5, N = 0.5.

where F,,(v,z) = 3, fx(vy)z* is necessarily a polynomial of degreein with ~-
dependent coefficients; (y). Therefore,

1 2 -1 2
X[0% ) (Aa) = —e(ame (/27T o (3.35)
Pn

e_ic(b_i_l/Q)*lalmkA e—az/QVFn (’y l’)

The norm is
P = ef(a7c2(b+l/2)71)|)\14|267ic(b+1/2)71a1m)\14 «
T (y,a)| = e PR (—a?)
Aa=0
so that
X[0%1,)(Aa) = e~ lom e (OH/2 R 5 (3.36)

o—ic(b+1/2)Tama Fo(v,z)
Fo(y, —a?)

This function is exponentially decaying as**4!* wheres = a — /(b +1/2),
hence it is vanishing fop\ 4| > 1/s. Therefore, we can consider values &f; | in

the regiom\ < 1/s. In this region, we we havém,, ., * = —a? becauser > A
and thus )
o _Falna) _ fa)e’n
a—00 Fn(’)/a _a2) fn(’Y)OéQn
In conclusion, asx — oo we have
x[0%),)(Aa) = x[0%0] (3.37)

which implies the desired result (3.38ED.

This result means that the conditional statedos independent of. and equal to
then = O result. In Fig. 3.7 we show (0% o], x[¢%]; x[0%,] for growing values of
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«. The three curves converge alreadydor 5. As a consequence afindependence,
we have

SNI(AIE) = Y puS(efyn) = S(eljo) (3.38)
But 20 is just the post-measurement state corresponding to PO¥Meit
D(a)|0){0|D'(a) = |a){al

i.e, a Gaussian state with covariance mattix= A — C(B +1/2)~'C* (Schur com-
plement), and meapp = X (B +1/2)~1CT, whereX = («,0). On the other hand,
from the discussion ifi 3.2 we know that the optimal Gaussian POVM is a heterodyne
measuremenill; = D(3)|0)(0|DT(B) = |B3)(8|}. In this case, as already explained
in § 3.2, the entropy of the post measurement statg is independent of the mea-
surement resulf, hence the conditional entropy coincides with the entrdpgfdhe

B = a result. Therefore, we also ha®¢ (A|B) = S5(0%0)- Therefore, we conclude

that the non Gaussian discafdV9 (A|T17) in the displaced number basis tends to the
Gaussian discor®9 (A|B) asa — oo, QED.

To be rigorous, we did not prove that theV9 (A[I17) is lower bounded by>9 (A|B),
and we cannot rule out the possibility that'9 (A|B) < DY(A|B) for intermediate
values ofo. However, our numerical data do not support this possjtslitce we never
observeDN9(A|TTP) < DY(A|B) and we expect thabN9 (A1) — DY(A|B)
from above agy — cc.

In conclusion, we have analytical and numerical evideneg the heterodyne mea-
surement remains optimal also with respect to measuremeheidisplaced number
basis.

3.7 Geometric discord
In this section, we briefly consider geometric discord (}..défined as

Dg(A|B) =infy, cqclleas — eqell3

We recall that this quantity can also be evaluated as a mmimower local measure-
ments

Dg(A|B) = infrslloas — 117 (0a8)|l3

Notice thatDgs and D are not monotonic functions of one another and the relation
between them is still an open question. However, in manyscBgeis much simpler
to evaluate tha.

Analogous to the case of Gaussian discord, a Gaussian neskibve geometric
discord can be defined by restricting to Gaussian measutsif&dj. Again, it can be
analytically computed for two-mode Gaussian states. iéhsame reasoning §13.2
one easily obtains

DE(A|B) = min,,, Tr(oas — opr ® oum)?] (3.39)
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Figure 3.8: (Top) Gaussian and non-Gaussian geometriordi$or STS withV; = 1
as a function of\ and for different values of local squeezingBottom) Gaussian and
non-Gaussian geometric discord for MTS statesNgr= 1, No = 0 as a function of
¢ and for different values of local squeezing

Exploiting the property that Tp102] = 1/ det[(o1 + 02)/2], for any two Gaussian
statesp; ando,

DZ(A|B) = min,,, {1/\/detoap + (3.40)
+1/+/det(op ® onr) 2/\/det [(ca +op @ on)/2]}

For for the relevant case of STS and MTS, the minimum is obthimith theo,, ele-

ments given byy = 8 = ‘ﬁ(“‘“b 362+‘ﬁ) = 0. The least disturbing Gaussian
POVM for STS, according to the H|Ibert Schmldtdlstancehus a (noisy) heterodyne
detection, a result which is analogous to what found in tlse @ quantum discord. If
one constrains the mean energy per mode, the Gaussian gudisitord gives upper
and lower bounds to the Gaussian geometric discord. In absgfrsuch a provision,
the geometric discord can vanish for arbitrarily strongipalassical (entangled) Gaus-
sian states, as a consequence of the geometry of CV statesspac

Also in this case, we may consider non-Gaussian measursraedtevaluate a
non-Gaussian geometric discord:

DYY(AI?) = Tr((oan — 1% (0a5))?] (3.41)
For measurement in the number basis, we can easily obtain

DN = (o) + Y |(pnlolqn) ? (3.42)

npq

whereu(p) =

is the (Gaussian) state purity [145]. In the case of measure-
" m ( ) purity [145].

ments in the squeezed or displaced number basis, we have 6 aado* instead of
oin Eqg. (3.42). In general, in order to compute the geometscatd we need to com-
pute matrix elements, and we use the same numerical metlesdslid above. Note
that by the same arguments leading to Eq. (3.32) we can dexllthat the geometric
discord noes not depend on the phasa tike the normal discord.
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Figure 3.9: (Top) Gaussian and non-Gaussian geometriordi$or STS withV; = 1
as a function of\ and for different values of local displacemen{Bottom) Gaussian
and non-Gaussian geometric discord for MTS statesVioe= 1, N, = 0 as a function
of ¢ and for different values of local displacement

3.7.1 Results

We have compared the Gaussian and non-Gaussian geomstiardifor STS and
MTS in a wide range of parameters. We have considered measute in the number,
squeezed number and displaced number basis for the sames \ailthe parameters
given in the preceding sections. Results are plotted in. Bigsand 3.9. In general, at
variance with the results for quantum discord, we find that@@ussian measurements
can provide lower values of geometric discord than Gaussieas. Among the class
of non-Gaussian measurements we have considered, theabptimis provided by the
number basis, which gives values of geometric discord ttesdlavays lower than those
given by the optimal Gaussian measurement. The non-Gaugs@netric discord in-
creases for increasinganda, and it can become greater than its Gaussian counterpart.
These results are very different from the quantum discosd:can one hand, the (non-
Gaussian) geometric discord is substantially affectedhigylécal squeezing; on the
other hand, it does not approach the Gaussian one when thlaaimenty — oo,
but it grows monotonically. Indeed if we increase the sqirepnr displacement in
the measurement basis, the post-measurement state is istard ¢(in Hilbert-Schmidt
norm) from the original one. As already noticed, performing measurement is the
squeezed (displaced) number basis in equivalent to firstesgijog (displacing) the state
and then measuring it in the number basis. The local squgernid displacement have
the effect of increasing the energy of the state, shiftirggghoton number distribu-
tion P(B = n) towards greater values ef This causes the overlap between the post
measurement state and the original state to decrease, aradatfe their distance to
increase.

Let us further comment on the difference between the quamtisoord and the
geometric discord cases. Quantum discord and geometcordi®oth vanish for clas-
sical states, but are not monotonic functions of one anptret thus they are truly
different quantities. The geometric discord, based on titteekt-Schmidt distance, is
a geometric measure of how much a state is perturbed by arteeadurement, while
quantum discord assesses to which extent correlationsfi@atesl by a local mea-
surement. While for the quantum discord well-defined openat and informational
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interpretations can be found [71, 82], for the geometricalid the situation is more
problematic. Indeed, one can design protocols in which ganetric discord can in
some cases be related to the protocols’ performances [Th@&»4ever, recent discus-
sions [31], show that, as consequence of the non-invariahtiee Hilbert-Schmidt
norm under quantum evolutions, it is difficult to find a corsile argument about the
relevance of geometric discord as a measure of quantumhesgelations. Our data
show that non-Gaussian measurements can yield optimawvalithe geometric dis-
cord, contrary to the case of quantum discord. Hence, thavieof quantum discord
and geometric discord with respect to different types ofsneaments is different. This
is a further indication that the geometric discord cannatiged as a good benchmark
for the quantum discord and that the degree of quantumneasures, if any, by such
a quantity has a fundamentally different nature.

3.8 Discussion and conclusions

The definition of discord involves an optimization over atissible local measure-
ments (POVMSs) on one of the subsystems of a bipartite cortgpgsantum system.
In the realm of continuous variables (CV), initial reseaefforts on quantum discord
restricted the minimization to the set of (one-mode) Gaussieasurements.

In this work we have investigated CV quantum discord beybigirestriction. We
have focused on Gaussian states, asking whether Gaussisumments are optimal
in this case, i.e., whether the Gaussian discord is the iso®id for Gaussian states.
While a positive answer to this question had already beesngior the special case of
two-mode Gaussian states having one vacuum normal modeédhysrof an analyti-
cal argument based on the Koashi-Winter formula), no génesalt was available so
far. We have addressed our central question upon congiprinlarge classes of two-
mode Gaussian states, the squeezed thermal states (STiBpantked thermal states
(MTS), and allowing for a wide range of experimentally fédasinon-Gaussian mea-
surements based on orthogonal bases: the photon numberthassqueezed number
basis, the displaced number basis. For both STS and MTS sitatbe range of param-
eters considered, the Gaussian measurements alwayseaoptichal values of discord
compared to the non-Gaussian measurements under andlgsisl. squeezing of the
measurement basis has no appreciable effect on corredatidrile local displacement
leads to lower values of the non-Gaussian discord, whichcgghes the Gaussian one
in the limit of infinite displacement.

Overall, for the explored range of states and measuremeatisave evidence that
the Gaussian discord is the ultimate quantum discord fors€ian states. We note
that the optimality of Gaussian measurements suggestedignalysis is a property
which holds only for Gaussian states. In the case of non-Gaustates, e.g., CV
Werner states, non-Gaussian measurements such as phottimgaan lead to a better
minimization, as was recently proven in Ref. [62].

We also have investigated the CV geometric discord [63],ganing the Gaussian
and non-Gaussian cases. We have shown that the behaviopwfetréc discord is
completely different from that of quantum discord. On onadyaaon-Gaussian mea-
surements can lead to lower values of the geometric distweahumber basis measure-
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ment being the optimal one; on the other hand, the effectsitf local squeezing and
displacement are strong and consist in a noteworthy iner@athe non-Gaussian ge-
ometric discord. The remarkable differences between guaand geometric discord
imply that the latter cannot be used as a benchmark of thediorm

Both in the case of the discord and geometric discord a defamswer on the op-
timal measurement minimizing the respective formulas waeluire the extension
of the set of non-Gaussian measurements to possibly moié extes and the ap-
plication of those realizable in actual experiments to alley class of Gaussian and
non-Gaussian states. While we leave this task for futuesare$, our results on discord
support the conjecture that Gaussian measurements aneebfiir Gaussian states and
allow to set, for the class of states analyzed, a tighter uippend on the entanglement
of formation forl x 2 modes Gaussian states, via the Koashi-Winter relation.



Chapter 4

An Introduction to decoherent
histories

4.1 Introduction

Few topics in physics have ever been a source of wider disawet, and have ignited
a fiercer debate than the interpretation of quantum mecbakiost of the times, pur-
ported solutions to the problem have encountered morewliffis that they wished to
get rid of, and aroused more skepticism than they wished éwoowme. Among the
most contentious solutions, | may just remind Everett's yranrlds interpretation —
whose awkwardness can elicit an almost rabid rejection erp#rt of many people,
or Bohm'’s pilot wave theory — that many consider nothing ntbes a convoluted and
unnecessary effort to save realism in quantum physics. Boyra physicist, the whole
topic ofdecoherenbr consistent historiegl63, 164, 165] may be just another chapter
in the endless book on interpretations of quantum mechamice, purely interpreta-
tional and foundational issues have played a key role in éveldpement of this topic.
But there is much more to it.

This thesis is not concerned with the foundations of quamechanics and the re-
lated quarrels. Rather, | wish to show how foundationalus@ns, apparently de-
tached from the urges of the “working physicist”, have ofeghto the development of
new concepts and tools that have later proved useful (ifmtspensable) to solve and
discuss more mundane physical problems. According to thi&,d view decoherent
histories not as an interpretation, but rather dargguagethat, under diverse condi-
tions, may prove effective in formulating and analyzing giogl problems of interest.
In this sense, | believe that the study of decoherent hestdras something in common
with the whole field of decoherence [167]: It contributes kari€ying how informa-
tion is produced by, and how it can be extracted from quantstems. This fact is
epitomized by a tight relation between decoherent hisdaiel the notion of quantum
dynamical entropy, which will be the subject of Chapter 5.

This chapter is intended to be a concise review of decohdiisturies. My way of
presentation will be tailored to my main goals, i.e., pravile reader with the mini-

72
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mal range of notions needed to understand to the work exposathsequent chapters.
Nevertheless, for the sake of completeness | will briefly tis@rsome interpretational
issues and difficulties that have inspired the creation@fdinmalism, and still make it
a disputed topic.

This chapter is organized as follows: §r.2 | will review the basics concepts of the
decoherent histories formalism. §0.3 | will briefly discuss the connection between
decoherent histories and the wider notion of decohererdairh no originality as for
any of the concepts exposed in this chapter, except for tiyeofaresenting them.

4.2 quantum histories

The formalism of decoherent (or consistent) histories heentreveloped by several
authors under slightly different perspectives. The apgtidaas been pioneered by
Griffiths [163], who named itonsistent historieand whose main goal was to provide
quantum mechanics with an interpretational framework @kebthe concept of mea-
surement. Griffiths’ approach was was later embraced by &ritb64]. Griffiths and
Omnés’ basic achievement was to find a consistency conditi@er which quantum
mechanics can be applied to closed systems, giving predgfor specific sequences
of events in time (histories). Later, Hartle and Gell-Massentially rediscovered the
formalism of consistent histories while trying to apply gtiam mechanics to cosmol-
ogy [165]. They called their approactecoherent historieghe terminology that we
will use throughout this work. Gell-Mann and Hartle’s foriisen is nearly equivalent
to Griffiths’, apart from a slight reformulation of the costgncy condition and a higher
emphasis on physical mechanisms of decoherence that secfuiéillment.

What unites all authors is the yearning to consistently yapjplantum mechanics to
closed systems - what is precluded in the standard intefimatof quantum mechan-
ics. According to the latter, quantum mechanics can onlgiptehe probabilities of
experiment outcomes. Experiments must be performed by sgew (a device or an
observer) that is external to the system, which then by defimbught to be open.
Furthermore, it is postulated that the measuring agent olasgical mechanics - a re-
quirement macroscopic devices or observers are gengrazsgdlumed to satisfy. This
framework is totally satisfactory for the original aim ofaptum mechanics, that was
developed as a theory to describe macroscopic observaifomscroscopic (atomic
and subatomic) systems. In this setting, the quantum cbjassical observer dualism
is neither a problem nor a limit. However, after quantum nagits was successfully
applied to explain the behavior of matter from elementaryiglas to large molecules,
people started to think of it as a universal theory that sthaulequately describe any
physical system, regardless of its size. In principle, gt be even possible to consis-
tently describe the whole universe in quantum mechanioaidea mission that defines
the field of quantum cosmology.

Decoherent histories were born to address these challemgkeset up an interpreta-
tional framework for quantum mechanics that does not requieasurements and ob-
servers (even if it can consistently include those, too)his framework, the physics
is essentially the same as in the standard formalism, bwgrarpnts are replaced by
the consistency condition and probabilities of measur¢imeicomes are replaced by a
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prescription to compute the probabilitiestotories The key role assigned to histories
has several motivations [169]. First, histories are so genie cover virtually all sit-
uations one may be interested in describing. Second, tlasisical limit are classical
trajectories, which makes the decoherent histories fasmagbarticularly convenientto
study the quantum-classical transition. Third, in cosrgglone needs to reconstruct
a “narrative” of past events: Histories are the right tootémstruct a narrative that is
compatible with quantum mechanics.

4.2.1 Events and histories

In what follows, | will introduce the notion of histories oftdosed quantum system. As
I mentioned above, | look at histories primarily as an effectanguage to talk about
quantum physics. In my opinion, such a language is stronffjiyeato the so-called
quantum logiadeveloped by von Neumann in the classic paper [168]. Sineatgm
logic provides us a nice conceptual toolkit and a usefulclexj | will glean a few
words and concepts from it.

Let us consider a finite-dimensional quantum system cheniaetd by a Hilbert space
H with dimH = d and a unitary dynamicE (t) = e~* generated by a Hamilto-
nian H. We can start by introducing quantueaentsthat are the elementary building
blocks of histories. According to von Neumann, “saying stitimg” about a quantum
systems, i.e., specifying a property thereof, is equivalerspecifying a linear sub-
spaceP C H. For instance, the proposition “the system has enérgis encoded the
subspacé®y, the energy eigenspace correspondingyto

Pe=Y |E s)(E,s| where HI|E,s)=E|E,s)

Linear subspaces ¢f are in one-to-one correspondence with projectors, i.erap
tors P such thatP”? = P. To anyP we can indeed associate the projedfosuch that
V|¢) € H, Pl¢p) = |¢') € P. In what follows, we will then identify” andP.

Hence,any quantum proposition can be identified with a projeckar This allows
to develop a logical calculus based on projectors:

e The logical negation of is given byl — P, which projects onto the subspace
complementary té.

e Given P; and P, their logical product (“and”) is given by = P, P,. This
is well-defined only when the two projectors commute P> = P, P, which
implies thatP is a projector too. The producd? P, specifies joint properties
of the system. Two proposition3,, P, areexclusiveif the projectors (and the
corresponding subspaces) are orthogoRak; = 0.

e Given two exclusive proposition®; and P, we can define their logical sum
(“or”) by summing projectorsP = P; + P,. Orthogonality guarantees thatis
a projector too.
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e A set ofn exclusive proposition®;,j = 1,...,n, PP; = d;; is exhaustivef
the projectors sum up to the ident@;?:1 P =1L

A quantumeventis defined as a paiP, ¢ of a projectorP and a timet. It can be in-
terpreted as an objective statement that the proposRitiolds at timet. A logical
calculus with events immediately stems from the above klgiaelculus for proposi-
tions. Accordingly, two event®;, t, P, t areexclusivef their projectors are orthog-
onal P, P, = 0. A set ofn exclusive eventdt, P;}, P,P; = 0,Vi,j € {1,...,n}
at timet is exhaustivef the projectors sum up to the identitZ:?:1 P; = 1. An ex-
haustive set of exclusive events corresponds to the pessitttomes of an orthogonal
measurement (von Neumann measurement) atitime

Given an ordered sequence of timgs< --- < ty, a history is defined as a se-
quence of eventy = P'.t;..., PN ty. If we have N exhaustive sets of events
{te, P}, je = 1,...,ng with P{ P{ = &;,1,, >, Pj, =1, we can define an exhaus-
tive set of exclusive histories a = {h;}, whereb; = ¢, lel, oty ijl\’V and the
multi-indexj = ji, ..., jn labels different alternative histories. For simplicity,the
following we will always denote a history with the corresplamg multi-index j instead
of the “heavier” notatior;. The projectorstg are formally equivalent to a projective
measurement for each.

4.2.2 fine-graining and coarse-graining
coarse-graining

A set of historiesC corresponds to a description of the system in time. A lesaildelt
descriptionX’ can be obtained from it by a process caltahrse-graining whereby
the events of the new histories Bf are defined by taking the logical sum of events
of histories inX for all times. For instance, given two exclusive historjek the
coarse-grained histofyv k is defined byt,, Pf[ + P,f[ , V¢, that is by taking the sum of
projectors for each time.

In general, given a sét of exclusive and exhaustive histories, we can obtain &sef
coarse-grained histories by the following coarse-gra@procedure. For eaah, there
areny projectorsPﬁ,jg =1,...,ny. We can partition the set’ = {1,...n,} into
my < ny disjoint subset@fl,jg =1,...,m,. To eachj,, we associate the projector

P, = 2]2623[ Pj,. The resulting set of histories labelled py= ji, ..., jx is a set

of coarse-grained exclusive and exhaustive historiesidisly, by applying a similar
coarse-graining procedure ¥ we obtain a new set of historiés” with a higher
degree of coarse-graining.

