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Introduction and synopsis

Listening back to the whole piece

The experience of going through a PhD training is similar to listening for the first time
to a long musical composition. Like the composition’s movements, projects come in
rapid succession and as you concentrate on single units you often miss to perceive the
global coherence of the work. Writing up this thesis is the occasion for listening back
to the whole piece, and appreciate its cohesion. This thesisshows both unity and vari-
ation. Unity has been provided by the firm guidance of my tutors, who have pushed
me along a meaningful and clear research direction. Variation is due the freedom they
have granted me to comply with the whims of interests, stimuli, and ideas.
By the nature of the work I have carried over, this cannot be a strictly monographic
thesis – I haven’t been working on a single research project from the beginning to
the end. But it is certainly neither a mere collection of papers. If it were a music
piece, it wouldn’t have the monolithic character of Bach’sGoldberg variations, with
its obsessive exploration of a single aria, but it would’t either resemble a collection of
completely disparate and unrelated passages like Chopin’sÉtudes. It would probably
sound like Schumann’sCarnaval, a series of scenes with astrong thematic unityrepre-
sented by a leitmotiv and the ubiquitous, recurring presence of four keys. The leitmotiv
is decoherence, and the recurring keys are the concepts ofcoherence, measurements,
correlations, information.

Synopsis: decoherence and information

“The inability to discard entails the impossibility to discern”

Umberto Eco

When you measure a quantum system, you irremediably perturbit – so goes a
common representation of Heisenberg’s uncertainty principle. While this image is es-
sentially faithful, it may fail to adequately depict the huge gap between classical and
quantum physics. In fact, even by measuring a classical system you ought to perturb it.
For instance, if you want to measure an electrostatic field you must use a test charge,
whose presence will necessarily affect the field itself. However, there is a fundamental
difference between this kind of disturbance and the kind of disturbance emerging from
Heisenberg’s uncertainty principle. The disturbance created by a classical measure-
ment is not fundamental, and it can be made arbitrarily small, at least in principle. On

iv



INTRODUCTION AND SYNOPSIS v

the contrary, the disturbance unleashed by a quantum measurement is lower-bounded
by precise limits that depend on the measured observable, ant it cannot be reduced at
will, not even in principle. This kind of disturbance is fundamental, and it stems from
the fact that we are trying toextract classical records from a quantum state. When
we measure a given observable, we obtain a classical record thereof. This comes at
the price of losing all information about the quantum state’s phases in the observable’s
eigenbasis.
The leitmotiv of this thesis is thatif we wish to obtain a classical record of a quantum
property or process, we must usually discard some information. The obstacle that im-
pedes acquiring classical records of quantum phenomena is quantumcoherence, in its
multifarious manifestations. Correspondingly, the process of information loss that is
needed to create classical records isdecoherence.
Decoherence, as the product of physical processes affecting open quantum systems, has
been studied since the 1980es. A major breakthrough in the understanding of quantum
mechanics was the realization that decoherence can be the consequence of phase in-
formation dispersal among an ensemble of uncontrollable degrees of freedom external
to the system, generally termed “environment”. Decoherence, whether it is caused by
a quantum measurement or not, effectively creates classical records of the system. It
fragilizes quantum information, and stabilizes classicalinformation.
While decoherence is now a well-known and well-studied phenomenon, its effects have
not been explored in all possible directions yet. In particular, an interesting perspective
on decoherence processes opens up by taking an informational approach. The imme-
diate dividend of this choice is that one can useinformation-theoretical quantifiersto
give a precise quantitative meaning to the ideas of information gain and information
loss under the effect of decoherence. In several cases, the amount of information that
is