A special type of coarse-graining is themporal coarse-grainingConsider a coarse-
graining such that at some timgwe havemn, = 1 and correspondingly we have only
one coarse-grained projectff = > jext Pf, = 1. Then histories irt’ contain no
event at timef,y, becausd is a trivial event that can be neglected and hence removed
from the string of projectors defining the history.
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fine-graining

Conversely, given a sef of exclusive and exhaustive histories, we can obtain a set
Y of less coarse-grained (more fine-grained) histories tjindhe opposite procedure
calledfine-graining For eacht,, there areq, projectorstE,jg =1,...,n Ifny < d,

at least one of thePﬁ is not one-dimensional. We can thus define a sehpffine-
grained projectorsd( > my > ny) Pﬁi by “splitting” projectors with TP;, > 1 into
projectors on lower-dimensional subspaces. L&®;Tr= n;, and partition the set
1,...,mg into n, disjoint subset<;, with |X;,| < nj,. We can then define fine-
grained projector?;l asphj, =35, es;, 133[, The resulting set of histories labeled by
j=17ji,...,jn is asetof fine-grained exclusive and exhaustive histoAemporal
fine-graining at time, is obtained by inserting events &t that is, by splitting the
trivial eventl at¢, into the sum of more events.

complete fine-graining

In the literature histories that have one-dimensionalgagjrs for all times (and hence
admit no further fine-graining except for temporal ones)aften simply calledine-
grained A history iscompletely fine-graineiflit admits no further coarse-graining tout
court. Completely fine-grained histories are given by sagese of one-dimensional
projectorsP;, for all timest > 0. A completely fine-grained set of histories affords to
the maximally detailed description of a system. Complefiely-grained histories con-
stitute the basis of Feynman’s sum-over-histories fortmeof quantum mechanics,
which we now briefly review in the decoherent histories |aamggi

The quantum-mechanical amplitude between siateat timet, and statéo ) attime
tyis given by(¢;|U(t; — to)|1bo). Upon insertingV decompositions of the identity
>, P, =Tlattimest, = to + (At with At = [ty —to|/(N + 1), we get

(GplU(tr —to)lbo) = D> (Ss[U(ts — tn)PiyUltn —tn—1) Py, %
j=j1.-.dn

U(tN—l — ﬁN_g) .. .leU(ﬁl — to)l’t/}0>
Using the Heisenberg representation
PL(t)=UNt—t)PLU(t—t0),  |6f)) =Ul(t; —to)lés), ") = ko)

as well as the notatiofij = P;Y (tn) ... P} (t1), we get

rlvo) = S0P Csledy = S (0 ™)

J J

where|wj(h)) = Cj|wéh)). Thus we can express the transition amplitude as a sum
over amplitudes, each amplitude corresponding to a spéiciéigyrained history. The
histories become maximally fine-grained in the lilNit— oo, At — 0. For an infinite-
dimensional system we can consider projections correspgrad sharp values of the
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continuous coordinate’, = |¢)(¢g|. Hence in the limitV — oo, At — 0 histories can
be labeled by a continuous indef) and the sum becomes a path integral,

(7|0 = /Dq <w}h)|€i8[q(t)]|1/’(()h)>

Here, S[q(¢)] is the fundamental action associated with histgfy). The physical
meaning ofy depends on the system at hand and its configuration space.foticle
living in a one-dimensional space it is a real spatial cauaté. More in general, is a
shorthand for an arbitrarily long string of values that sfyecoordinates in a configu-
ration space of arbitrary dimension. In the extreme casenes looking at histories
of the whole universe: theq(¢) should include the values of all fundamental physical
fields.

4.2.3 Probabilities of histories

In the standard formulation of quantum mechanics, givencueece of N projec-
tive measurements we can predict the probability of any esecgl of outcome$ =
j1-..jn, provided that we know the initial state and the dynamicsegowg the sys-
tem, which is unitary for a closed system. If the initial stet pure — hence represented
by a vectorjy)y) — outcomeg = j; ... jy are obtained at times, . . ., ¢y with proba-
bility

ps = 1P Uty —tn-1) P\ U (En—1 — tn—2) ... P U(tr —to) [wo) |I* = |||v3)]?

JN -1

where|y;) is an un-normalizegath-projected vectorAfter outcomeg = ji ... jn
are obtained at times, . .., ty, the system is left in the sta%h/)j}.
J

Upon adopting the Heisenberg representatirit) = UT(t —to) P;, U (t —to) we can
rewrite the formula above as

pi = [P (tn) PR " (v 1) - Py, (1) [0 (4.1)

IN-1

If the initial state is mixed — hence represented by a demsétrix oy, outcomeg =
J1...jn are obtained at times, . . ., t;y with probabilityp; = Tr[ej;], where
ij EPJ-ZIVV U(tN - tN—l)ijyvillU(ﬁN—l — tN_Q) e le U(ﬁl — ﬁQ)QQX

Ut(ty — to)Pj, ... Ut (tn-1 — tn—2) PN U (tw — tn-1) P

is an un-normalized path-projected density matrix. Aftetcomesj = j;...jy are

obtained at timesgy, ..., ¢y, the system is left in the statzégj. In the Heisenberg
J

representation, we can write

Pj = Tr[PJJX[ (tN) - le (tl)QOPj1 (fl) . PJZX] (fN)] (42)

Introducing thenistory operators’; = P\ (tn) ... P}, (t1), we thus have:

p; = ||Csw0)||?  (pure states)  p; = Tr[C; gOCjT] (mixed states) (4.3)
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In the decoherent histories formulation, formulas (4.3) still of use, but the inter-
pretation is differentProbabilities are not assigned to measurement outcomegpbu
histories within an exhaustive set of exclusive historiedlternatives at each time are
characterized by projectors, that are generally not aasmtiwith measurements, as
they would be in the standard view. Probabilities are aggign sequences of events,
independent of whether a system interacts with an extereaknring device (or any
system whatsoever). However, probabilities cannotdsistentlyassigned to each
and anyX.. Indeed, for an arbitrar}., probabilities (4.3) do not comply with the classi-
cal rules of probability logic, as we will shortly demongsé&aProbabilities can assigned
only to thoseX that satisfy a particular consistency condition, catledoherence con-
dition.

4.2.4 the decoherence (or consistency) condition

Classically, for a coarse-grained history we would expgek = p; + px. Instead,
what we find applying formula (4.3) is

pivk = Tr[(Cj + Ci)o(Cs + Cx)'] = py + px + 2Re(Tr[(Cj0CY])

Thus, the classical rule for the sum of probabilities is aietl. The non-classical
term ReTr[(Cj gClT(]) represents quantum interferencecoherencéetween the two
histories. The interference can be constructive or detstridepending on whether
Re(Tr[(C;0C{]) > 0 or RETI[(C50C1]) < 0.

In the standard approach, coherence manifests itself ifattiehat probabilities for
a sequence of measurement outcomes depend on whether stimaegperiments are
performed or not, and with which accuracy. The most commamgte is the double
slit experiment. Let us consider a photon emitted by a soSiratt,, passing through
either of two slits { or R) at timet; and hitting the screen at tinte. The probabilities
p. that the photon will hit different points on the screen depend on whether detec-
tors are placed in front of the slit to determine which sli tphoton goes through. If
AL AR represent the amplitudes for the photon to reatkaving passed throughor
R we havep, = |AL + AE|2 if no detectors are present, else = |AL|? + |AZ 2.
In the language of decoherent histories, the two histagies, to, x andty, R, t2, x do
not decohere, and thus the probabifity, r of the coarse grained histoty, « (which
is a temporally coarse-grained history where we ignore lteeratives a time, ) is not

givenbypr, + pr.

The condition under which the classical probability rulédsds that interference van-
ish,
Re(Tr[(CjoCy]) = 0 (4.4)

Given a sek of exclusive and exhaustive histories, if interferencastaes for all pairs
of histories,

Re(Tr((CjeCL]) = 0,V) # k (4.5)
we say that histories itx are weakly decoherentr weakly decoheteand > obeys
weak decoherencgghe specification “weakly” is needed to distinguish thigesion
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from stronger ones that we will mention below).

Weak decoherence B is necessary and sufficient to ensure that the classicahprob
bility rules apply to histories if.. Assume indeed that weak decoherence hold&for
and consider a coarse-grainiRgof 3. The probabilities the histories &f are

= > e > DT TP (1) Py (80P, (1) .. Pry (1))

Jj1€J1 k1€5 JNEIN ENEIN

where we have used the notatign € j, as a shortcut of, ¢ Eﬁf[. Due to weak
decoherence, this formula simplifies to '

pi= Y Y, TP (1) .. P (D)ol (1) ... Py (1)] =
J1€J1 JNEIN
1€ JNEIN
Oviously, if S obeys weak decoherence, so dé#sas well as any futher coarse-
grainingsS”, since probability sum rules continue to be valid.

The basic axiom of the decoherent histories approach isolf@ving: probabili-
ties can be assigned only to individual members of a set oklywekecoherent histo-
ries. A set of exclusive, exhaustive, and weakly decoherenvhiést provides a set of
alternative descriptions of the system in time that conspligh the rules of classical
probability theory. Within such a set, we can make predigiand retrodictions. The
conditional probability of a subset of evers, j;},¢ € A C {1,..., N} given the
remaining events$t,, j,},£ € A= {1,..., N}/A can be defined as

pi
DUy e Al ted = — (4.6)
P{jey eeA
For instance, the probability of events, 1, ..., jn given that eventgy, ..., j, have
already occurred (prediction) is
Pji...5
Pjoia.jnlinde = ]‘1 ].N (4.7)
p]l---]é
The probability that events, . . ., jy—1 happened in the past, given the present event
jn (retrodiction) is
Pji.jnalin = ] (4.8)
p]N
Weak decoherence ensures that all the above defined coradpimbabilities correctly

add up tol.

A particular usefulness of retrodictions is in cosmologhigne an important goal is to
reconstruct the past of our universe on the base of curréat @éthin the standard in-
terpretation, no statement can be made about what happettesifar past, not even in
probabilistic terms, because no measurement was perfaathdt time. On the con-
trary, the framework of decoherent histories can easilpaconodate such statements.
Within this framework, one can legitimately speak of whaappens” or “happened”
in the universe (the number of possible histories for theenlable universe has been
evaluated in Ref. [182]).
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425 The decoherence matrix

The matrix

Dy = Tr[C50CY] = TI[PY (tn) ... P} (t1) 0o P} (1) ... P T (tw)). (4.9)
is calleddecoherence matriar decoherence functionélwill reserve the latter termto
the case of infinite-dimensional systems). The diagonaietes inD are probabilities
of histories and its off-diagonal elements are coherenetsden pairs of histories.
Weak decoherence implies that the real parts of the offesiabelements of the deco-
herence matrix vanish.

We can immediately verify thaP;y is diagonal injx, kv,

D =TrPY Uty —tn-1)... P, U(ts — to)ooU' (ty — to)Pe, ... Uty — tn—1)PL] =
= ijNTr[Pj]X,U(tN — thl) Ce PlU(tl — tO)QOUT(tl — t())Pl . U(tN — thl)]

due to the orthogonality’;, Px, = d; k. Stated otherwiseDjy is block diagonal
with each block corresponding to a fixgg. Furthermore, the following properties
hold

o D =Dl (D =Dy)
e Tr[D] =1,indeed T[D] = 3 ; Dj; = > ;p; =1
¢ the size of the off-diagonal elements is bounded by the gideagonal elements,
IDik|* < DjjDixc (4.10)
and hence the matrix is positive (semidefini®)> 0.

For a pure initial state, the last property immediatelydai$ from the Schwartz in-
equality for the scalar product i, sinceDjx = <¢O|CJ.TCk|1/)0> = (Y3lx), Dy =

(ol CI Ciltpo) = Il[v3)]12, Drae = (10| CLCulvoo) = [[¢hac)|[*. For a general density
matrix, consider

Tr[C;0C]] = Tr[C50"/20*/2C] = Tr[C;0/%(Cr0'/?)1) (4.11)

Since the Hilbert-Schmidt scalar product between two dpesas defined a4, B) =
Tr[Af B, the last expression is just the Hilbert-Schmidt productpf'/? andCy o'/2.
The Hilbert-Schmidt respects the Schwarz inequalityA’ B]|? < Tr[ATA|Tr[B' B].
By applying the latter, the desired result follows. Finallje expressioD;x =
Tr[(C;0'/?(Cx0'/?)T] implies thatDjy is the Gram matrix of the set of linearly in-
dependent vector;0'/2}. Thus, it is a semipositive definite matrix.

The decoherence matrix is a Hermitian, positive, trace+oa&ix and thus has the
same properties of a density matrix. In the next chagtérX) we will show that such
an interpretation is indeed warranted, becaDlsean be seen as the density matrix of
a set of registers interacting with the system in such a wag affectively induce the
projective measuremeniy, on it.
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4.2.6 Medium decoherence

While the weak decoherence condition is sufficient to enthatthe probability rules
apply, several authors — most notably, Gell-Mann and Hartlave proposed to replace
it with the stronger condition that both the real and imagjrarts of the off-diagonal
terms of the decoherence matrix vanish:

Tr[C;0Ct] = 0, V), k (4.12)

This condition is callesnedium decoherende the literature. It implies that the deco-
herence matrix is diagondjx = djkp;-

There are several strong arguments in favour of medium ageabe, as opposed to
weak decoherence as the right condition to assign probiabito a set of histories.
First, there are several physical mechanisms that can ¢emedium decoherence, but
it is hard to think of any that may lead to weak decoherenceealwithout inducing
medium decoherence at the same time. Indeed, in most in estiens weak deco-
herence between histories arises only as a consequencarséagraining (seg 4.3)
and environmental noise. In this case, weak decoherendeaysaccompanied by
medium decoherence. Second, there are strong concepjuaha@nts [179] pointing
out the inadequacy of weak decoherence, of which | will ntanthe most striking.
Consider two independent systesh@nd B with density matricegp 4, andep and two
independent sets of histori®s, = {j} andXz = {j'} for A andB respectively. Inde-
pendence implies that the compound systéf has density matrix g = 04 ® 05.
FromX 4 andX z we obtain a natural set of histori&= {jj’} for the joint system by
taking P/ o= P Pj’z’e , with a decoherence matrix

If ¥4 andX g are weakly decoherent, we would exp&cto be weakly decoherent as

well. However, we can immediately verify that
Re(Tr[C{'0aCi]) = 0.Vi #k,  Re(Tr[CFopsCi]) = 0,9 # K

does not ensure
ReD}j ] = 0, Vij' # kK

If weak decoherence holds for two statistically independgstems, it is not guar-
anteed that it holds for the composite system that joins themother words, if we
can separately assign well-defined probabilities to gieta of histories ford and B,
which are independent systems, it might be impossible tigasegell-defined proba-
bilities to the corresponding histories for the joii3 system. This can be regarded
as a serious drawback, since it collides with any notionatistical independence. By
inspection, on can see that the medium decoherence candities not suffer from
the same flaw: medium decoherence for independent compsyseimsioesimply
medium decoherence for the composite system.

For the case of pure states, medium decoherence is equit@tae presence of so-
calledgeneralized recordsindeed the medium decoherence condition can be rewritten
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as (¢;|x) = <1/)0|CJ.TCk|1/)O> = 0. The orthogonality of théy;) is equivalent to the
existence of orthogonal projectors

PiPc=dpPy, Y Py=I  PiCilth) = 5uCiltho)
j

Remind thatC; need not be themselves projectors. Theogether constitute a pro-
jective measurement on different histories of the systerd sa they yieldyeneralized

recordsof the history. This suggests that medium decoherence msg as a con-
sequence of physical decoherence, when each branttbecomes correlated with
orthogonal states of the degrees of freedom that are traczdy the coarse-graining
procedure (see the discussiorin.3).

4.2.7 Decoherent histories and generalized measurements

In the literature, one finds also a more general definitionvehe[180, 181]. Instead

of a (time,projector) pait, P, we can specify a timé and a positive operatdt. A
positive operator has an eigendecomposifior: >, g» P» whereP, are orthogonal
projectors ang, > 0. As a weighted sum of orthogonal projectors, a positive ajoer
defines and “unsharp” event where Hilbert subspa®eare assigned weights,.. An
exhaustive set of events at timean be defined as a sétof n < d? positive operators

Ej such thatys7_ | & = 1. An exhaustive set of events thus defines a generalized
measurement, or POVM at time Events in the set are not required to be exclusive,
i.e. we can havés; £, > 0 for k # j.

Given an ordered sequence of timgs< --- < ty, a history is defined as a se-
guence of event§ = E', ¢, ..., EN ty. If we haveN exhaustive sets of events
{ts, Efg},je =1,...,ng with, Zje E;, =1, we can define an exhaustive set of (non-

exclusive) histories as
Y= {b,]} - {tlvE]llv"'atN;E;YV}

where the multi-indej = j1, ..., jn labels different alternative histories. As already
done in the case of projective measurements, we will denbtstary with the corre-
sponding multi-indexj instead of the “heavier” notatialy.

When a POVM is performed on a statethe post-measurement state corresponding
to E; is given bypijAng;, where A; is a square-root of/;, i.e., an operator such

that A;A! = E; and wherep; = Tr[oE;] = Tr[Ang;]. In other terms, the ef-
fect of a POVM on a state is specified only if we specify a cqroesling quantum
operation with Kraus operators given by tHg. Given a given a sequence of gener-
alized measurements, we we can predict the probabilitydf saquence of outcomes
j = j1-..jn, provided that i) we know the initial state and the unitarynamics
governing the system. ii) for eacE]‘fE” we specify a quantum operation with Kraus
operatorsd{, such that thafs! = A?Af.
If the initial state is pure, outcomgs= j; ... jy are obtained at timef, . . ., ¢y with
probabilityp; = |||+;)||?, where

|’L/)J> = .Aj\ij(tN - tN_l).A]-Vil U(ﬁN_l — ﬁN_g) . .Ale(tl - t0)|w0>

JN -1
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is an un-normalized path-projected vector (after outcogpes. j are obtained, the
state of the system '@—% )3)-
J
If the initial state is mixed, outcomgs= j; ...jy are obtained at timef, ..., ty
with probabilityp; = Tr[g;], where
ij = Aé\lfv U(tN — thl)A]-Vil U(thl - tN,Q) PN .Ale(tl - to)gox

JN -1

Uttt —to)Aj, ... Ul(tn—1 — tn—2) AN Uty — tn—1) AN,

IN—-1

is an un-normalized path-projected density matrix (afiticomesj = j; ... jy are
obtained the system is left in the stap%j@j).

Upon adopting the Heisenberg representatignt) = U (t).A;, U (t) and the history
operators’; = AN (ty)... Aj (t1), we can rewrite formulas above as

pi = ||Cs[v0)||?>  (pure states) p; = Tr[ngonT] (mixed states) (4.14)

In the decoherent histories formulation for generalizedsaeements, formulas (4.14)
represent the probabilities of histories within an exhiaastet. Again, probabilities are
to be assigned only to sets of histories that satisfy the weakherence (consistency)
condition

Re(Tr[Cj00Cy]) = 0,7 # k

or the medium decoherence condition
Tr[Cj00CY] = 0,Vj # k
The decoherence matrix is expressed as

Dj = Tr[C00CL] = TrAY, (tn) ... A} (t1) oo AjT (1) ... AV (tw)]. (4.15)

IN

4.2.8 criticisms to the histories interpretation

To close this section, we briefly mention some main criticighmat have been raised
against the decoherent histories interpretation (for ticatireview, see [174]). The
first issue is that several consistency conditions have pegposed in the literature:
in addition to weak decoherence and medium decoherencey; atlthors have pro-
posed different criteria called feasibility [178], lineeonsistency [177], ordered con-
sistency [175]. There is disagreement over which conditothhe most appropriate.
Second, and more important, the weak decoherence con(btiéor what matters, any
other consistency condition among those proposed) is iergémsufficient to single
out a single set of histories. Thus the pictures of physiesrgby the many different
consistent sets have to be assigned equal fundamentad,statn if they are gener-
ally incompatible with one another. Third, examples candasfl where two contrary
propositions — statements corresponding to orthogon@@tions — can be retrodicted
from the same data, each with probability one, in differets $176]. Fourth, given a
propositionP that should be logically implied bg), PQ = QP = P (or P < Q),

if @ can be assigned a given probability within a decoherentfdeistories, it is not
guaranteed that alsB can. Thus strictly speaking cannot be inferred frond). For
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instance, we cannot generally infer from the observatian dparticle was in a given
region at a given time that the particle was in a larger regmmtaining the first [175].
While these points are of fundamental importance for ingggional concerns, and
affect the status of decoherent histories as a theory, wenafldwell longer in this
discussion since it is outside the scope of this thesis. Astioreed above, we take a
rather pragmatic view and regard decoherent historieslynama useful language to
discuss physics, independent of interpretational subslet

4.3 quantum histories and decoherence

In Hartle and Gell-Mann’s view, one of the central goals af ttecoherent histories
approach is to explain the transition from the quantum wtwlthe classical world of
familiar experience. In the latter domain, one can give aitent description of a sys-
tem where the values of all classical variables (such agippsind momentum) can
be simultaneously specified, and, furthermore, show cafiogl patterns that are well
described by classical laws. Such a description can be fatediin terms of classical
histories, that are always decoherent no matter what vasahey include. On the
contrary, in the quantum domain the consistency (decokejesondition forces the
observer to choose between different alternative, incdifleadescriptions of a system
that can include only some observables but not others.

To explain how the loss of coherence is achieved in the maopss domain, one
should, not surprisingly, invoke decoherence. But now lyotierence we intend what
is normally intended in the quantum physics paradigm, ilesa of quantum features
due to the limited information that is available to the obser In a word, decoher-
ence - in the sense of histories - can be related to decoleerersca physical process.
This is indeed the ultimate justification behind Gell-Mamdaartle’s choice of the
name “decoherent histories”. In standard decoherenceythaovariety of physical
mechanisms cause quantum information (usually encodedantgm phases) to be
scattered in quantum correlations among a huge number oéeeg@f freedom, most
of which out of the observer’s control, so that coherentatffé@ecome locally inacces-
sible. Similarly, in the decoherent histories approachecent features are washed out
by a coarse-graining procedure that conceals correlatietvgeen the variables that are
distinguished by the coarse-graining and those that aégh

4.3.1 Decoherence and coarse-graining

When sets of histories satisfy the consistency conditiof)(ds a result of physical
decoherence and coarse-graining, they typically safisfgddition, medium decoher-
ence.

Among the types of coarse-graining that can lead to (meddeuopherence, the most
common is the type involving a factorization of the Hilbepiase in a subsystem of
interest and the rest{ = Hg ® He. In general, given such a factorization, the events
of a history take the fornp” ;, = P! ® I, whereP?! andHﬁz are projectors onto
Hilbert subspaces df s and¢. Histories forS alone can be obtained upon consid-
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ering appropriate coarse-grainings over the environmegitees of freedom, such that
the events aré’ﬁ ® I¢ wherel is the identity ovefH¢.

The crucial point is that when histories for the joint sysfemm a coherent set, coarse-
grained histories for the system alone can decohere. Irrales@ses, depending on
the dynamics, the coarse-graining over the environmetdyimdeed a decoherent
set of histories for the system for an appropriate choicmefﬁtf[. In particular, in
many physical cases the resulting decoherent historiescamg@osed by projectors in
some givenfixedbasis. In this case the standard rules of probability thappty for
histories in that basis. An important research effort hantdevoted to the to show
that (at least approximate decoherence) arises for magrmsdly coarse-grained his-
tories in the bases corresponding to the classical vasabieh as position, momentum,
energy[172, 171]. The relation between physical decoleerand history decoherence
will be explored more in detail in Chapter 7.

4.3.2 Example: decoherence for a particle coupled to a bathf @s-
cillators

One can demonstrate how medium decoherence and quasialdsgjectories follow
from physical decoherence and coarse-graining, by lodkintgcoherent histories in a
model where a particle is linearly coupled to a bath of ostlls [166]. Here we will
briefly mention some main results (without a proof or dis@ussfor the purpose of il-
lustration. For an infinite-dimensional system, the maXiyfane-grained decoherence
functional can be expressed in terms of the fundamentalraes follows,

Dlg(t),d' (t)] = 6(a(ts), ' (ty))e" SO~ OD o(q(ty), ¢'(t0)) (4.16)

A coarse graining is peformed where the coordinates arelefivinto those «) of
the particles, that are distinguished by the coarse gmgjrsind those@) of the bath
that are ignored. This division corresponds to a factaopatbf the total Hilbert space
‘H = H,®@Hq. The fine grained decoherence functional for the participei coarse-
graining over the bath modes) reads

Dlx(t), 2 (t)] = / DQDQ'8(q(ts), q (ty))e!SO=51 D p(q(ty), ¢ (to)) (4.17)

The action for the system can be written®s.. [z (t)] + So[Q(t) + Sine[z(t), Q(1)]]-
The termS,..[z(t)] depends only or:(¢) (it is free of interaction with the)). We
can then expresB[z(t), «’(t)] as follows:

Dla(t), 2’ (1)] = 6(a(ty), @' (t))e!(Srree D= Sprecl’ ) / DRDQ'5(Q(ty), Q' (t5))x
HSo[Q)+Sine [£(8), Q)] =So[Q (O] =Sine[+"(1).Q" () y((£0), Q(t0), 2’ (to), Q' (o))

The integral over th&)s definesV, a functional of the paths(¢) andz(t') and their
endpointse(ty) andz’ (to) as follows:

eiW[x(t)7x’(t);x(to)7gg’(t0)]@(m(ﬁ), .T/(t)) — / DQDQ/(S(Q(ﬁf), Q/(tf)) «
e~ H(So[Q()+Sint [x(1), Q1] =So[Q ()] =Sime[+' (1),Q"(1)]) o(z(to), Q(to), 2’ (to), Q' (t0))
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where p(z(t),z'(t)) = Trgle(q(t),q' (t))] is the reduced density matrix associated
with the coarse-graining. The functionid! is calledinfluence phaselt depends on

the endpoints () andz’ (to) implicitly through the paths(¢) andx(¢') and explicitly
o(xz(to), Q(to), 2 (to), Q' (to)). This double dependence is remarked through the nota-
tion W[z(t), 2’ (t); z(to), 2’ (tp)]. Conventionally, it is assumed that the initial density
matrix of the system factorizes,

o(q(to), q'(to)) = o(x(to), z' (to)) x 05(Q(t), Q' (to))

In this case)V contains no explicit dependencesfiy) andz’(tg): W = Wz (t), ' (t)]
and thus the fine-grained decoherence functional per thigleaeads

Dla(t),a' ()] = d(a(ts), ' (t))e Srreclr®=Srmecl WO OD (1), 2 (1))

The imaginary part ofV is causes an exponential suppression of the off-diagomaste
x # x’. If the particle is a linear oscillator, since all terms ie thction are quadratig)
can be computed by performing Gaussian integrals (a syréitesgsuggested by a clas-
sical study of Feynman and Vernon). By looking at a lineaillagor with frequency
wpg interacting with an thermal bath of oscillators at tempem@i’ characterized by a
spectral density with cut-off at a frequen@ywhen the bath of oscillator is at a tem-
peraturekT > hQ) > hwg one finds

ImWiz(t),z'(t)] = % /dt(m’ —x)? (4.18)
wherey summarized the interaction strength with the bath of csaits, andV/ is the
oscillator mass. IM) squeezes together the pathandz’, thus creating (approximate)
decoherence for patlysandq’ differing by d will decohere after a time scale

1 Boo1\?
P> (=) . 4.19
T <\/2Mktd> ( )

Upon looking at the history probabilitiegz(t)) = D|x(¢), 2 (t)], one can verify the
the probability is peaked around the classical trajectamg analyze non-classical de-
viations modeled as an effective Langevin force [166].

4.3.3 Decoherence, subsystems and Markovian dynamics

As was mentioned above, the most common type of coarsekggainvolves the fac-
torization of the system into a subsystem of interfgsind an environmerf. The
physical theory of decoherence devotes significant atterit the problem of find-
ing the reduced dynamics ¢f when the environment is traced over. In the case of
decoherent histories, one asks under which conditionsebhehirence matrix can be
written in terms of reduced quantities alone, i.e., in teofithe reduced density matrix
0s(to) = Tre[o(to)] and a reduced propagator f8t One encounters thus problem
whenever one wants to analyze deocoherent histories ingumamum systems, as we
will see for instance in Chapter 7.
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Given a factorizatior{ = Hs ® He, and considering a coarse graining over the envi-
ronment degrees of freedom, such that the event?ﬁr@ I¢, the decoherence matrix
for S reads:

Dy = Tr[P; Uty —tn_1)... P U(ti—to)o(to)U(t1—t0) P, ... U(tn—tn—1)Pey]

whereU is the joint evolution of system and environment. For comwece, let us first
introduce the propagatdt; ;, as

o(t) = U(t —to)o(to)U (t — to)T = Ky 4, [0(to)] (4.20)
We can rewrite the above equation as:
Djk :Tr[PjJXr’CtN tN—l[ij—thN—l tN—2[' . "Ctl to [QO] . ]pkN—l]p]g\]]\]] (421)

If the initial state is factorized(to) = 0s(to) ® 0e(to), then the reduced density

matrix ps(t) = Tre[o(t)] evolves according tog(t) = K, 1, 05(to) wherek is the
(non-unitary) reduced propagator defined by

Tr[U (t — to)ds(to) ® or(to)UT(t — to)] = Ky 4,85 (to) (4.22)

We would like to write the decoherence matrix in terms of @lquantities alone,
i.e., in the form:

Djk :Tr[ijy\;’@tN tN—l[ij—IKtN—l tN—2[' . "gtl to [QO] . ]pkal]plg\jv] (423)

This reformulation is possible only if the trace over theiemvmentT'r¢ can “seep in”
inside expression (4.21) up to the initial density matrig, if we have

TTg[U(tN — tN_l)PijlU(tN_l — ﬁN_Q) .. .ﬁle[(tl — ﬁQ)QQX
Uty —t0) Py, ... Ut (tn—1 — tn—2)Pry_ Ul (txy —tn_1)] =

= KtN tN,lTTE[PijlU(thl — tN,2> .. .leU[(tl — t())g()x
Ut(ty —to) Py, ... Ut (tn—1 — tn—2)Pry_,]

This is true if the evolution of the system and environmemdé&kovian. In this case,
the semigroup property holds,, , = K, +, K¢, ¢, and we can writdC, v = K.
The semigroup property implies

TrU(t —¢)ot")UT(t —1')] = Ki—v[as(t')].

Obviously, the system evolution can be Markovian only ouraetintervalsAt > 7¢
wherer is the system-environment correlation time. Thus, Eq.3¢ivalid only if
the time intervalAt between projections (the temporal coarse-graining) ismigher
thanic.



Chapter 5

Decoherent histories and
dynamical entropy

In this chapter, we will prove that quantum dynamical engr@he quantum coun-
terpart of the classical Kolmogorov-Sinai entropy) can b&urally embedded in the
decoherent histories formulation of quantum mechanios vé elucidate the conse-
quences for its interpretation. The link between histoaied dynamical entropy exists
because partitions of the identity (which enter the debnitf dynamical entropy) are
equivalent to POVMs, and the latter can be used to define af sptamtum histories
with the same POVM repeated at regular times. As we will sitbesmost widespread
definition of dynamical entropy, the Alicki-Fannes (ALF)teopy, is determined the
von Neumann entropy of the decoherence matrix for a set tdres constructed in
this way (to be precise, ALF-entropy is obtained by maximigover all POVMs, tak-
ing the limit of the von Neumann entropy per measurement asepf the number of
measurements goes to infinity). As we will show, any decalarenatrix can be in-
tepreted as a density matrix over a set of registers, thaesulently interact with the
system, effectively performing the “measurements” thdingethe set of histories un-
der attention. Thus the von Neumann entropy of the decobeneratrix that defines
ALF entropy can be seen as the amount of quantum informatisadin a set of reg-
isters. This will justify an interpretation of ALF entropy éhe rate of production of
quantuminformation by the dynamics, in the same way as the claskiokhogorov-
Sinai entropy can be interpreted as the rate at which cldsiormation is produced
by the dynamics.

As a byproduct of our analysis, we will be able to define a galmaeasure of coher-
ence between histories. Due to coherence, the von Neumaopgiof a decoherence
matrix is lower the Shannon entropy of its diagonal entiést@ny probabilities). Upon
taking the difference between the two, which can be alsapné¢ed as the quantum
relative entropy between the decoherence matrix and aspwneling diagonal deco-
herence matrix, we will define a measure of coherence bethistries, calledelative
entropy of decoherence

This chapter is organized as follows. §rb.1 | will derive the interpretation of the
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decoherence matrix as a density matrix§ 5.2 | will review classical dynamical en-
tropy. In§ 5.3 I will discuss the quantum dynamical entropy§Is.3.1 | will introduce
ALF entropy in a way that immediately show its connectiorhwdecoherent histories.
Since ALF entropy is defined for infinite-dimensional system § 5.3.2 | will briefly
discuss how it can be extended to finite-dimensional onesalllyj in § 5.3.3 | will
introduce the relative entropy of decoherence.

To the best of my knowledge, the content of this chapter segs an original contri-
bution, as neither the connection between decoherentigistand dynamical entropy
nor the interpretation of the decoherence matrix as a demsitrix over a set of regis-
ters have been presented in previous literature.

5.1 The decoherence matrix as a density matrix

In this section, we will prove that the decoherence matrix ba interpreted as the
density matrix of an ensemble of registers that subsequertéiract with the system,
effectively performing the measurements that define thefhistories under atten-
tion. This feature will be crucial for our interpretationtbie dynamical entropy in the
following section.

Consider a projective measureméftj = 1...,n at timet on a system with Hilbert
spaceHs. Assume that there is a register with Hilbert spatg, dimHgz = n. If
P; =3, laj)s(a;|, the measurement can be realized by a unitary ope¥etacting

J

jointly on the system and register as follows
Wilaj)s(a;| ® |0)r(0] = |a;)s(a;| @ |5)r (/] (5.1)

The operatoiV leaves the state & invariant and shifts? according toj. We assume
that W has a duration and that the register does not change with time (its internal
dynamics is given by/r = I).

If the initial system-register state {8)s @ |0)r, and assuming thdl” acts on a
timescale much smaller than the system’s evolution tirescthe jointS R evolution

up to timet; > ¢ can be approximated by

(W (ts))sr =~ Uty —t+7/2) @D)W(U(t — to — 7/2) © D) [tho)s @ [0)r  (5.2)

If W acts quasi-instantaneously, within a time— 0, the approximation becomes
exact,
(W(tr))sr = (U(ty =) @ WU (t — to) @ T)[tho) ©[0) (5.3)

If Ut — to) o) = 3, X, €a; laz), we find

|U(ts))sr = ZZCaJ(U(tf—ﬁ)®H)|aj>®|j> = Z Uty —t)PjU(t—to)|to)®|4)

J

By using the Heisenberg representatityt) = UT(t — to) P;U(t — to)

(W(ts))sr =Ults —to) Z Pi()[vo)s @ |j)r
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A sequence ofV measurement:?f[ at timest,, ¢/ = 1,..., N can be realized by

interaction withNV registersR;, .. ., Ry with Hilbert space spacekr,, dim Hpr, =

ng, £ =1,...,N. If P, = . |} )(af,|, the interaction at time, is given by
Je

unitary operatoi¥’¢ acting jointly on the system and registeas follows
Wal,)s(ag,| @ [k)r, (k| = |of,)s(ag,| @ |(je + k)modne) r, ((je + k)modi|

For all R,, we assume thalii’* acts on a vanishing timescate — 0 and that the
registers are static, i.e., their internal dynamic®/is, = L. If the initial system-
registers state i8)g)s ® [0)r, ®...|0) gy, the joint evolution up to timé; > ¢, can
be easily computed as:

(U(tf))smy.mn = D Ulty —tn)PNU(ty —tn-1)PNH . Pl Ut —to)x
J1---JN
X[Yo) @ |j1) R, @+ @ |iN) Ry (5.4)

By using the Heisenberg representation, the history opes@t = P;, (tn) ... Pj, (t1)
and the path-projected vectdis) = U(t; — to)Cj|vo) (see§ 4.2.3), we can write

(Ut 5o r = Ulty —t0) Y Cslto)s @ i) Ry =
=> ¥)s @ lj)r
J
Taking the trace over the registers, we obtain

gszm szzpj( Jis)s |jp_j) (5.5)

which is a weighted sum of all post-measurement states sgraling to successive
outcomeg. If instead we take the trace over the system, the registerket in the
state

or,..ix = Y, Trs[C5|t0) (ol C] i) (K| iy = Y Dikli)(k|n, .ry  (5.6)

jk jk

whereD; is the decoherence matrix defined in Eq. (4.9). If the ing&iadtem state is
mixed (oo), by repeating essentially the same calculations we imatelgi arrive at a
formula analogous to (5.4),

0sRi.my = »_ U(ty —t0)Ci00CLU (t5 — to) ® [5)(K|R,...1x
ik

Taking the trace over the registers, we obtain

0s =Y 0= ij(pijgj) (5.7)
j j
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which is a weighted sum of all post-measurement states soreling to successive
outcomeg. If we take the trace over the system, the registers arenéffts state

Or: . my = D T1s[C500C]] i) (k|Ry..ex = D Discli)(kr,...1n (5.8)
jk jk

Thereforewe can identify the decoherence matrix with the densityimetiV register
that, interacting subsequently with the system at times. ¢ 5 effectively produce on
the latter the projective measuremenits ... P, .

The same picture emerges also in the case of generalizexdlibsstvith unsharp
events. Indeed, an unsharp measurement (POVM) given byiopeE; = A}Aj can
be realized by a unitary dilatiol” over an extended space comprising the system and
aregister? with dim R = n < d?, initialized in some reference std® r [227:

> AloA; =Trg[Wo® |0)r(0[WT]

J

whereA; = r(j|W10)r. We have indeed:

Wo® |0)r(0|WT = ZU W 0l0) R (O|W T |k) (k| = (5.9)
72 (i W10) ( OWTIk)R) ® |5 rik| = Aj0AL @ [5) r (k]
ik

and upon tracing? we obtain}_; A; QA}.

Let us consider an unsharp measurement at timé/e assume, in the same way as
above, thal?¥ has a quasi-instantaneous duratior> 0 and that the register is static
(its internal dynamics is given byr = I). If the initial system-register state figy) ®
|0}, the joint evolution up to timeé; > ¢ is

(W(tr)sr =(U(ty —t) @DW(U(t —to) @ I)|tho)s @ [0)r =
= Z Uty — t)A;U(t — to)lo) ® |)

A sequence ofV unsharp measuremerﬂlﬁg attimest,,/ =1,..., N can be realized
by interaction withNV registersR;, ..., Ry with Hilbert space${r,, dim Hgr, = ny,
¢=1,...,N. The interaction at tim¢, is given by unitary operatdi’* acting jointly
on the system and registéas

YAl oA, = Trr, W o ®[0)r(0[W"]

whereA;, = g, (jo|W*|0),. For all Ry, we assume tha¥’* has a vanishing duration
7 and that the register does not change with time. If the irgfiatem-registers state is
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[o) ® |0)r, ® ...|0)r,, the joint evolution up to timeé; > tx can be computed in
the same ways as Eq. (5.4), getting:

(W(t)shr. mw = Y Ulty —tn) AN Uty —tx-1) AN AL U (1 — to)

JN—1
Ji---JN

x[tho) @ [j1)R, @+ @ |JN) Ry (5.10)

By using the Heisenberg representation, the history opes@ = A, (tn) ... A, (t1)
and the path-projected vectdis) = U(t; — to)Cj|io) We can write

(U(t5))sms.mw = Ulty —t0) D Ciltbo)s @ i) Ryrw = Y [¥5)s @ i) Ry Ry
' ;

J

Taking the trace over the system, the registers are leferstite

OR,...Rny — ZTrS[Cj|wO><wO|CJ] |j><k|R1,,,RN = ZDjk|j><k|R1...RN (511)

jk ik

where Djx is the decoherence matrix for generalized measurementsedeifi Eq.
(4.15). If the initial system state is mixegdy) we obtain

or,.ix = Y Trs[C500CI] i) (Klr,rx = Y Dixcli) (Klr,. .rx (5.12)
Jk jk

Therefore, we can identify the decoherence matrix with #resdy matrix of V regis-
ters that, interacting subsequently with the system atdime . ¢ 5 effectively produce
on the latter the unsharp measuremdfgtls. . EJ]YV

5.2 Classical dynamical entropy

The concept of dynamical entropy made its appearance imptéeto discriminate
between regular and chaotic classical dynamics. Classhabs is often defined in
terms of sensitive dependence to initial conditions. Giersiwo initially neighboring
points in phase space(0) andz’(0) such thatAz(0) = |z — 2/| = ¢ < 1. Af-
ter timet, their distance usually diverges exponentiallyas(t) = e*Az(0). This
happens because the chaotic evolution “stretches” phase spong some directions
aseM?, A\, > 0 and “squeezes” it along other directionsas®, A_ < 0 so that
distances in the “stretched” directions are exponentethyplified. The\’s are called
Lyapunov exponents. This behavior is possible only if tlessical equations of motion
are nonlinear, since a linear evolution corresponds tostamg Lyapunov exponents.
The essential consequence of sensitivity to initial coodg is a significant loss in pre-
dictability, i.e., the possibility of using current infoation about a system to predict
its future evolution. Measurements of a chaotic system avewprecise they may be,
can never dispel uncertainty about its future state. Thigtion can be classically for-
malized by means of a concept introduced by Kolmogorov asé¢hool: dynamical
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entropy.

Dynamical entropy measures how much information we gainnwbe repeatedly
measure the system in time. Given a partitioof phase spac@s into cells, s =
Zj ;, we can assess the information gained in a single measuterhgrvia the

Shannon entropy
Zp ) log p(92)

The weightg; are obtained ag; = fQj du wherey is a suitable integration measure
on the phase space (if we take the uniform measureghénsimply the phase-space
volume of cell§2;).

A time evolution map7* maps each cel; into 7*(£2;) at time¢, and conversely
T~'Q; into ©2;. Consequently, if we measure the system in geit timet and in cell

k at time2t we can infer that the system was in

2 _
O =o;nT 7ty

at time¢t. Thus the pair of measurements defines a refined phase spdit®rpa
Q). Extending toN measurements at times..., N we define the increasingly
fine grained partition

oM = nT,, L TN,

J1---JN

In general, to measure the information of a sequence of memsmts we can consider
the Shannon entropy of the fine-grained partition,

(@) = W) = = 3 0l o (el ) (619
Ji---JN

This represents the amount of information gained inthmeasurements. In general,
of course,hn(2) < N h(Q2). Because of correlations, usually new measurements
bring about less information then the preceding ones. Tdmshe well understood in
terms of conditional entropy:

R(QM) = RON D) 4 h(Q QYD)
where the conditional entropy can be expressed as

_ N—1
h(QjN|Q(N 1))* Z Qjy. i Zh JN|Q§1 313 )=

Ji--JN-1

== > P jns Zp mﬂﬁ M ) log (p(Q, 1)

J1--JN-1

In the (extreme) case where the firét— 1 measurements, . .. jy_1 are sufficient to
predict with certaintyjy, then

h(Q QD ) =0

J1---JN-1
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and hence
h(Q5 QD) = 0 = h(QM) = BN —D)

This means that then no further information is gained in tlemsaremenjy. The
Kolmogorov-Sinai entropy is defined as the max (over part#) of the (asymptotic)
information gain rate:

. 1
hks = ngnoo max NhN(Q) (5.14)
This is equivalent to the maximum of the asymptotic inforimragain per step

. . N-1

hics = lim max(hy () — hy-1(2) = lim max(h(Q;,|2YY)  (5.15)
For integrable systems, the more measurements we make gtieg'siwe collect) the
more effectively we can predict the future, i.e., laj&. Thereforeh(Q;, Q1)
rapidly decreases witlv and eventuallyh i s vanishes when the limilv — oo is
taken. Instead, a chaotic system has a positiye, implying that we can never col-
lect enough information to definitively constrain the figwevolution of the system.
According to the theorems of Ruelle and Pesin we have

hics =) A (5.16)
k

where the sum is over all positive Lyapunov exponents ofyilseesn. Thus KS entropy
is intimately connected with classical chaos.

5.3 Quantum dynamical entropy

A quest for guantum generalizations of the KS entropy hatledveral nonequiva-
lent proposals [188, 191, 189], among wich the most impoeeathe Connes-Thirring
(CNT) [188] and Alicki-Fannes (ALF) [191] dynamical entiep. Both were devel-
oped as non-commutative extensions of the KS-entropy. dtter lis based on the idea
that repeated measurements at different times can pravidemation about the sys-
tem. Its noncommutative extensions differ in that ALF egitly takes into account
measurements (and the corresponding disturbances), @Niledoes not. By virtue
of semiclassical approximations with generalized cohestates, it has been rigor-
ously shown that both ALF and CNT entropies tend to the KSogytin the classical
limit [192, 187].

5.3.1 ALF entropy and decoherent histories

In the following | will focus on ALF entropy, since it is the gper conceptual device
needed to discuss issues related to predictability andscHaaill derive the ALF en-
tropy following a route that slightly differs from the onék&n in original papers. | will
stress physical aspects like measurements and infornmraiber than strictly mathe-
matical concerns that were a central motivation for the AbEapy proposal (for the
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same reason, we prefer not to frame our discussion into thaalC*-algebraic lan-
guage, but in Hilbert space language).

The construction of ALF entropy can be regarded as a paraptofthe KS entropy
construction into the quantum language, where measurenaewt phase space par-
titions are to be replaced by POVMs and identity decompmsiti A generic mea-
surement process can be described by a POVM defined by opefgto= A;Aj.
SinceZ?:1 E; = 1, any POVM defines a partition of unjtyvhich is the quantum
analogue of a phase space partition. Similar to the comivetedse, given an initial
partition E, the dynamics (that is assumed to be a unitéfy)) naturally leads to a
sequence of refined partitions. Upon adopting the Heisgniegaresentation, we can
defineA;(t) = UT(t — to).A;U(t — to). If we consider the evolution of the partition at

timest, ..., Nt, a sequence of refined partitioE§N) is thus obtained:
BN =M oY) = Ay (N A, (2) (5.17)

Given a density matriy and a partitiorEj(N), the probability of each partition element
is given as:

py = TrloE;] = T\ o™ (5.18)

As we immediately notice, the definition 6f; in Eq. (5.17) and the partition proba-
bility p; in Eq. (5.18) are the same as in Eq. (4.14) defining histonestlaeir prob-
abilities for unsharp measurements. This is not surprisinge refined partitions are
in fact defined through a set of historiEswvhere we take the same projections at each
times and equal time intervals between projections.

As we know, thep;’s are not true probabilities (they do not obey the sum rutdgss

3} obeys the consistency condition. Correspondingly, a d&finof dynamical entropy
as

WG (B) = = pjlogps (5.19)
j

is meaningful only if histories decohere. In this case, astness with the apex:), h(©)
represents the amount dfassicalinformation generated by the decoherent dynamics
of the system. If histories do not decohere, then coherentlations between different
histories have to be taken into account. Correspondingdycan define a dynamical
entropy as the von Neumann entropy of the decoherence matrix

hn(E) = =Tr[ DY) log DY) (5.20)

whereDy = Tr[C}" oC{™']. In § 5.1 we proved that the decoherence matrix can be
interpreted as the density matrix of an ensemble of regishet subsequently interact
with the system. This allows to give a different interprietato i x (E). Sincehy (E)

is the von Neumann entropy of the state of the regisierspresents the amount of
quantum information stored thereifherefore, we can look &ty as the the amount

of quantum informatioproduced by the dynamics.
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Mirroring the KS construction, a dynamical entropy is defias the max (over POVMs)
of the (asymptotic) information production rate:

. 1
harr = ngnoomgx NhN(E) (5.212)

This is exactly the ALF-entropy defined in [192], even if thiéginal derivation was
never referring to the decoherent histories formali®g.casting ALF entropy in the
decoherent histories language, we can endow it with a phygiterpretation as the
(maximal) amount of quantum information produced by theadyins per time step

5.3.2 Finite systems

From definition (5.21), ALF entropy can be nonzero only fdiriite-dimensional sys-
tems. This follows from the general bound [191, 192]

hy <logd+ log(rank(p)) (5.22)

that can be simply derived from the discussion§ i.1. If the initial state is not pure,
let us purify the initialp by adding an externalank(p)-dimensional ancillad, ¢ =
Tra|vo)sa(tol]. Then after the interaction with th¥ registers, the pure system +
ancilla + registers state is

D 1) sa (vl @ [5) k. ny (K]

jk

WhereUT(tf — ﬁ0)|wj>SA = Cj|’t/)>s,4 andeng( = TrA[l'l/}j>SA<'l/}k|SA]- The von
Neumann entropy of the registers must be equal to the entbine system + ancilla
state. Since the system - ancilla state has dimensierrank(o), the entropy of the
registers latter is bounded byg d + log(rank(p)). But the entropy of the registers is
exactlyhy. QED. If the initial state is pure, thény < logd.

From the bound 5.22 we conclude that

1 2logd
lim maXNhN(E)S lim 2289 _

NSoo E N5oo N 0 (5.23)

When considering finite-dimensional systems, one can ebsegrowth ofhy up to a
finite N4, after which a saturation effect must happen. In this casenavanishing
dynamical entropy reflects intolmear growthof iy up to theN,,;. A dynamical
entropy for a finite-dimensional system of dimensibcan be defined as

that (d)

harp = Noar(d) (5.24)

which correspond to the slope of the initial growthigf. The saturation timéV,,:(d)

is d-dependent withV,,: (d) — oo asd — oo. In particular, if the entropy is evaluated
for coarse-grained partitions with-dimensional projectors, then the maximum possi-
ble entropyh is given by N log f wheref = d/A. Thus, we can expect maximal
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entropy production up to timé&/,,; < }gg

pen.
Often, one consider quantum systems that are quantizatiociassical systems de-
fined on a compact phase space. In this case, the quantizedhdyas a finite dimen-
siond that plays the role of a Planck constant- 1/d. The classical limit corresponds
to takingd — oco. To address the classical limit of the dynamical entropg needs
to evaluateh?, ; - for eachd and then takel — oc. This is equivalent to first — oo,
and thenN — oo (the limits do not commute).

The saturation effect of dynamical entropy is knowrl@garithmic breaking timen
the literature on quantum chaotic systems. Such systemfolbaw semiclassical tra-
jectories up to the timescalg—%27x. This can be intuitively explained as follows.
After N steps on the dynamics an initial uncertaidty = A/d in the direction that
is exponentially according td_ = —\, is reduced agA/d)~N*+. At the loga-
rithmic breaking time, this quantity reaches the valyd, that minimal phase-space
coarse-graining due to the finite dimension. After this tiguantum effects become
dominant.

g?, after which a saturation effect must hap-

5.3.3 The relative entropy of decoherence

The two quantitied y (E) andhgf,’)(E) defined in§ 5.3.1 differ the wider, the more
the set of histories is coherent. In fact, we have:

Cy =0 — hy = S(DMDM) >0 (5.25)

whereS(A||B) is the quantum relative entropy, and we have defined a méfﬁ')z =
5jkDJ.(f(V) where the off-diagonal entries are set to zero. To proveb]52otice that
TP log D] = 3, Dj(ﬁ[) log DJ.(SV) = Tr[DWY) log DY), hence:

hg\c[‘) — hy = =TI DM 1og D] 4 D) 1og DY) =
— _THD™ (1og DY) — 1og DV)] = S(DW)|[BIN)

Sincehg\’;) neglects coherences between different histories, it gieégher estimate of
information production thah . The two quantities coincide in the case of medium
decoherence. In this case, the state of the registers sicdhthere are no quantum
correlations between the registers) and they effectivelesclassical information.

The quantityC, define is suited to be used as a general measure of coherghae wi
a set of histories. We will call itelative entropy of decoherenc@ecently, Baumgratz
et al. [132] have introduced a similar quantity to assess the atafutoherence of a
density matrix in a given basis and emphasized that it hapribygerties of @ona fide
measure of coherence.



Chapter 6

Randomness, decoherence, and
dynamical entropy

6.1 Introduction

In classical physics, the major source of unpredictabititghaos. If the dynamics is
chaotic, data collected on the system in time are never miffito predict its future
behavior because any finite uncertainty is exponentiallpldi®d. A good measure
of the ensuing unpredictability is given by the Kolmogo®wai entropy, that mea-
sures the amount of information “produced” by the dynamasymit of time, i.e., the
amount of information that cannot be predicted on the basmevious data on the
system. Chaotic systems keep producing information intelfyras the dynamics un-
folds, whereas integrable ones do so only for a short trahsie

In the quantum domain, it is less trivial to identify sourcésinpredictability. Due to
the intrinsic linearity of the theory, sensitive dependettinitial conditions in Hilbert
space is strictly forbidden, and Lyapunov exponents cabealefined. What are com-
monly referred to as “quantum chaotic systems” in the lite@are just quantum sys-
tems whose classical limit is chaotic. Such systems areactexized by some relevant
properties, as their Hamiltonians exhibit some universatdres of the random matrix
ensembles (level spacing distribution, spectral rigidityo-point correlations [186]),
but it is not immediately clear how these properties reflatd unpredictability and
dynamical entropy production. Conversely, quantum meicsailows for sources of
unpredictability that have no classical analogue, as thegmially stem from noncom-
mutativity. Since almost all observables do not commuté wie dynamics, measure-
ment outcomes are generally probabilistic and create antafé source of randomness
that impairs predictability reflecting into a positive valaf dynamical entropy. This
feature is apparentin Ref. [192], where Alickial. show that ALF entropy (5.21) can
achieve a maximum for random POVMs (random partitions) jreshelent of the uni-
tary evolution between measurements and the degree oftichigibthe evolution has
in the classical limit. The distinction between systems #ra chaotic or integrable in
the classical limit can be retrieved only by bringing to thieface the classical phase-

98
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space structure underlying the quantum model. Upon résgito measurements and
initial states with a well defined phase-space limit, ALFrepy necessarily tends to
the classical KS entropy [187] and hence gleaming diffeesrimetween the “chaotic”
and the “integrable” case appear, as shown, for instanéefin[190].

In this chapter we consider dynamical entropy productigrtfosed quantum systems
within the framework of decoherent histories (where ALFepy can be naturally for-
mulated as we discussed§jrb.3), and address its behavior in presence of two sources
of randomness:

e (R1) randomness in the dynamics
e (R2) randomness in the measurements

Our choice of formalism allows us to address for the first temeaspect that was so
far neglected, or given only marginal attention in relatiorguantum dynamical en-
tropy: history decoherence and the role of coarse-grainiigme previous numerical
works [190] have considered coarse-grained partitionistHay did not explicitly ex-
amine the role of coarse-graining. In Ref. [193], a set ofseayrained histories for a
quantum chaotic system (the quantum baker’'s map) was stuatie it was shown that
it decoheres. However, the generality of this result wagdismussed.

The relevance of history decoherence in relation to entpspgluction is that it allows
to see quantum dynamical entropy as a measure of predigtalbirom the point of
view of an observer who wishes to make classical predictitvesrelevant sets of his-
tories are only the decoherent ones, that yield alterndisgeriptions of the system in
time with well-defined probabilities. For such sets of hige we have, in the notation

introduced ing 5.3.1,hn (E) ~ h}?(E), i.e., the system effectively produces classical
information at a rate given biy (E)/N. In order to achieve decoherence, a (large)
degree of coarse-graining is in general necessary, asé¢natlire on decoherent histo-
ries has extensively shown.

The general picture that we aim to draw is thatdor> co both (R1) and (R2) can lead
to the same results: Sufficiently coarse-grained histatgephere and yield maximal
dynamical entropy production compatible with the coarssrgng size. This picture

is supported by a general argument. Unfortunately, therl&tnot conclusive, as it is
based on an unproven statistical hypothesis, and hencendates a search for a more
rigorous proof. By using random matrix techniques, we wélldble to fully justify the
results in the case of dynamical randomness (R1). We sthldaproof for case (R2).
Our general picture will be illustrated upon studying desr@mt histories and quantum
dynamical entropy in the quantum standard map (QSM) [196, 197, 198, 199, 200],

a paradigmatic toy model to study quantum chaos, that hastegrable/chaotic tran-
sition. Our numerical data strongly support our generaditécal understanding.

This chapter is organized as follows. First,&ir6.2 we address decoherent histories
in presence of randomness of type (R1) and (R2). We provideuaigtic argument
showing that sufficiently coarse-grained histories deoplad lead to non-vanishing
entropy production. The consequences of this result intahas. integrable systems
are briefly discussed. Then, 6.3 we will present a rigorous argument, based on
random matrix techniques, that confirms the result$ 2 for the case of (R1). For
the sake of conciseness, we only report the main resultgy@uisg their derivation to
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§ 6.6. In§ 6.4 we analyze DH and dynamical entropy in the quantum stanaap
(QSM) that undergoes an integrable/chaotic transition. St\ely histories in the in-
tegrable and chaotic regime, considering different kintdgastitions, and show how
results conform to the analysis§r6.2,6.3. Finally§ 6.5 summarizes the main conclu-
sions of this chapter.

To the best of my knowledge, the entire content of this chrdpteriginal and has never
appeared in any previous publication.

6.2 Randomness and decoherence

In this section we show how randomness of type (R1) and ty@® ¢(8n cause
decoherence between sufficiently coarse-grained histarid lead to a non-vanishing
production of dynamical entropy. Our heuristic argumerit laé corroborated by the
rigorous random-matrix argument providedsifs.3 (which, however, only holds for
randomness of type (R1)), and justified by our numerical figdifor the QSM.

The general setting we consider is the following. We conside

1. aclosedquantum system with dimensiah> 1.

2. pure initial states oo = |10} {¢0|-
3. adynamics given by discrete-time unitary map'.
4

. a set of histories defined liixed orthogonal projector#’; for all times, and a
single iteration of the mapy between projections.

The decoherence matrix for such a set of histories can b&ewiis

D) =Tr(P U... P,UoU' P, ... U Py, ) (6.1)

Let us now precisely define the sources of randomness (RI(R#)dnentioned in the
introduction.

In case (R1), randomness is provided by the dynamics (R1extvactU from the cir-
cular random matrix ensemble CUE, which corresponds tottitany group equipped
with Haar measure. Suchla has well-defined spectral properties, represented by a
Wigner distribution of the level spacing(s) se=%. lts eigenvectors also have
well-defined statistical properties [205]: they form a lsasi Haar-distributed orthog-
onal vectors.

A second source of randomness (R2) may come from measurgment from the
projectors defining the history. We take random projectionsaning that?;,, =
Wf%-nWT where theﬁin are fixed projector$V is a unitary selected from CUE, i.e.,
from the unitary group with Haar measure. For the purposevaluating decoher-
ence matrix elements, the randomness in the measuremebecainterpreted as a
randomness on the dynamics. Indeed, introduce

U=wtuw (6.2)
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If we write histories in terms of; andU, thenD{") reads:
D) = TP, U... P ,UGU' P, ... U By (6.3)

whereg = WtoWW. In (6.3), all the randomness has been transferred fromrthje@
tors to the evolution operator. Thus the case (R2) lookssiemilar to the previous case
(R1), except for one relevant particul@f:has the same spectrum@sthat in general
does not conform to the predictions of random matrix theorges is assumed to be
completely generic. Thus, the statistical propertie& afre not the same as those of a
matrix extracted from CUE. Nevertheless, due to the “randation” afforded byit/,
the eigenvectors o/ will have the same statistical properties of the eigenwsand
anU taken from CUE, i.e., they will also form a basis of Haar-digtted, randomly
selected orthogonal vectors.

We aim to show thaih presence of randomness of type (R1) and (R2), coarseeptai
histories approximately decohere and lead to non-vangkimntropy production

This is what emerges from our numerical result$ .4, and it is also suggested by
results in Ref. [190]. At present, we cannot rigorously grthvis fact, and we will only
present an admittedly heuristic argument that is based tauaiple, yet unproven sta-
tistical hypothesis.

Let us consider a pure initial state= |¢y) (10| and a pair of non-coincident histories
j=h, ..,jvandk = kq,..., ky. If we select an intermediate tintg, 1 < ¢ < N,

the decoherence matrix elem@&@” reads
D.](liv) = Tr[ijU. .. pj[UPjg,lU .. .ple|’(/;()><’l/_)()|X (64)
0P, ...U'B,, U'B, ...PtH,] (6.5)
whereP = {P, P}, U = {U,U}, [ho) = {[vo), WT|tbo)} for (R1) and (R2) respec-
tively. By introducing the notation

Cpn =P, U...P; U c ., =P, U...P, U (6.6)
foranym,n € 1,..., N, and the path-projected states,|x’)
X) = Cr—1ldo),  IX) = Cle1ltbo) (6.7)
we can express (6.4) as
D = TrCon ) (X' |k (6.8)

We choose such thay,—; # k¢—1, SO|x) and|x’) are orthogonal vectors. There must

be at least one sudtsince we are assumitfjg# k. Actually, for most pairs of histories

{j, k} we will havej, # k¢, forall{ =1,... N (see Lemma 2 i 6.6.3).

The degree of coherence between histojiaadk can be assessed by tbeherence

ratio, i.e., the ratio between the off-diagonal and the diagoleahents of the decoher-

ence matrix

52— PP _ (1071, Conx) (XIC, C'enX') 6.9)
DjiDuc (x|C],ConlX)(X'|C"},C"enlX')
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Recall that from (4.10) we ha\*@jkP < DjjDxk, hence$? < 1. History decoherence

is equivalent tay? < 1.

For (R1) and (R2), the operatéf in Eq. (6.4) is selected at random from a matrix
ensemble. In the case of (R1),= U is selected at random from the circular ensemble
CUE. In the case of (R2}] is selected from a matrix ensemble obtained by the adjoint
action of matrice$V from the CUE ensemble on a fixed unitaby= WTUW.

The key assumption that will enable us to estim&tdor (R1) and (R2) is that the
statistical distribution ofy) and|y’) induced by the statistical distribution 6f can

be approximated by the uniform distribution over the Hitbgpace. Our statistical
hypothesis thus reads:

e (HO) For randomness of type (R1) or (R2), i.e, of the evolutiperator between
projections is given by a®/ taken from CUE or &/ = WTUW whereW
is taken from CUE, the path-projected vectpy$ and|x’) can be assumed to
be orthogonal vectors randomly selected according to tli@nam measure in
Hilbert space.

The statistical hypothesis (HO) essentially amounts atrasyj that for a “random dy-
namics” the path-projected vectdrg), |x’) are sufficiently randomized that they can
be approximated by random vectors selected according tortiierm measure in the
Hilbert spaceH (note that at between time-stép- 1 and/, U takes the path-projected
vectorP;,_,U ... UP;j, |¢o) into an effectively random vector).

Assuming the validity of HO, we can find an estimatefdby averaging the numerator
and the denominator in (6.9) separately owgr |x'), finding:
1 1
6?2 < - = (6.10)
TrH(ClxCon)  APjeinlx)

where (p;, . jy|x)# is the conditional probability ofi, ... jx, given that the path-
projected state at stefis |x), averaged ovely) € H.

Proof of (6.10) If (HO) holds,|x) and|y’) are random orthogonal vectors selected with
uniform measure in Hilbert space. Therefore we can wsite= V|0), |x) = V1),
whereV is a unitary matrix selected frofd(d) according to the Haar measure (one
should add a normalization factor for), |x'), but we neglect those terms because they
drop from Eg. (6.9) ). The average ovg, |x’) € H can be replaced by an average
overV € U(d). Ford > 1, averages over the Haar measure can be computed by
means of formulas

. 1
<V21m1‘/lzm2>1/{(d) = ﬁ6l1l26m1m2 (611)

* * 1
<‘/l1m1V22m2V23m3 l4m4>u(d) = ﬁ(6l1l26m1m26l3l46m3m4 + 6l1146m1m46l2l36m2m3)

where(l|V|m) = V,,,. These formulas stem from a “Wick calculus” for the unitary
group that be explained in detail ;6.3 (for details see Eq. (6.29) below). From



CHAPTER 6. RANDOMNESS, DECOHERENCE, DYNAMICAL ENTROPY103

(6.11), we get for any two operatoty , O;:
<<1|VT01V|0><0|VTOQV|1>>u(d) = <Z Vi1(01)iiVioVio(O2) ki Vin )ucay (6.12)
ijkl
* « 1
— Z(Ol)ZJ(OQ)kl <V7;1Vll‘/j0vk0>u(d) = E 2(01)1](02)kl51l5]k —
ikl ijkl
1 1
7] Z(Ol)ij(02)jz’ = ﬁTr[OlOQ]
j

By repeating the same method, we find

{(0|VTO1V]0)(1[VTO.V|1)) )= %Tr[Ol]Tr[OQ] (6.13)

e
An estimate of5? can be obtained by averaging the numerator and the denaminat
separately ovey':

»  (XICT,CanlX)XICE, CTenlX'))s,

XICL,CenX) (X C7],C enl X)),
VO], ConV[0)(O[VICE,C enV 1))y )
(OVICECnVIO VI C VD)

= (6.14)

~

(
(
(
(
Upon performing the average of (6.14) ovémwith (6.12) and (6.13) we obtain:

2 Tr[CIZNCZNCJNCIZN]
(T[N Cen]TIC  \ Cen])

Since||C}1\,||oo < 1, for any vector|¢), we have||C}]\,C’¢]\;|¢>||2 < |IC"en )2,

therefore TfC" |y Con Cl €' en] < THC"1 ' on]. Hence,
5% <1/Tr(ClyCun)
Now, the quantity in the denominator in the r.h.s. is
Tr(CinCon) = d{(X|CInConlX)) 5, = d(TrCon ) (XICIx]),,

where averages are ovigy) in 7. The expression T@NlXHXlC}N] can be seen as
the diagonal element . . . j of a decoherence matrix where the “initial state” at step
Cis |x), and thus it represents the conditional probabilityjof. . jx, given that the
path-projected state at Stéfis |x): p;,...jx|x- Therefore, we can finally write

1

T(CyCon) = ———
( o EN) d<pjz~»jN|X>H

QED.

The condition under which histories decohere is

d> 1/<pjz~»jN|X>7‘l (6.15)
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A high degree of coarse-graining is sufficient to ensure tiiatcondition holds. In-
deed letA = d/ f be the rank of the;, , i.e, the coarse-graining dimension. Assuming
that the probabilitiegp;, . ;. |,) are all of the same order of magnitude for all choices
of je,...,jn, then{(p;, ;.| ) should be of the order of ~I¥=*I. Approximate de-
coherence occurs fat > f!V—*I which can be achieved for sufficiently smlli.e.,
sufficiently gross coarse-graining.
Ifall (p;,.. ;) are approximately equal (which is likely for very high casgraining),
then classical information is produced at a rate given byuhemaximized) dynamical
entropy

hw(P) _ b (P)

N N

Ford < oo, finite-size effects become eventually dominant, as dssdisit length in
§5.3.2. Indeed the boundy < logd holds [191, 192]. For coarse-grained histories,
the maxlim(lijm entropyiy is N log f and thus entropy production must saturate after
Nsat ~ 2B
Thus, u#éér the assumption that (HO) is valid, we have shbhamntioth (R1) and (R2)
can lead to history decoherence and non-vanishing entnamuption.

=log f (6.16)

Comment: chaotic and integrable systeni®t us now briefly discuss what the pic-
ture obtained in the previous paragraph entails for thexiehaf decoherent histories
and dynamical entropy for quantum chaotic and integratdeesys respectively.

Let us first address chaotic systems. Discrete-time quachantic maps are repre-
sented by unitarfloquet operatorghat exhibit some universal features of the unitary
random matrix ensembles [186]). Therefore a chaotic FlbgperatorJ can be usu-
ally approximated by a typical element of the circular enlsles(CUE, COE or CSE).
Depending on the type of ensembié,will have different spectral properties, repre-
sented by different Wigner distributions of the level spacP(s) « s%~%" where

a = 1,2,4 for CUE, COE and CSE respectively. Also the eigenvectorsprédsent
different statistics [205]. Our argument was derived urtlerhypothesis thal’ can
be taken from CUE, but its generality suggests that if it bdlst CUE it may also
hold for COE and CSE (essentially, we only require that theadhyics sufficiently ran-
domizes path-projected vectors). If this is true, we codelthat chaotic maps lead to
decoherence between coarse-grained histories, and pimaatclassical entropy at a
non-vanishing rate.

As for integrable systems, classically their entropy piiiun vanishes because the
high degree of symmetry severely constrains the evolutitimeosystem — the latter can
only describe a linear motion onto the phase space surfectifiéd by the constants
of motion. Quantum mechanically, the constants of the nmatigply that the evolu-
tion operatoiUU is block diagonal, each block being identified with a set afssyved
quantum numbers (if the constants of the motion form a cotafdet of observables,
then they suffice to fully diagonaliZé). The dynamics creates no coherence between
Hilbert space sectors corresponding to different quantumbers. Consequently, if we
take measurements with projectidﬁ;sthat commute with the constants of the motion,
we expect no entropy production in the quantum case as wellieder, let us consider

a random measurement, that can be writteRas= WP, W' whereW is a random
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unitary. The entropy production associated@andU is equivalent to that associated
to P andU = WTUW. The latter is a “randomized” dynamics that coherently desip
all Hilbert space sectors corresponding to different valofecthe quantum numbers. In
other words, a generic measurement clamorously breakytheetry of the system.
Consequently, even an integrable system can keep prod{atasgical) information at
a rate given by the (nonzero) dynamical entropy.

6.3 Decoherence and dynamical entropy for a random
chaotic dynamics

For a discrete time dynamics given by a random Floquet opetatwe can do
much more than simply providing an estimate of the cohereato@s?. We are able to
derive estimates of the decoherence matrix elements, dnevacmuch more precise
and detailed results. By using Weingarten calculus [20&]can take averages of arbi-
trary products of matrix elements of the evolution operétaver the suitable circular
ensemble (CUE, COE or CSE). Therefore, we can take averagbs idecoherence
matrix elements and obtain estimates of the diagonal andiaffonal entries in the
limit d > 1.

In the following, we shall restrict for simplicity to@ belonging to the CUE ensemble,
wich coincides with the Haar measure over the unitary grdis is of relevance for
the model studied ifj 6.4. Indeed, the evolution operator of the QSM in the strpng|
chaotic regime can be assumed to be a typical element of tlkeetisemble [186].

The calculations of this section only hold for randomnessypé (R1), because we
assume thal/ is taken from the CUE ensemble and it has both the spectrunthend
eigenvectors of a random matrix from CUE. As we already dised, this is not true
of U in Eq. (6.2) that defines (R2), 8 only has a random eigenbasis. Therefore,
generalizing the results presented in this section to tee ohrandom measurements
would require different techniques than those used here.

In order not to divert the reader’s attention from the mame lof discussion, here we
will only report results. Their derivation is postponed;t6.6.

We first consider fine-grained histories, i.e., the projectaye one-dimensional. As-
suming for simplicity that that the initial state is a puratst|j,) belonging to the
“measurement basis” defined by the projectors, the finaxgcadecoherence matrix
element can be expressed as:

Dix =6jnknUjnin-1 -+ Ujnjs UjrjoUkrjo Ukaks - Uknkin (6.17)

where matrix element§|U|m) are taken in the same basis of the project®&. can
be averaged ovdr by using Weingarten’s formula [202] (for more details, §6&6),
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that allows to compute the average of products of arbitraagrimelements ot/:
<Ul1m1 s UleN leﬂivn’1 Uizvmk[)u(d) = (618)

-1
E 6[112(1) ce 6lNl;(N)6m1 m’ @ -6mNm;(N)Wg(d’ aT )
g, T

-

whereW g is the so-called Weingarten function [202]. Note that thdrirn@lements
in (6.18) are completely general, i.e. the indiées..lx andm; ... my are totally
arbitrary. Instead, matrix elements in (6.17) have maniceslin common, and a few
passages are required to apply the general formula (6.18.1G) (for details, see
§ 6.6).

Fine-grained decoherence matrix elemenkar the fine-grained elements of the
decoherence matrix, we obtain:

Np(j) 1

Pyuy = —x— + O(dN+1)’ (6.19)
. Np() 1

(DiDijlua) — Py =~ + O (7 )

Fr(i,k . 1
(Dixc)u(dy = Sjnkn (% +FP(J7k)O(W))
Fp(j k) 1

(DixDii)u(ay = ijngiN(l + 0(3))

whereNp, N, Fp, F,, I'p are symmetry factors The derivation of Eq. (6.20) is
presented ir§ 6.6.1. While the evaluation of symmetry factors is in prpieihard, in
§ 6.6.3 we prove two statistical lemmas showing that for theretelming majority of
pairs{j, k} we simply have

Np=1, Np=2N-1, Fp=0, Fp=1, Tp=0

By “overwhelming majority” we mean all paisk except a fraction that vanishes in
the limit N/d — 0. The proofs in§ 6.6.3 are based on statistical arguments inspired
by statistical mechanics and graph theory.

Therefore, for almost all cases Eqs. (6.19) simply reduce to

1 1
Piluta) = 75 (1 +0(2)), (6.20)
. 2 2N —1 1
(PiiPiiuc) — (Piluca) = —pn— + Ol nar):
(Di)u@ =0

. 1 1
(DixDix)u(day = djnky dQ—N(l + 0(3))

Coarse-grained decoherence matrix elemehbgon evaluating the fine-grained deco-
herence matrix elements, we can look at a general coargg@rgravhere we sum over
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A fine-grained projectors for each time. Then any coarsergdailecoherence matrix
elementD;x is obtained by summing ovex?V histories,

Dix =Y > Dik. (6.21)

jeJ keK

IndicesJ = J; ... Jn,K = K; ... Ky indentify aAY x AN submatrix of the fine-
grained decoherence matrix. §r6.6.2 we evaluate the mean and the variance of both
diagonal element®;; and off-diagonal one®; k. For almost allJ, K, up to correc-
tions of orderO(3) we get:

_ . 1.
(Dssu@ =" (P3sDis)uca) — (Pas)iia) = ~f 2N (6.22)

* 1 —
(Dsx)u@y =0 , (DixDix)uw) = 5JNKNZf 2N

wheref = d/A.

Decoherence and entropy productiofhe results (6.22) can be used to estimate the
coherence ratio between histories. We obtain

52— PocDixcuca) 1 (6.23)

(D3s)uca)(Pxx)u@y A

This means tha fine-grained historigs & 1) have a significant degree of coherence.
On the contrary, for a high coarse-grainiag> 1 the off-diagonal elements are sup-
pressed with respect to diagonal oneg as 1/v/A. Furthermore, the fluctuations of
the diagonal elemenf®;; are suppressed with respect to their mean, and thus coarse-
grained histories tend to acquire equal probabilitiég" .
The degree of coherence between histories can be evaluatkd telative entropy of
decoherence ( 5.25) introducedsi®.3.3:

Cy = S(DW) = $(DW) = $(D™M[|DW) > 0

whereS(A||B) is the quantum relative entropy a@jlliv) = J-ij(liv). An upper bound
to the latter can be found by Fannes inequality

|S(0) — S(o)| < Tilogd/Ty

whereT; = 1{|o — o||1. By applying Fannes inequality t9¥) andD™), we can
computeCy. To obtain an etimate df, consider thaD™) — D(V) has f blocks
of size f¥=1 x fN=1. In each block, diagonal elements vanish, while off-diaon
ones are bounded above iy " /+/A. Assuming that for each block all-off diagonal
elements are equal v~V /+/A, we get a bound fof DY) — DWV)||;:

T fNVA) (YT =) <1 VA
since if a matrixA of sizel has constant off-diagonal entries equadtdt has|| 4|, =
2(I — 1)a. ThusCy is upper-bounded by
1

7= log(dV/A)) (6.24)

Cn <
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that tends td for A > 1. Thus we obtairhy ~ hg\j’) ~ Nlog f. The chaotic sys-
tem produces classical information at a rate given by therfuaximized) dynamical
entropyh /N ~ log f.

6.4 Decoherent histories in the quantum standard map

In this section, we will numerically address decoherenhiss in the quantum stan-
dard map [195, 196, 197, 198, 199, 200] and test the predtibpreceding sections.
From§ 6.2 andg§ 6.3 we expect to see approximate decoherence among caaiseet
histories, as well as maximal entropy production for théofeing cases: (R1) random
chaotic dynamics (R2) random projections.

The quantum standard magtarting from the quantum kicked rotor

2
H= % +k/T cosq 8(t/T) (6.25)
wherep andq are the rotor’s position and momentum variable respegtiaalds (¢t /T) =
Z;’;foo o(t — 5T), the quantum standard map is defined by integrating the digsam

over a period’. One obtains the Floquet operator:
U = e " Tekeosa (6.26)

For k = 0 the system is integrable and it becomes chaotickfor k. ~ 1. For
k > 1 the system is strongly chaotic. In our model, following RéfL5], the phase
space is discretized on a torus, i.e., both position and maumevariables are subject
to periodic boundary conditions. Thus the Hilbert spaceahisite dimension/ and
T = 27” Whereé plays the role of an effective Planck constant for the sy<fitm
classical limit isd — o). In our numerics, we také = 1024 = 219,

Since the phase space is compact, the “angle” obserydtas eigenstates

), n=0,1,....d—1, gqln)= %(2n+1)|n)

The momentum eigenstates are obtained via discrete Fotamesform:
1 = T
k)= —= Y eF ¥ k) = —(2k+ 1)k
) i HZ:;) ) plk) = )Ik)

Decoherent histories in the QSM/e consider coarse-grained histories with projectors
of dimensionA = d/f. Without loss of generality, we takg to be a power o2,

f = 2™ Thusn is the effective “number of qubits” that are “measured”. Toarse-
grained history projectors are obtainedRs = Zj;A(Jfl)~A lej)(e;] where|{e;)} is

an orthogonal basis in the Hilbert space.

From the discussion i 5.3.2, we know that since the system is finite-dimensional,
we can observe a growth aéfy (5.20) up to a finiteN,,,, after which a saturation
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Figure 6.1: (top) average coheren@é for histories with projections in th& eigen-

basis. (bottom)zg\?) (dashed curves) ardy (full curves) for histories with projections
in the X eigenbasis. History projectors are of dimensig@™. Entropies are evaluated
in bits.

effect must happen. In this case, a non-vanishing dynareitibpy reflects into a
linear growthof hx up to N,,; and the entropy production rate is defined as the slope
of the initial growth ofh . If the entropy is evaluated for coarse-grained partitions
with A-dimensional projectors, then the maximum possible egtigp is given by
Nlog f wheref = d/A and we can expect maximal entropy production up to time
Nggr < iggd. After this time, histories can no longer decohere and ttative entropy

of decoherencéy > 0 due to coherent effects. That histories must show cohefent e
fects after a give time is also confirmed by refs. [184, 188]f prove that the maximum
number of exactly decoherent historiesig < d. Following other numeric studies,
e.g. Ref. [192], we will focus on the initial transieM < log d, which represents an
upper bound taV,,; achieved for maximal coarse-graining. We have performed nu
merical computations for different bases, different pargdl states, different degrees
of coarse-graining and different values of the chaos pat@rken the rangg0, 100].

In Figs. 6.1 and 6.2 we present a selection of results thailhestrate the conclusions
reachedirg 6.2 and; 6.3. We show the average over all histories of the coherextize r
6% = Df{iglji, as well as the dynamical entropi@%’ andhy (Egs. (5.19) and (5.20))

in different regimes:k = 0 (integrable regime)k = 10 (weakly chaotic regime),

k = 100 (strongly chaotic regime).
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Figure 6.2: (top) average coheren@g for histories with projections in a random

eigenbasis. (bottorﬁjg\?) (dashed curves) any (full curves) for histories with pro-
jections in a random eigenbasis. History projectors ardroédsiond/2". Entropies
are evaluated in bits

In Fig. 6.1 (a) and (c) we consider histories in thebasis forf = 2, i.e., the par-
tition is composed by two projections for each time (maxic@édrse-graining). The
initial state|0) is an eigenstate oK. With this choice of partition and initial state
(that both have a well-defined phase space limit) we expgnotfgiant differences be-
tween the chaotic and integrable regime according to thiysisabove and the results
of Ref. [190, 187]. We can see that histories approximatelyotiere in the chaotic
regime, where randomness of type (R1) is present. Wesfind 103, consistent with
the valuel /A ~ 2-10~2 expected from Eq. (6.23). Instead, histories have a sigmific
amount of coherence in the integrable regime, where no (&Igamness is present.
In the chaotic regime we have a vanishing relative entromjeabherence,

Cn =ht —hy~0

The system is producing classical entropy at a raté = log?2 (recall that we are
taking logs in base 2), which is the maximum allowed by thdifian size. In the inte-
grable regime the entropy production is significantly lawarFig. 6.1 (b) and (d) we
give the same figures for a different coarse-graining 3 (i.e.,8 projections for each
time). We observe the same qualitative features of the pusvi = 1 case. However,
while the system in the chaotic regime starts producings@asentropy at a rate given
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by hy ~ hgf;) = 3, for N > 3 we can observe finite size effects in the deviatioh of
from hg\‘;) for N 2 3 due to the finite-size boungy < 10.

In Fig. 6.2, we show that in presence randomness of type (B&)tkrence and en-
tropy production are the same in the chaotic and in the iatdgrregime. In Fig. 6.2
(a) and (c), we consider histories in a random basisifer 1 and initial statd0) that

is an eigenstate aX. In both regimes, histories decohere and there is productio
classical entropy at a rate 1, i.e, the same behavior of the strongly chaotic regime. In
Fig. 6.2 (b) and (d), we consider histories in thébasis forn = 1 and initial statgz),.)
that is a randomly generated state. In both regimes, héstdiecohere and there is pro-
duction of classical information, even if the rate of entrgpoduction is higher in the
chaotic regime. This data suggest that also randomizafitimednitial state can lead
to history: at present we don’t have a proof of this feature] further investigations
are needed to establish whether it may hold in general.

6.5 Conclusions

In this chapter, we have addressed the problem of dynamitedpy production by
gquantum systems in presence of two sources of randomnessrgdomness in the
dynamics, i.e. in the evolution operator (R2) randomnessdrchoice of of measure-
ments. Our analysis of entropy production has been carned io the decoherent
histories formalism, with a focus on decoherence and cegnaaing. We have shown
that (R1) and (R2) can lead to i) decoherence between coaageed histories ii) max-
imal entropy production compatible with coarse-grainiizgsAs a consequence, both
chaotic and integrable quantum systems can produce @hgsiormation at a rate
given by the (un-maximized) dynamical entro}pﬁ)/N ~ hy/N.

To conclude this chapter, we mention a link between our and a well-known
paper [165] where Gell-Mann addressed the general probfeamgredictability in
physics. Gell-Mann identified foutundamental sources of unpredictabilita) the
coarse-graining required to make predictions (b) the dribistic nature of future events
(c) limited information about past and present events adiplith unpredictability
amplification mechanisms such as chaos (d) limits to contiputa power. Compu-
tational power (d) depends on the nature of the observerheiterminology of Gell-
Mann, the information gathering and utilizing system [22%&sting aside (d), one can
focus on (a)-(c) that are are intrinsic to the system undsepfation. In this chapter
we have analyzed the behavior of dynamical entropy by talkittgaccount (a),(b) and
(c) together. In fact, (c) includes dynamical randomnekged to chaos (R1), while
(b) includes unpredictability caused from measuremer?3.(Rhe analysis of (a), i.e.,
coarse-graining and decoherence, is essential for a @tysterpretation of the ALF
entropy in terms of predictability, and it is what distingliés the present work by pre-
vious ones in the literature. We have demonstrated thgbjand (c) together lead to
the production of classical information at a non-vanishiig given by the dynamical
entropy.
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6.6 Proofs of random-matrix results

6.6.1 Estimation of fine-grained decoherence matrix elemes

The decoherence matrix element for a pair of histories reads

Ditc = Tr i) G |ULin—1) G- [U - Uj2) G |U o) %
GolUT k) (ka [UT .. U ky 1) (b [U k) (k|| =
=0jnknUjinin-1 - UininUjiio Uk jo Unoky - Uiy 1k

where we use the notatigh{U |m) = Uj,,, and we assume that the initial state is a pure
state|jo) belonging to the measurement basis. We assume that thepdiita selected
at random with the Haar measure@() whered > 1. For almost allJ the value of

* * *
UijN—l v Uj2j1 UjljUUk1j0 Ukzkl s UkN,lkN

will be close to its Haar-average. The latter can be evadubye\Weingarten’s calcu-
lus [201], which is a generalization of Wick’s calculus tatany group. Weingarten’s
formula reads [202]:

Uiy -+ Utymn Ul iy Up r Dy = (6.27)

2 : -1
5[11;(1) ‘e 5lNl:7(N)5m1m, a 5mNm;(N)Wg(d, aT )
o,T

-

wheres andr are permutations dfl, ..., N} andWg(d, or—!) is the so-called Wein-
garten function, that depends on the dimensi@md on the permutationr—!. The§
functions imply that the multi-indeK must be a permutation of the multi-indg»xand
at the same time the multi-inde®’ must be a permutation of the multi-index. The
Weingarten function can be further evaluated as:

Wg(d, o) = d-NHeD(Mob(o) + O(d™?)) (6.28)

where|o| is the length ofr, i.e., the minimum number of permutations that multiply
to o and Mob(o) is the so called Mobius function. Therefor€g(d,or~1) is sup-
pressed by a factafo™ | that grows larger the more andr differ. If o = 7, then
Wy(d,or™') = Wg(d,¢) = 7 (1 + O(d~?)) wheree is the identical permutation.
To first order, we thus find:

(Uym, -+ -Ulymy U;;lm;U[ZVmwu(d) = (6.29)
1 1
¥ 2t Bt Byt B, + O ()

that is essentially a Wick’s theorem for the unitary grougyraptotically asi — oo.
TheU,,,, must be coupled with the corresponding complex conjudates The essen-
tial reason behind the effectiveness of Weingarten cafcislthat ford — oo, given a
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random (Haar-distributed) unitary, the matrix elementarof finitek x k& matrix con-
verge (in distribution) to independent complex Gaussiaitis mean0 and variance,
renormalized by/d[203]:

) 1 2
PlUpn) = Pl|Upm|e™ 9] — ——=¢=1/2Uim|
[Uim] = P[|Uim| ] "

As a consequence, unitary matrix elements become Gaussiathes and we can ap-
ply the original Wick’s theorem: the average vanishes unéschl;,,, is matched by
the corresponding’;;,, .

In order to apply formula (6.27) to the decoherence matrix
(Dix)uay = (Djy..jnkr.bn Ju(d) =
= Ojnkn oo Uinin-1 - Ujais Uinio Uk ko Ukaky -+ kw1 (@)
we must implement the following substitutions:
le = jo, lp— ke, me— jo_1, mp— ke
forall 1 < ¢ < N. We have to satisfy the following constraints
o ki...ky isapermutation of; ...jn, kye) = je
® ko...ky_1isapermutation ofo ... jn—1, kr)—1 = Je—1
e kn = jy andkg = jo.
By plugging the third condition into the first two, ge get:
e ki...ky isapermutation of; ...jn, k() = je satisfyingk,(n) = kn

e ko...ky_1isapermutation ofo...jn_1, k;(p—1 = je—1 Satisfying
kry-1 = ko

So, we obtaira fortiori the followingproposition 1: unlessj is a permutation ok we
have(Djk>u(d) = 0.

By virtue of (6.28), to first order only the permutations= o contribute. We must
then have up to corrections 6f(1/d):

koey = Jo, ko(ey—1 = Je—1

the transition pairdkoki}, ..., {kn—_1kn} must be a permutation of the transition
pairs{joji}, --.,{jn—1jn} into transition pairdk,)_1k, (¢ }. Notice that this is a
much stronger condition than saying thais a permutation of.

Thus we obtain the followingroposition 2: Up to corrections 0O (1/d), (Djk)u(a) =
0 unless the list of pairdjoji},...,{jn-1jn} IS a permutation of the list pairs
{kokl}, ey {kN—lkN}-
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We denote byP(j, k) the set of permutations gi, . . ., jy such that the pairs
{joji}, ..., {in—1jn} are a permutation of the paifé&ok: }, ..., {kn_1kn}. Under
this notation, for the matrix elemefit;, we obtain:
Okn 7 1
<Dj1..~ij1---kN>U(d) = ;—NJN Z 6j1ka(1) "'5ija(N) +O(W) (630)
oe€P(j,k)

Note that this formula could have been obtained directlyf(6.29) - we choose not
to follow this route as we wanted to derive proposition 1 first

Diagonal elementd_et us use Eq. (6.30) to evaluate

(Disduay = (Djy..jinjiwiin JU(d)
If all transition pairs{joj1},...,{jn-1jn} are different from one another we must
haves = ¢ and we get:

1 1
Diduw = 75 + O<—dN+1) (6.31)

If some of the transition pair§joji}, ..., {jn—1jn} coincide, let us partition them
intor < N equivalence classes, each class comprisinglements withy !, m; =
N. Then we have to add a symmetry factor

N’/D(J) = ml! . ..m,.!

that properly accounts for the number of possible pernmutatamong equal transition
pairs. As a result,

<Dj'>u(d):Np(j)+O( ! ) (6.32)

dN dN+1
In the in§ 6.6.3, we shall prove that/»(j) = 1 for the overwhelming majority of

histories (Lemma 2).
In order to evaluate fluctuations, we compute the variance:

(DsiDi)uca) — (Disiu(ay

Assuming that all pairgjijo},...,{jn—1jn} differ, since now each paifj,_1j.}
appears twice we get a symmetry facfofor each pair, hence a global factdf'.
Thus, we obtain:

* 2 2N 1 1
(D3 Diihuy — Pty =~ + O( v +1) (6.33)
If some of the pairg;j;j2},. .., {in_1jin} coincide, we have a symmetry factor
Np(i) = @ma)l... (2m,)!

Again, because of Lemma 2/ (j) = 1 for the overwhelming majority of histories.
Equation (6.33) implies that fluctuations of the diagonahgtnts (as measured by the
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standard deviation) will remain of ordérd—*).

Off-diagonal elementd.et us use Eq. (6.30) to evaluate

(Dix)u(a) = (Djy..jnbn..kn JU(d)
with j # k. If jx # kn , we haveD;x = 0 (exactly). From (6.30) we get

j, k 1

(Dic)u(d) = Gjkn (% +I'p (s k)O(W)) (6.34)
In (6.34), F»(j, k) represents the number of permutations such that bring shefli
pairs{joji},- .-, {jn-1jn} into thelist pairs{koki}, ..., {kn—1kn} (from proposi-
tion 2, unless such a permutation exists, the lowest orderitel /d vanishes). Itis an
immediate consequence of Lemma 2 that for the overwhelmigjgnity of pairsj, k
transition pairs cannot be matched (Corollary 1). Thusafaost all historiesFp = 0.
As for I'p (j, k), it includes permutations that brifjgnto k. From proposition 1 we
have tha'» = 0 unlessk is a permutation of. We shall prove below thdt is not
a permutation of for the overwhelming majority of histories (Lemma 1), so fioost
pairsj, k, both the factors=p,I'p vanish andDjx )4y = 0.
In order to estimate the deviation from the mean, we can atalthe variance. For
pairs of histories withky # jn the variance of course vanishes, sifegg = 0 ex-
actly. For all other pairs,

(DixDi)ucdy = Dy ks knDiy sk JUD) = (6.35)
<UijN—1 cee szjl Ujljo UlzljoUl:zkl s U;N—lkN X
U5 U inUs o UkyioUkaky -+ - Uky_1kn u(d)

JNJN=1"J2J1 7 J1jo

Since now all pairs of indices can be matched, we get

7, 1

(DixDi)ud) = Hn + O(W)

o (6.36)

where the symmetry factoFp accounts for permutations that bring the list

{j1ja}, -, {in-1jn} into the list{kik2}, ..., {kn_1kn}. From Corollary 1 we can
assume that transition paif$:j2}, . .., {in-1jn} and{kik2}, ..., {kn_1kn} inthe
two sets differ, obtaining

. 1 1
(DsxDix)u(ay = v T O(w) (6.37)

Thus, we can predict a standard deviation scaling%,a.sThis means that off-diagonal
elements have a size GT(C%N). The estimation of diagonal and off-diagonal elements
of the decoherence matrix is summarized in Table 6.6.1.
Putting together Egs. (6.31) and (6.37), we obtain an esgimiacoherences, that are
of O(1):
<DjkD3kk>u(d)

(Dsj)u(ay (P )u(a)
Thus, fine-grained histories have a significant degree oéi@ite. The situation will
change when we consider coarse-grained histories.

~ O(1)
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Case Element Average| Stardard deviation
1 Di; i ~
2 | Dy, jn=kn 0 -~
3 | Dk, Jn F#kn 0 0

Table 6.1: Estimation of fine grained elements of the de@aiee matrix. Summary.

6.6.2 Coarse-graining

In the following paragraph, we start from the above Eqs.1%(8.34), (6.37),(6.33)
and consider coarse-grained histories for a random baség)(gvalently for a random
evolution). We will show that coarse-graining leads to syer decoherence between
histories and also enforces approximately equal weightsigbories.

We consider a coarse-graining where we sum averojectors for each time. Then
any coarse-grained decoherence matrix elerigyt is obtained by summing over

overAZN histories:
Dik =Y Y Dik (6.38)
jeJ keK

Thevaluesoff = J;...Jy,K = K; ... Ky identify aA" x AN submatrix of the
fine-grained decoherence matrix. We takec A < d.

Off-diagonal elementsConsider first] # K. ThenD;k is obtained by summing
A?N off-diagonal elements of the fine-grained decoherenceixBii. and we get

(Dyx) =Y > (Di)

jeJ keK

If Jy # Ky, then for all terms in the sum (6.6.2) # ku, thus from Table 6.6.1,
case 2, we hav®;x = 0. Therefore alsdD;k) vanishes exactly.

Letus assumdy = K. Only pairs of histories with ;, = kx contribute to the sum
(6.6.2), that is then oveh?V 1! terms:

(Dyk) =D > dinin (Di)

jeJ keK

From Lemma 2, we can assume that for nearly all terms in the §Drp) = 0. We
thus get{Dyk) = 0. The fluctuations around this value can be evaluated as:

DJKDJK Z Z Z Z 6]1\1161\16]’ Ky JkD ’k’>

jEJ keK j eI k'eK

To this sum only term§ = j’, k = k/, contribute:

(DsxDjik) Z Z Gjnken JkDJk>

jeJ keK
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and from the previous analysis we finally obtain

1 AZN 1

(DaxDix) = x v = x1 (6.39)

wheref = d/A.

Diagonal elementsNowJ = K. ThenD;x is obtained by summing ™ (AN —1)
off-diagonal andA” diagonal elements of the fine-grained decoherence nmgjtix

(D3s) = E E Sjnkn (Dik)
j€I ked

where again only pairs of histories wijly = kx contribute to the sum, that effectively
includes onlyA™ (AN=1 —1) off-diagonal terms. From Lemma 2, we can assume that
for nearly all off-diagonal terms in the sufDjx) = 0. We thus get the estimate:

% =f N (6.40)

(D3y3) = 7

The fluctuations around this value can be evaluate@®asD;;) — (Dys)?. We have:

(DasD3s) =D D D> Sinknbirkr, (P Dinr)

JETKETjETKET

To this sum contribute iNY terms suclj = k = j' = K’ i) AN (AN — 1) terms such
j=k#j =kii) ANAN"I —1)termssuc =j # k' = kK

(D3aD33) =Y (DyDi) + Y > (D

jed jed jed
.
+ ) > Ginkn (PinDic)
jed ked

From the previous analysis we know the magnitudes of eactnibotions. Summing
up all contributions, we obtain

2N — 1
DJKD* = AN + AN AN —1)—=+
JK d2N d2N
_ 1 1 _
AN(AN 1 _ )d2N _ d2N (AN(QN _ 3) 4 A2N + AQN 1)

Upon subtractingD;5)?, the variance is:

(D33D35) — (Das)” = d2N v (AN (2N —3) + AN =

2N N
= i?w (I+A- 0(A ))Z%f*QN(HA-O(f*N) (6.41)
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6.6.3 Proofs of statistical lemmas

In this section we prove some lemmas anticipated above. idwgrequire simple
heuristic arguments based on statistical-mechanicabgiesd and graph theory.

Lemmal

Consider the set of paifg, k}. if d > N, the overwhelming majority of them, except
a fraction that vanishes in the limi{/d — 0, are such tha} is not related tdk by a
permutation.

Proof. The total number of histories i&". The problem of choosing the multi-indgx
is equivalent to the problem in statistical mechanics ofipig/V particles intal phase-
space cells. By adopting a statistical-mechanical languag can say consider each
choice ofj as a microstate. Then if the microstajesdk are related by a permutation
they belong to the same macrostatgn), defined by the occupation numbats=

ny ...ngq Of each cell. Its volume is given by the multinomial factor:

and the corresponding probability is then:

1 N
p(n) B d_an'nd'

The total number of macrostates equivalent to the numberagswne can distribute
N objects tad parties, which is known in combinatorics as number of coratiams of
N objects of clasg and is given by:

(d—1+N) _(d+N-1)!
N ~ N!(d—1)!

The probability thatj andk are related by a permutation is thus equivalent to the
probability that two microstates belong to the same maatestThis is simply given

by
P=Y pmr=Y 0

In the “thermodynamic limit’N > d, most microstates will be absorbed in the
Maxwell-Boltzmann macrostate where thg are equal and we will have — 1: very
long histories “equilibrate” in the sense that most of thewethe same number of pro-
jections on each partition member. However, in the oppdisitié N < d, N < logd
that is relevant for our calculations we can easily find a labtanthis quantity. Since
V(n) < N!we get

P < (d+ N —1)! N2

= Nl(d—1)! &N (6.42)
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Upon explanding in series af/d, we get:

NI(1+0(1/d)) < —— (log )% %(1 + O(1/d)

P < — dN+3

- dN+3

whence we conclude th@ < 1 whend > 1.

Lemma 2

Consider the set of historigs The overwhelming majority of them, except a fraction
that vanishes inthe limiV/d — 0, is such that all transition paifg1j2}, . . ., {in—-1J~}
differ, hence the the combinatorial facth® in (6.32) is1.

Proof. Our argument will be based on graph theory. Thereddfepossible choices
of the indicesj; ... jny. We ask how many choices are such that the transition pairs
{j1j2}, ..., {in-1jn} all differ. We look atj; ... jy as describing possible paths on
a directed graply whose vertices aré, ..., N. The graph is totally connected, i.e.,
there is an edge between all ordered pairs of nodes (ingudops; — j). Therefore
the graph’s adjacency matrixit;, = 1,Vj, k. The total number of edges . Each
edge corresponds to a transition pgjrk} with j,k € {1,..., N}. The transition
pairs can be seen as the vertices of another graph, which gutl graphg of G. We
can label theV2 vertices ofG as follows: transition{4, j} is labeled with the number
N -(j — 1)+ k. Under this labeling, we can easily compute the adjacendyixed G.
The upperV x N2 block comprising the firsiv rows looks as follows:

1...1 0...0 ... 0...0

0...0 1...1 ... 0...0
A:

0...0 0...0 ... 1...1

and allN x N2 blocks comprising rowsn - N...(m +1)- N,m =1...N — 1
have the same form. This structure simply reflects the featteéhch paif j1, jo} is
linked only to pairs of the form{j2, j3} (the second element in the first pair is the
same as the first element in the second pair). The powetsané easily calculated as
(A = d*=2, V), k.

Now, each of thel¥ admissible pathg, ... jy of lengthN ongG induces an admissible
“dual” path j1 js, . .., jn—1jn Of lengthN — 2 ongG. It is known that the number of
paths of lengthl between; andk is given by(ﬁl)jk. From above we can easily cal-
culate the total number of dual paths of length- 2 asy" ;, (AN =2); = d™ which
corresponds (correctly) to the number of pathgjon

Now, let us turn back to our original problem. If there areurging transition pairs
{4, k} in the path org (i.e. if some pairs of consecutive indices coincide) thendbal
path onG must contain some loops. Thus, the total number of pathsnatelV' on
G without recurrent transition pairs is equal to the numbdoop-free paths of length
N — 2 0onG. This number can be estimated as follows. @reach of thei? vertices
just has outgoing edges to a subsetiofertices. Hence there there is a probability
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Figure 6.3: Fraction of histories for which all transitioaifs{ji, j2}, ..., {jn-1, N}
differ. Exact calculation (dots) and approximate formgi(@&v) = %d*m%
(dashed line). The space dimension is- 3.

p = 1/d for the existence of a direct link between a specific pair afives. As all
links of a path have to exist if the path should exist, the phility for the existence of
a specific path of lengthis p,.:, = p' . Taking this into account, an estimate for the
number of loop-free paths between two vertices can be es@adess:

(@ -2) (@@=
#(1) = (dg_l_l)!plf (d2—1—l)!d l

Thus, the total fraction of loop-free paths of lengih— 2 is give as

(d2 B 2)' d—N+2 _ (d2 - 2)' d—N+6
! !

(d2+1—N) - (@2+1-N)

d*-
and the total fraction of loop-free paths of lendth— 2 is finally:

In Fig. 6.3 we plot the exact fraction of loop-free paths, ruically evaluated, and our
approximation ford = 3. It can be seen that there is a very good agreement (note that
the approximation is expected to be increasingly accusaiggaows). Upon taking the
limit d — oo, and expanding in powers &f d, we get
N N2

FIN)=1-(1-~ 7)(1/d2) +0(1/d*) (6.43)
which proves that in the limi — oo, the decoherence matrix is dominated by ele-
ments of the form (6.31) that havép = 1.

Corollary 1. Consider the set of pairf§j, k} such thatk is a permutation of. if
d > N, the overwhelming majority of them, except a fraction thextighes in the limit
N/d — 0, are such thattransition paifg j2}, . . ., {inv—1in} {k1ka}, ..., {kn_1kn}
differ, hence the facto#p in (6.34) can be assumed to belignd the factotF}, in
(6.36) can be assumed to belis



Chapter 7

Einselection and decoherent
histories

7.1 Introduction

Since its modern incipit, physics has been in conflict withiition. According to New-
ton’s mechanics, an object in motion tends to stay in motiith the same speed and in
the same direction unless acted upon by an external fora@ellght of our ordinary
experiences this assertion looks paradoxical, namelydds with common sense. In
fact, what we usually observe is rather the opposite: batbiewt stay in motion unless
acted upon by a constant force. Accordingly, before Newteopfe used to split the
whole into two domains, the celestial one, where bodies tvoaturally retain perpet-
ual motions, and the terrestrial one, where bodies wouldimeghleir natural positions
and move only when “violently” acted upon by some force. Newbvercame this
dichotomy, postulating that the same laws hold everywhetbhe universe. What im-
pairs direct observation of the first law in the terrestriahrdhin we live in is the fact
that bodiesare never really isolatedwhich results in friction leading to momentum
and energy dissipation.

With quantum mechanics, bigger paradoxes came out. Oneegh#tin conundrums
of quantum theory is that everyday experience seems toautiotrone of its corner-
stones [206, 207]: the superposition principle. The liftganf the Schrodinger equa-
tion entails that the manifold of allowed kinematic statesilinear space. Conse-
quently, for any two orthogonal states corresponding ttedéht values of some ob-
servable (say, position), there should exist states whmergetdifferent values are co-
herently superposed. Furthermore, most initial conditiare likely to evolve into such
a superposition. Yet, we never happen to observe such teegéesof alternatives. In
particular, familiar macroscopic systems tend to be wealhlized with respect to the
usual phase-space observables such as position and memértia traditional inter-
pretation elaborated by Bohr[225] coped with this issue fittsng the universe into
two domains, the quantum one and the classical one. Theaatien of a quantum
object with the ultimate macroscopic “classical apparatusild automatically reduce

121
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the plurality of alternatives to a single one. Thus, the gaxavas solved at the price
of denying the universal validity of quantum mechanics.

The dissatisfaction with this interpretation has motideaehuge effort aimed at restor-
ing the universality of quantum mechanics, while givinget $ame time a satisfactory
account of the disappearance of coherent effects in mampasceality. Contrary to
proposals that require a significant modification of quantiv@ory (such as nonlinear
stochastic models[226]), the two most successful appesath the problem do not
involve a change in the fundamental equations. These appesaare environment-
induced superselection (EIS) and decoherent historie3.(Bbth strive to consistently
apply quantum mechanics tbosedsystems, including the universe as a whole. Yet,
both recognize that a consistent description must ackriyel¢hat the objects we ob-
serve, especially in the macroscopic reahre never isolated, hence never closed
They do not interact with an elusive “classical domain”, With their (quantum) sur-
roundings, and must be consequently treateah&n quantum systems

Openness is identified as the root of the problem: like iitprevents observation of
the uniform rectilinear motion predicted by Newton’s law,isteraction with the envi-
ronment prevents observation of superposition and intenfee phenomena predicted
by Schradinger’s equation. Indeed the theory of open quargystems shows that
open systems evolution generally results in a dynamicgl®gsion of superpositions.
In the EIS approach, this suppression reflects into the esnergof preferregointer
basesn Hilbert space such that coherent superpositions in thases are dynamically
ruled out. The off-diagonal entries of tlensity matrixof the in the preferred bases
tend to vanish. In the DH approach, we observe history deeolce within preferred
sets of coarse-grained histories. The off-diagonal entriehedecoherence matrifor
these sets tend to vanish.

Thus the aim to understand the quantum/classical trandition a fundamental stand-
point fueled interest in the problem of the suppression bicence, or, simphdeco-
herence Driven by this goal, research in decoherence initiallyufged on simple, solv-
able models devised to realize a well-defined classical osaopic limit, like a particle
interacting linearly with a set of oscillators. In thesertgelassical’ models coherence
is simultaneously suppressed in several bases, correisgoiodphase-space observ-
ables (position, momentum, etc.), which is in agreemerit thie emergence of classi-
cality. From the EIS viewpoint, semiclassical models ndtexhibit a single pointer
basis, but several ones: Superpositions of eigenstatdsastpspace observables with
macroscopically different eigenvalues are simultangossppressed [211]. Analo-
gously, from the DH viewpoint, coarse-grained historiethvarojections over macro-
scopically different values of several phase-space obbéas decohere [165, 171]. A
comparison between EIS and DH for a bosonic mode subject t@mkdvian noise
including dissipation and thermal hopping from the envinemt has been done by
Twamley [221]. He showed that off-diagonal elements of taegity matrix in the po-
sition, momentum and coherent-state bases are suppregsdhistories defined by
Gaussian quasiprojections in the same bases approxintedhere.

As Zurek stressed, these results cannot be regarded as detemipenomenological
characterization of decoherence in any possible regim2][24 particular, the behav-
ior of decoherence for microscopic systems with a low nunobelegrees of freedom
and undergoing different interactions with the environtwam be richer, more various
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and more complicated than the initial results on semiatassiystems might suggest.
Thus decoherence becomes an interesting phenomenonwnitsght, and not just as
a mechanism for achieving classical behavior. Studies cblderence in microscopic
systems have been carried in the EIS picture, and have shatihie emergence of
pointer bases crucially depends on the magnitude of theiogupetween the system of
interest and the environmental degrees of freedom. It has éstablished that pointer
bases emerge in the opposite limits of strong and weak awgifior weak coupling, a
pointer basis is given by the system’s energy eigenbasidg fdr strong coupling the
pointer basis is the eigenbasis of the interaction Hamidtonln a recent paper [217],
some evidence has been presented that for intermediats\@ithe coupling there ex-
ist pointer bases that interpolate between those two erséma continuous fashion.
In Refs. [219, 220] a comparison of the EIS and DH picturegtierdecoherence of a
microscopic system was presented. It was concluded thaebaton between pointer
bases and sets of decoherent histories is not one-to-anexistence of a pointer basis
is sufficient, but not necessary to construct a set of deeoléistories.

In the present chapter, | analyze decoherence in a micrassggtem comparing the
EIS and the DH approach in a wide range of system-environgmuling regimes.
My aim is twofold. One one side, | will better clarify the rétan between the two
approaches (EIS and DH) in characterizing a decoherencegso On the other side,
I will shed more light onto the intermediate coupling regirhwill cast doubt on pre-
vious results in [217], arguing that rtablepointer bases arise in this regime, a result
that will be confirmed by the the analysis of DH. A crucial téolcompare DH and
EIS will be the relative entropy of decoherence (5.25) define; 5.3.3, that will hold
as a quantifier of coherence within a set of histories. Theeaysinder attention is a
two-level system interacting with a non-Markovian envimeent composed by another
two level system (near environment) interacting in a Mar&owvay with a bath (far
environment). The choice of this model is motivated by saveonsiderations. First,
this is the simplest non-trivial model of small system sabje decoherence. While the
the choice of a Markovian bath may be unduly restrictive tartsa system, studying a
non-Markovian bath is non-trivial from the DH viewpoint, tiee decoherence matrix
cannot be simply expressed in terms of reduced quantiteedbed 4.3.3). Second,
this is essentially the same model studied in Ref. [217]epkthat the far environment
is a Markovian bath instead of a chaotic system (this reptece is convenient if not
mandatory for numerically analyzing DH, and should noteétffesults, at least quali-
tatively, as discussed below). Therefore, this will all@xvimmediate comparison with
results in [217].

This chapter is organized as follows. §rv.2 | will review EIS and discuss previous
results comparing EIS and DH.7.3 contains the core of the chapter, presenting nu-
meric results for the model under study7.4 will close the chapter summarizing the
main conclusions.

To the best of my knowledge, the entire content of this chapieriginal and has never
appeared in any previous publication.
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7.2 Environment-induced superselection
7.2.1 EISinanutshell

Environment-induced superselection [209, 210, 207, 208} @reinselections grounded
on the idea that most kinematically admissible superpositare dynamically ruled out
from observation due to the effect of the unavoidable irtiiva with external degrees
of freedom collectively denoted as environment. Intemactf the systent with the
environment leads to an entanglel€ state. As a result, under general conditions
£ “monitors” an observablel = >, a;|a;)s(a;| of the system, in the sense that the
|a;)s become correlated, and remain stably correlated, withigpré®ogonal states of
the environmeniip; ) ¢:

Zai|ai>s®|¢>g — Zai|ai>s®|¢i>5

where(¢;|¢;)s < 1fori # j. In other words|a;)s|¢;)¢ is an approximate Schmidt
basis of the entanglefl€ state, irrespective of the initial state 8f

If the environment is sufficiently big, irreversibility apars. We havép; |¢;)s ~ ;;
and the reduced density matrix of the system becomes appatedy diagonal in the
preferred basi®r pointer basiga;). The time required for entanglement to be created
betweenS and€ is usually much shorter that the time required$aand€ to thermally
equilibrate. Therefore decoherencein the pointer basis usually occurs within a
decoherence timéme 7p that is much shorter than the relaxation timge

The original goal of EIS theory was to depict a measurementess, whence the
name “pointer basis” stems. Consider a measurement situatiere that the system
S interacts with a measuring apparatiso as to produce the entangled state

[W)sa =Y alsi)slai)a

where|s;) and|a;) are orthogonal bases sfand A respectively. A mentioned above

in § 1.2, correlations is 4) show a basis ambiguity problem: they can be expressed
in several different bases. Nevertheless, if the apparhtasubject to interaction with
the environment, that “monitors4, one ends up with the entangldlE state

Z @ilsi)s @ |ai)a @ |i)e (7.1)

where state$u;) 4 of the apparatus become correlated with quasi-orthogtai@ssof
the environmeniip;)s. The reduced A state is now

D leilPlsi) (si] @ las)(ail (7.2)

2

displaying only classical correlations betwegand A. In particular, correlations are
between statels;) s of S and state$a;) 4 of A. The latter are callegointer statedbe-
cause they can be seen as states of the measuring appdoatirggio discriminate un-
ambiguously the statés;) s of S. Whenever such a pointer basis exists, superpositions
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in that basis cannot be registered by observers: the emagnhimposes effectiveu-
perselection rulegn the Hilbert space. The only system-observer correlattbat are
stable under environmental noise are classical correlaiiothe preferred basis[207].
The environment thus creates well-defined, classical outsofor any (macroscopic)
observation. Correlations that are spoiled by noise aressethe observer cannot use
his records to make inferences on the future behavior ofytbes.

7.2.2 Pointer bases

Pointer bases depend on a subtle balance between the systfitHamiltonian and
the interaction Hamiltonian. Let

H=Hs+ He + AH;pns (7.3)

be the Hamiltonian that generates the joint system-enmient evolution, where is
the system-environment coupling strength and

Hg =Y Esi|E)s(Eil,  He=Y_ Eg,;|E;)e(E;l
i J
Strong coupling

If the system-environment coupling is large, the pointai®e dictated by ;,,; [209].
In this limit, we can neglectHs and H¢ and just focus orf;,,;. Exact pointer states
emerge if there is pointer observablgi.e., a local observabld = >", a;|a;)(a;| of
the system that commutes with the interaction Hamiltonian,

[A, Hipnt] =0 (7.4)
This implies that the interaction Hamiltonian has a formtaf type

Hine = Y Aijiclas)s (@i @ [bj)e (be| + H.c.
ijk
In this case eigenstates.dfare perfectly stable under interaction with the environmen
Furthermore, they become correlated with states of the@mvient in such a way as

to suppress off-diagonal terms in the density matrix. Weiltastrate this process for
the simplified case wherH;,,; is approximately diagonal in a product basis:

Hiny = Z'Yij|ai>5<ai| ® [bj)e (bs]
ij
Starting from the initial state:
)5 ® |6)e =Y ailas)s @ Bilbj)e
i j
the time evolution yields:

Y aiBie " ai)s ® [by)e = Y ailai)s @ [i(t))e

J
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where|¢;(t))e = >, Bje= st
= Zaia§|az‘>5<aj| (05 (D)|gi(t))e =

b;)e The reduced density matrix fof is given by:

= leillas)s (ail + Y ciadlai)s{ag] (05 (t)]di(t))e
i i#]

If the environment statel®; (¢))c become orthogonal, the state becomes diagonal in

the|a;)s basis. This can occur, for instance, if the environmentigdaConsider

Zij(t) (¢ ( Vgi(t))e fZ|ﬂk|2 —i(Yik—Yjk)t Zpke iwft

That z;;(t) give a decay can be easily seen. Indeed compute the longatisrage
(t = )

T —1 w{“vfwk,/ T
<|Zij|2>T _ l/ |zij(t)|2dt _ Zpkpk' (5(w-- k/) N 1 — e~ Hwij zlj) ))
T Jo - “ig Z'T(wfj —wk)

ij

/

e 3 DrO(W]; — wly)
k

If all wf; are distinct, we get

A? = (lzi; %7 ZZJ Z Dk

If the dimensionN of the environment is large, assuming that@ll ~ 1/N then

A, ~1/V/N.

Weak coupling

In the opposite limit of small system-environment couplipgeveral nontrivial and di-
verse arguments based on adiabaticity [214], echo dynd21i&$ and ergodicity [216]
lead to the conclusion that the pointer basis is the enegpnéiasis of the system, i.e.,
the eigenbasis offs. We briefly sketch the “adiabatic” argument. Assume that the
frequencies (i.e., the energies) of the environment arehnhmwer than those of the
system. Consider an initial staf@(0))ss = >, cx|Ek)s ® |¢x(0))e. Since the
environmentis “slow”, from the adiabatic theorem, we have

[U(0)se = D cre™ oM Er)s @ | (t))e
k

where|gi(t))e = e Hintk|p(0))e With Hipy x = (Ex|Hint|Ex)s. As discussed
in [214], oftenH,,,; . acts as a “displacement operator” for the environment, then
states ¢ (t))e of the environment tend to become orthogonal as

<¢k (t)> |¢l (f))g ~ e—szt2
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Therefore, for the off-diagonal elements of the reducedsiigmnatrix in the energy
eigenbasis of the system we get

<Ek|QS|El> ~ Ckczke_i(Ek_El)te—sztz

More general cases

For intermediate coupling, it has been argued that appratepointer bases exist and
interpolate between the pointer basis and the energy edgesjB17]. This case will be
discussed in detail belov§ {7.3).

In general, it is nontrivial to identify the set of pointeatds for a given system/environment
dynamics. In the simplest models, such pointer states gensiates of the pointer
observable which commutes with the system-environmeataation. In more general
cases, one may resort to several criteria aimed at idemgjtyie set of states that is least
affected by the interaction. One such criterion is the dedaredictability sievg207].

The evolution of a pure stat@) s is considered predictable if it is deterministic, i.e.,
if the state maintains its purity. The loss of predictabilin this sense, is measured
by the von Neumann entropy of the evolved stéfe(t)) wherep(0) = [)s(¢|. If
states are ranked according to their predictability, thérenment is seen as a sieve
that selects the states that “survive” best to the intevaatiith the environment. The
set of states that minimiz&(o(¢)) is a good candidate to represent the set of pointer
states. In fact, when a true pointer observable exists gisnaitates can be retrieved
with this predictability sieve criterion.

7.2.3 EIS and consistent histories

EIS and DH yield two possible descriptions of a decoheremoegss. The goal of
understanding the relation between the two pictures hanexd several studies [218,
219, 220]. These works have shown that there is an asymnretdtion between
pointer bases and decoherent sets of histories, that mayrbmarized as follows.
One one side, the mere existence of a set of decoherentibsstoay not be related
to a physical process of einselection. The vanishinmtfrferencebetween histories
may or may not be caused dgcoherencen fact, it can occur even in closed systems,
as we saw in Chap. 6. On the other side, the existence of agpdiasis implies that a
decoherent set of histories can be obtained by fixing projedt the pointer basis for
all times, since histories in the pointer basis will haveishimg interference.

history decoherences EIS

Systematic procedures to find a decoherent set of histotistsieespective of whether
einselection is acting or not. Let us consider generic hiesodefined by projectors
Pj‘;, wherel = 1,..., N. The superscriptindicates that projectors for eathmay be
different, while the subscript, labels the alternative at timeg (notations are the same
introduced in§ 4.2.1).

For a closed system we can simply taRe = |e;, (t¢))(e;, (t¢)| where theex (t)) form
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the instantaneous eigenbasis of the density matrix,
olte)lex(te)) = ex(te)lex(te)) where o(ty) = U(te)o(to)U' (tr)
Indeed the decoherence matrix reads
Djx = Tr... PLU(t2 — t1) PL U (t1 — to)o(to)U' (t1 — to) P U (ta — t1) P, ... ] =
=Trl... PU(t2 — t1) P} o(t1) PL U (ta — t))UT P, .. ]

In order to get decoherence in the firstindex, one simply sks, = |e;, (1)) (e;, (t1)],
getting

Djic = 85, Tr[- . PLU(t2 — t)|ej, (t1)) e, (0)|UT (b2 — t1) P, ... ] =
= 5j1k1Tr[' . PJQQ |ej1 (t2)><ej1 (t2>|Pk22 . ] =

Taking P2, = |ej, (t2))(ej, (t2)| one gets decoherence in the second index, etc. This
choice requires to adjust the measurement align the projectors to the instantaneous
eigenbasis op. However, there is another way to get a decoherent set. ficesfto
take histories in the energy eigenbasis of for all timEﬁ[, = |Ej,){(Ej,|. Now the
Projectors commute with the dynamics, hence we have

Dix = Tr[U(ty — to) Py, ... Pl o(to) Py, ... PN U (tn —to)] =
= jk5i1i25i2i3 o '5iN—1iNTr[P]'11 Q(tO)lel )]

Again, we can have no interference and we achieve a decdtseteof histories.

For an open system a set of exactly decoherent histories eautomatically con-
structed in the Markovian limit (i.e., for time intervadst > 7,,) where the evolution
of S is described by a reduced propagadtor,. From Eq. (4.23) we see that the deco-
herence matrisD;; will be diagonal in the first indey; if the projectorstl1 are taken

in the eigenbasis af(t1) = Ky, 1, [o(to)], referred to aSchmidt basiin the literature
(obviously,K does not coherently couple the eigenbases{tf) ando(t,)). Next, D;;

will be diagonal in the second indgy if projectorst2 are taken in the eigenbasis of
the path-projected reduced density matrix

O35, (t2) = K:t2 t1 [Pj11 QOPj11]

for eachj;. As thoroughly discussed by Zurek [218], in general the migeis of

0j, (t2) conditionally depend op;. In fact, non-unitary evolution does not preserve
commutatorségnvironment-induced noncommutatiyit$o, the stateg;, (t2) obtained

for different;j; may not commute, even P, oo P;, did. In order to achieve full de-
coherence, projectors at eaghmust be taken in the eigenbasis of the path-projected
density matrix

Qje—1...41 (ﬁf) = Iate te—1 [Pf;j Qje—a...51 (ﬁf—l)Pf;ﬂ (7.5)

Due to environment-induced noncommutativity, in gendraigenbasis of;, . ;, (t¢)
conditionally depends on previous projectors at times . t,_1:

Pt = pJ
Je Jelje—1.-1
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This entails that the resulting histories are “unstabléfe Thoice of projector@ﬁ de-
pends on the choice of previous timgs. . . t,_;. Moreover, if one effects a temporal
coarse-graining over timg, projectors at later times are substantially modified. Thus
in general we cannot obtain a decoherent set by taking povjieca fixed basis, as was
the case for closed systems (where one could take projaotthe energy eigenba-
sis). This can be done only if the system-environment iictéva creates a true pointer
basis.

EIS = history decoherence

An einselection process, leading to well-defined pointsidja;), guarantees the ex-
istence of a preferred set of decoherent histories. If thér@mment is ignored and
we take for all times coarse-grained projections in the mihasis,Pf[ = |aj,){aj,],

we observe history decoherence as soon as the time intet\atween projections is
At > 7p. Inthis case, the Schmidt basis becomes stable (i.e. itoatdepend on
previous results) and coincides with the pointer basislfof for all At > .

In particular, if a true pointer observable exists, and we iarthe strong coupling
regime (so thatdg and H¢ can be neglected), it is immediate that histories in the
pointer basis decohere however the timeare chosen.

Pl Ry, e [PLTPS = las Mg | (e oo llag, ) g, ) la,) (o, | =
= laj ) aj,| (laj,_)aj.. 1) laj){az| =0 Vie # je-

This case is analogous to the case of the energy eigenbasisfed systems. In fact,
the statesa;) are stationary states, as tffg;) in the closed system case.

To sum up, the DH approach yields a necessary, but not sulfficendition for the
existence of a stable pointer basis|df) is a stable painter basis, then histories with
fixed projections in this basis must decohere, at least ffficently large A¢. Con-
versely, if histories in a given, fixed bagis) decohere, this does not imply that eins-
election in a stable pointer basis is acting. It only imptiest transitions between the
basis elements have vanishing interference. This comditiat can be realized both
by a coherent (unitary) dynamics that does not couple diffebasis elements, and by
a decoherent (non-unitary) dynamics under which the bdsiments are stable. For
instance, the DH approach cannot distinguish the situatitere the system is weakly
coupled to the environment - and hence einselection in thegys eigenbasis occurs
- from the situation where the system is closed - and henceinselection occurs. In
both cases, histories in the system energy eigenbasiseuitiitere.

7.3 EIS and DH in a simple model

The model

In the following, we shall investigate the relation EIS anH ih a simple model: a
qubit coupled to a non-Markovian environment. The systeim a qubit coupled to a
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second qubit that plays the role of the near environment. The two-qubitianian
is:

H=Hs+ Hg+ Hipt = (sinaoy +cosao,) @1+ 1® o, + Ao, ® 0, (7.6)

with o = & (we have chosen to rotafés away fromo, in the x-z plane for reasons
that will become apparent later). The near environnteig further coupled to an
external reservoir (far environment) whose effect is toseadecoherence aiv We
will analyze two kinds of Markovian decoherence.

e dephasing in the,, basis of. The jointSE evolves under the Lindblad equa-
tion :
0se = —i[H, ose] + YLl ® 0,](0s¢) (7.7)

whereL|a](o) = 2apa’ — atao — ga’a and~y is the dephasing constant.

e thermal relaxation in the energy eigenbasi€ofThe jointSE system evolves
under the Lindblad equation:

bse = —~ilH, 0se] + g (nr + VLI 0 J(ose) + gnrLll® o,](ose) (7.9)

whereo, = %(am + ioy), I is the thermal relaxation constant, and is the

thermal number.

In both cases, the reduced dynamicsSofs non-Markovian. A similar model was
studied in [217], with the major difference that the role bé tfar environment was
played there by a quantum kicked rot®mwith Hamiltonian

2
HRZ%—i—vcosq 5(t/T) (7.9)

whered(t/T) = 72 d(t — jT), coupled ta€ through an interaction Hamiltonian

Hpe = Koz cosq 0(t/T) (7.10)

Although this model appears to be much more complicated ¢hias due to chaotic
dynamics induced by the kicked rotor, in the lifit— 0 the sole effect of the coupling
with the rotor is to induce a Markovian dephasing®fi204]. In [217], a relatively
short kick periodl’ = ﬁ ~ 1.5-1073 was used. Therefore, we do not expect strong
gualitative differences between our model and that modfdrahe general features of

decoherence oSf.

Methods to predict and find pointer bases

In [217] it was argued that the systesradmits approximate pointer bases for interme-
diate values of the system-near environment coupling feature that was explained
by the following heuristic argument. Given an orthogonaib® = {|bo), |b1)} of S,

the SE state can be expanded as

[(8)) = [bo)|¢o(t)) + [b1)|¢1 (1)) (7.11)
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so that the off-diagonal elements of(t) are (¢o(t)|41(t)). Approximate decoher-
ence in the3 basis corresponds to approximate orthogonality of theédesjon states”
|oo(t)) and|gq (t)). If we neglect the effect of the far environment, the expamstates
|¢a) (@ = 0, 1) evolve according to

d
ZE|¢OZ> = Hozoc|¢oz> + i|§a> (712)

where H,o = (bo|H|bo) and|&,) = —iHyp|d)ps With o # 5. Thel,) evolve
according to

d
ZEK@) = Zoz|§>oz - iJa|¢a> (713)

whereZ, = HusHgsHy,, Jo = HopHgpo. Thus, the expansion states(¢)) and
|¢1(t)) undergo two distinct evolutions. The discrepancy is dudnéodifference be-
tweenHoo, |$0), andH11,|&1). It can be estimated by considering the operator differ-
encesAH = Hyy — Hi1, AZ = Zy — Zy, AJ = Jy — J1. Actually, one can easily
verify thatAJ = 0 in the model and it can be further shown tha¥ ~ —AH, so that
the discrepancy can be assessed by the single quafitXidi|. The crucial hypothesis
in [217] is that the basi# maximizing||AH|| should correspond to an approximate
pointer basis for the system. In my point of view, this argntmaust be taken with a
grain of salt for at least reasons: i) the argument totallylects the effect of the far
environmentii) a high\ H entails that the two expansion states undergo divergent evo
lutions, but this does not necessarily and immediately yntipéir quasiorthogonality,
{¢o(t)|1(t)) ~ 0.

Whether an approximate pointer basis actually exists carebifted with the following
procedure, that was also described in [217] (including leétmethod to find a pointer
basis candidate, Eq. (7.16) and the method to verify itslgtaliEq. (7.19)). Ideally,

if a stable pointer basis exists all initial states shouldragimately decohere into the
same basis after a decoherence titpe The existence of an approximate pointer ba-
sis should mirror in the temporal stability of the Schmidsisa(i.e., the eigenbasis of
0s(t)) for all timest > 7 as well as in the stability with respect to the choice of atiti
states. Notice that it is possible that each initial staotieres into some basis (i.e.,
shows astable Schmidt basier all timest > 7p ) but this basis differs depending on
the initial state. We will talk about the existence opainter basisonly if the stable
Schmidt basis is the same for all initial states.

A stable Schmidt basis can be identified through the follgwgrocedure. Consider the
Schmidt statee(t)), £ = 0, 1 with

os(t)lex(t)) = ex(t)lex(t)) (7.14)

with 0 < eg(t) < 1, eo(t) + e1(t) = 1. If a stable Schmidt basis exists, thg(t))
should be approximately time independent after an initaisientrp, so that

os(t) =) ex()len(t))(er(t)l = Y _en(t)ler)ler] > (7.15)

k
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Uponintegratings(t) intime, gs = —— :b os(t)dt (for sufficiently large,, ty to—

ty 2 Tp) We thus get

0s = ! Z/ ' ek(ﬁ)|€k><€k|dﬁ = (7.16)
k Yta

ty — tg

= gy Sl [ enti = el

k

So the stable Schmidt basis can be identified with the eigeslodos: os|er) =
er|ex). This basis is well-defined only if the eigenvalue differedic= &; — &, is non-
vanishing. IfA < 1 no unique eigenbasis can be well defined. For the Schmids basi
to be stable, the instantaneous eigenbasis;¢f) must be close to the basis identified
by thelex), and we must have

lex(t)) =~ |éx), Yt > Tp (7.17)
The “distance” between the two bases can be evaluated as
D(t) =1 — [(ex(t)|ex)|” (7.18)

(we can choose both = 0 or k = 1). Hence, the average quantity

1 o
ds = / D(t)dt (7.19)
ta - ta ta
is a measure of the stability of the Schmidt basis. If alli@histates decohere into the
same (approximately) stable Schmidt basis, then the liatem (approximate) pointer
basis. In [217], a specific initial state was considered emtais shown that a stable
Schimidt basis exists fox <« 1 and\ > 1 and it coincides respectively with thés
eigenbasis and with the eigenbasighf,; (henceforth we will follow a commonplace
abuse of notation and call “eigenbasis@f,.” the eigenbasis of B{H,,.]), as ex-
pected from previous studies. In case of intermediate dogyh stable Schmidt basis
was found to lay in between these two extremes, interp@atira continous fashion
between the two. The interpolation was shown upon evalg#tia angleg; (), 02(\)
needed to rotate the stable Schmidt basis for a given valudardb the eigenbasis of
Hg and that offH,,,;.

Environment-induced superselection

We now follow the procedures described in [217] and sketéhebe previous para-
graph. We first give a prediction about the pointer baseviihg the heuristic ar-
gument based offAH ||. Next, we check whether pointer bases actually emerge in a
wide range of values of.

Any basis can be parametrized by an angg < ¢ < 7 and aphase 3 < x <

NE

|bo) = cos6|0) + eXsin 1), |b1) = —sin6]0) 4 eX cos f|1) (7.20)
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0.1 1 10
Figure 7.1: Expected pointer basis as a functioh fufr o« = % (red) and = 0 (black,
dashed)

where|0) and|1) represent the, eigenstates. We can evaluditA H || as a function
of 4, x:

1AH]|?
8

[|AH|| is maximised byy = 0 and:

= (cos arcos @ + sin asin @ cos x)? + A% sin” § cos? (7.21)

1 5in 2
0 = 0,,;, = — arctan (&) for A\ < Vcos2a (7.22)
4 cos 200 — A2

1 in 2
0 = 0min = % 1 arctan (%) for A > Vcos2«

Thus the basis maximizingA H|| lies in the x-z plane. Fox — 0 we getd = «/2,
that corresponds to the eigenbasisif. ForA — oo we get = 7/4, that corresponds
to the eigenbasis off;,,;. For intermediate values of, we get a basis interpolating
between the two. In Fig. 7.1 we plét,;, as a function ofA. It can be seen that
if a = 0 the change betweeth = § andf = 7 is expected to be abrupt, so that
no smooth interpolation is actually expected. This mogsais to choose > 0 in
order to look for possible interpolating pointer bases. &or & we expect to find
0 = {5 = 0.26 for A < 1, corresponding to the eigenbasisi@f, andt = 7 =
0.78 for A > 1, corresponding to the eigenbasisif,; and smooth interpolation for
intermediate values of.

Next, we numerically calculate the eigenbasigoffor different initial states. We
consider an ensemble éf = 100 pure SE states, generated randomly according to
the uniform measure ol.ss ~ C*. We first let the ensemble evolve under the de-
phasing noise. The dephasing constant iss 10~3. We find that all initial states
approximately decohere in some basis befgse< 7, = 1/+. In conformity with
expectation, we find such stable Schmidt bases to lie in th@kene (we always find
Im((0]as|1)) < 1073). Therefore, we can characterize any basis with the sinale p
rameters.
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Figure 7.2: Schmidt bases for state evolving under depasiise withy = 0.001

(a) Schmidt basis angleas a function of\ for some random initial states (b) average
distance from ther, basis(|d|), average inter-basis ang{¢) and average stability
parametetd,) as a function of\; the average is ove¥/ = 100 random initial states.
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Figure 7.3: Schmidt bases for state evolving under thermigkenwithI” = 0.001 and
ny = 0.5 (&) Schmidt basis angkas a function ofA for some random initial states
(b) average distance from tle basis(|f|), average inter-basis ang|8) and average
stability parametetd, ) as a function of\; the average is ove¥/ = 100 random initial
states.

For A < 1 allinitial states yield ~ {5 as expected. For>> 1, we have) — +7%
(notice that the values-7 correspond to the same basis), again in conformity with
expectation. For intermediate values, we would expect sgnfe a smooth transition
with values off) in the range/; < 0 < 7. However, contrary to this expectation, we
find two kinds of interpolating behavior: ) increases from7 to 7 i) 0 decreases
from {5 to —7% passing through negative values. This is shown in Fig.y ®(eere
0 is plotted for four different initial states. In Fig. 7.2(kwe plot{|d]) (that simply
measures the average distance of the dephasing basis feem tasis) as a function
of \, and observe a steady increase frgé) ~ 5 to (|0]) ~ 7. The behavior of|0])
obscures the fact that the valueg are reached through different pathways. To further
highlight this feature, we also consider all pairs of idiStates and evaluate the angle
B between their respective stable Schmidt bases. The aveshge(s) is plotted as
a function of for all initial states. We notice that a pointer basis emeigdy in the
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Figure 7.4: Schmidt bases for state evolving under coupliitily a kicked rotor with
withv =90/T,k=0.1,T = %’ andN = 64. (a) Schmidt basis angteas a function
of \ for some random initial states (b) average distance fromrtHsasis(|6|), average
inter-basis anglés) and average stability parametér) as a function of\; the average
is overM = 100 random initial states.

opposite limitsh\ — 0 and\ — oo, where(3) is small. For intermediate values &f
(B) reaches values up th4 and we cannot really identify a fixed pointer basis. Along
with {|6|) and (), in Fig.7.2(b) we also plot the corresponding average \whighe
stability parametetd,) introduced in Eq. (7.19) to characterize the stability ¢ th
Schmidt bases. We observe that the bases found are apptebirstable,(d,) ~ 0.2
in the whole range ol. In Fig.7.3, we report the same figures for the thermal noise
with T = 0.01 andnt = 0.01. The main qualitative features are unchanged. The main
peculiarity of the thermal noise, compared to the dephasiige, is that it leads to a
much stronger stability of the Schmidt bases, i.e., mucletoralues ofJ;).

The main message of these plots is that true pointer basesanly in the limits
of small and strong coupling, but not for intermediate cougpl These results seem
to be at odds with the main claim made in [217], that a stabletppbasis arises for
intermediate values of. We therefore investigate in detail whether there is a ficant
discrepancy between our model and the kicked-rotor modeltu to the kicked rotor
model studied in [217]. The Hamiltonian is:

H=Hs+ Heg+ Hipt = (W0, + w,0:) QL+ 1Qwao, + Ao, @0, (7.23)

with w, = 500, w, = 1000, w4 = 500. The eigenbasis of the system Hamiltonian
corresponds td = 0.23. The far environment is a kicked rotor represented by a self-
HamiltonianH r and coupling Hamiltoniai# p¢:

2
Hp = % +wvcosqd(t/T), Hpre =rko,cosqd(t/T) (7.24)

with v = 90/T andx = 0.1. The kicking period is" = 27 andN' = 64. We simulate
the model forM = 100 random initial states. In Fig. 5a we plétas a function ofA

for some initial states. We see that for smalhere is a pointer basis corresponding
to the system’s energy eigenbasis, while for lakgere is one corresponding to the
eigenbasis ofi;,;. However, also in this case for intermediate valuea tiere is no
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Figure 7.5: Relative entropy of decohereriGefor dephasing noise with = 0.001

as a function of the time intervalt between projections for different values of the
coupling strength\. In all panels, we show, for three different bases in the x-z plane
identified by different values df: § = 7/12 (eigenbasis ofis), § = 7/4 (eigenbasis
of Hint), 0 = Opmin (EQ. (7.22))

universal Schmidt basis. This can be seen again by ploftiag a function of\ (Fig.
5b). Notice that in ref. [217] the behavior éffor only one initial state is plotted.
This is sufficient to verify the existence of a stable Schrhiakis, but not to infer the
existence of a true pointer basis that must coincide fon#lki states.

Decoherent histories

We now consider decoherent histories of the system. Aststiate7.2.3, the existence
of a pointer basis should reflect into the decoherence afitiestwith fixed projectorsin
the pointer basis and¢ 2 7. Accordingly, we consider histories with projectors in a
fixed basis for all times. We take the time interved; = ¢, — t;_, between projections
to be the same for all projectionat; = At, and considelN = 4 projections. We
focus on projections in the x-z plang; = |vg){vo|, P1 = |11) (11| with

[1ho) = cosB|0) + sin6(|1), |¢p1) = —sinB|0) + cosO(]1) (7.25)
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Figure 7.6: Relative entropy of decohereitgeor thermal noise witi® = 0.001 and
ny = 0.5 as a function of the time intervalt between projections for different values
of the coupling strength. In all panels, we show, for three different bases in the
x-z plane identified by different values 6f 6 = /12 (eigenbasis ofs), § = 7/4
(eigenbasis off;,1), 0 = O, (EQ. (7.22))

since we expect to find a pointer basis in the x-z plane. Fochnice of basis, we can
assess the degree of history coherence by means of theealatropy of decoherence
Cn = ' —hy = S(DW)|| DI defined in§ 5.3.3.Cy measures how fab is from
its diagonal part, and hence measures the amount of colegoeheeen histories.

We first consider dephasing noise with= 0.001. In Fig.7.5, we plot, as a function
of At for different values of\ and different bases in the x-z plane, corresponding to
0 = /12 (eigenbasis ofis), § = 7/4 (eigenbasis 0H,,;), 8 = 0,,.:,, (the basis that
should yield a pointer basis according to (Eq. (7.22)). Tiigal state is|i) = |0)
(we sampled data for several initial states, not shown dineaesults do not exhibit
significant differences). Fok = 0.01, histories in the eigenbasis éfs(0 = 5 ~
Omin) are clearly more decoherentthan histories in the eigesibb#;,,;. In particular,
for At > 200 they approximately decohere. In the opposite limit of sgreoupling,

A = 20 we observe the converse: histories in the eigenbasig;of (0 = 5 ~ 0,nin)
are clearly more decoherent than histories in the eigesludigis. Again, for At >
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Figure 7.7: Time-averaged relative entropy of decohergifgéa; as a function of the
coupling strength\ and the basis anglefor (a) dephasing noise with = 0.001 (b)
thermal noise withH" = 0.001 andny = 0.5. Darker values indicate that coherence in
the basis is lower. Dark “stripes” that appear in the opjedsitits of strong and weak
coupling clearly identify the emergence of pointer bases

200 they approximately decohere. For intermediate values ttiough, the degree of
coherence between histories, as assessét ignds to be comparable for all bases.
This feature corroborates our view that no true pointer ®asést in the intermediate
coupling regime. In Fig.7.6, we plot the equivalent figures the case of thermal
noise. Qualitatively, the behavior matches that of depitasoise. The main difference
can be observed in the strong coupling regime. The disphgtween histories in
the eigenbasis aoffg and histories in the eigenbasis Hf,,; is less pronounced: for
At Z 200 both sets show low values of coherence. This feature is pigloiae to the
higher decohering effect of the thermal noise with respedephasing noise. As we
noted above, this effect is responsible for the higher Btgbif the pointer basis in the
case of thermal noise and strong coupling.

The discrepancy in the amount of coherence for historiedfiardnt bases can be
further synthetically illustrated, as follows. For anywalofé (i.e., for all bases in
the x-z plane) we averag®, over At over the period where decoherence is acting,
for gz < At < £ . The result is shown in Fig.7.7. We plé€s)a; as a function
of A and#@ for both dephasing and thermal noise with different valuiek e= 0.001.
The two pointer bases are clearly recognizable in the lihgroall A and largeA:
they correspond to much lower values(6f;) a:, compared to the other bases. In the
intermediate\ regime, it is not possible to single out a clear pointer bagis we
discussed ir§ 7.2.3, the existence of a pointer basis would imply thatohiss in the
same basis decohere. Indeed, the absence of a clear paagsierit the regime of
intermediate\ reflects into all bases having comparable value®ofa:.
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7.4 Conclusions

While the action of decoherence in the macroscopic limit &l wnderstood, deco-
herence for microscopic systems with a few degrees of frmadastill a open field of
research. A recent work [217] has analyzed decoherenceiin@esmodel, arguing
that pointer bases arise for all values of the system-enrrient coupling.

In this chapter, we have addressed the emergence of poages In a simple model by
comparing the standard einselection picture (based orattisiving of coherence in the
density matrix) with the decoherent histories picture dase vanishing interference
between histories in a set. On the basis of general consiolesawe expect to observe
decoherence between histories defined by fixed projectiotigei pointer basis, if the
latter exists and it is stable.

The model we analyze is a qubit coupled to a non-Markoviairenment composed
by a second qubit (near environment) coupled to a Markovéh.bAll together, near
and far environment make up a non-Markovian environmeng. Mbdel is essentially
the same as in ref. [217], except that the far environmentkaeovian reservoir in-
stead of a chaotic system (according to Ref. [204]), reshitaild be qualitatively the
same.

We have analyzed the emergence of pointer bases for diffeadures of the system-
environment coupling, according to the method developg@17]. In the opposite
limits of strong and weak system-environment coupling, wseove stable pointer
bases in the system energy eigenbasis and in the interadtioritonian eigenbasis,
confirming standard results in the literature [209, 214}. iRtermediate values of the
coupling, we observe that any initial state decoheres, hewpapproximately diag-
onal in astable Schmidt basisThis basis, however, is state-dependent, while a true
pointer basis should coincide for all initial states. Theentrary to the opposite claim
in [217], our data suggest that no true pointer basis artestermediate coupling.
The analysis of decoherent histories in the model corrdbsithis conclusion. Under
general arguments, when a stable pointer basis exists veegxppobserve decoherence
between histories with projections in the pointer basis. ke analyzed decoherent
sets of histories with projections in different bases andifierent values of the cou-
pling. For any set, we are able to assess the degree of cakebetween histories
by means of a single quantifier, the relative entropy of deoeiceCy introduced in
Chap. 5. For strong and weak couplirgy can clearly identify pointer bases, that
yield sets of histories that are much less coherent comparether bases. For in-
termediate values of the coupling, all sets of historiessshacomparable degree of
coherence, further indicating the absence of a true poirasis.



Chapter 8

Conclusions and outlook

As we wrote in the introduction, classical records of quanfhenomena can be ac-
quired only at the price of discarding some “coherent” infation. Decoherence pro-
cesses, like those exerted by measurements or interactibrawoisy environment,
have two specular consequences: They destroy the excessiqueoherence and sta-
bilize classical information. Throughout this thesis, veeé&looked at several decoher-
ence processes from an informational viewpoint, usingedkifit information-theoretic
quantifiers to analyze the effects of decoherence in phi)siedevant scenarios.

On one side, decoherence processes allow for the definifisnitable measures of
“quantumness” in terms of the amount of information thatost lunder their action.
On the other side, decoherence processes allow to “extkdSical information from
guantum systems.

On the first side (measures of quantumness), we have beerroedcwith a deco-
herence - related measure of quantumness for correlatamgebn two parties. Local
measurements allow to defigeantum discordchapter 1), that singles out “coherent”
correlations that are unavoidably lost when a subsysteme@sored. This measure
of quantum correlations is different from the traditionation of entanglement and
may capture quantum effects to which the latter is insesgsithut which can be rel-
evant for the behavior of physical systems. In chapter 2 we lamalyzed at length
quantum discord in a condensed matter model, the extendbtdatd model, and we
have shown a connection between this measure of bipartitelatons and an impor-
tant physical property of the model (off-diagonal longgarorder, ODLRO) that also
marks phenomena like superfluidity and superconductiiiyreover, the splitting of
correlations into a quantum and a classical part offeredisgodd allowed us to dis-
criminate between phase transitions that are physicdligrdnt. Another measure of
quantumness is thelative entropy of decoherenagefined in chapter 5. The relative
entropy of decoherence can assess coherence in the timgienaf a system, as seen
from the interference between different pathéistoriesof the system (chapter 4). Its
definition is based on a comparison between the coherenitewolof the system, as
represented by the decoherence matrix, and and a fully taeeot” one represented
by a decoherence matrix without interference terms. In thap we have used the
relative entropy of decoherence to characterize einsetedte., the emergence of pre-

140
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ferred pointer bases in Hilbert space as a result of intieraetith the environment.
The consequence of einselection is that coherence in tmgpdiasis fades and the
system becomes “classical” in that basis. By comparingtdwedsrd picture based on
the density matrix with a decoherent histories picture asethe decoherence matrix,
we have analyzed the behavior of an open system subjectezht®darkovian noise
and investigated the emergence of pointer bases for diffefues of the system-
environment coupling strength. In the opposite limits absy and weak coupling
clear pointer bases emerge, which is signaled by vanisHfrdjagonal elements of a
time-averaged density matrix in the pointer basis, andespondingly by a vanishing
relative entropy of decoherence for histories in the sansesb&ontrary to previous
statements in the literature, we showed that in the intefaedoupling regime no sta-
ble pointer basis arises, which is apparent from high vatiddle relative entropy of
decoherence.

On the other side (extraction of classical information) hege seen how decoherence
allows to definelassical correlationsi.e., the part of correlations that are stable under
the action of local measurements and are then locally aibdess key issue is finding
the optimal local measurement that allows to maximize thssital correlations. The
whole of chapter 3 was essentially devoted to solving thidolem in the physically
important case of two optical modes in Gaussian states. tiicpkar, we compared
Gaussian measurements (such homodyne detection) witiaassian ones (such as
photon counting) in order to see whether non-Gaussian measuts can allow for
a better extraction of information. We found robust evidetitat Gaussian measure-
ments are in fact optimal. Another question related to @asénformation arising
from quantum systems is tltgynamical production of classical informatidry quan-
tum dynamics. Decoherent histories provide a natural freanieto define a quantum
version of dynamical entropy, that measures the maximalathich information is
produced by the dynamics in time. When histories decohbeesystem effectively
produces classical information at a maximal rate given leydynamical entropy. In
chapter 6, we have applied quantum dynamical entropy tosdtod the interplay of
coarse-graining, history decoherence and the presencffexedt sources of unpre-
dictability leads to classical information production byasptum systems. While in
classical systems all unpredictability stems from dynaintbaos, in the quantum do-
main a major source of unpredictability (the probabilistature of measurements) ap-
pears. Consequently, both chaotic and integrable systghilsieentropy production.
By focusing on decoherence and coarse-graining, we haveedrthat randomness
provided by either the dynamics or measurements can ledutdgcoherence of suf-
ficiently coarse-grained histories, as well as maximalaytproduction compatible
with coarse-graining size. This picture was suggested Bnam@l, heuristic argument
and could be rigorously proven in the case of dynamical remdss by means of ran-
dom matrix techniques. We presented a numerical analysie@herent histories in
the quantum standard map that agrees with our theoretiedigtions.

The results presented in this thesis confirm the importahdeaherence for an un-
derstanding of quantum physics at large. Furthermore, shey the power of the
information-theoretical approach to the study of physgatems — a power that is
now recognized is several fields, from quantum physics tiisital mechanics and
complex systems science.
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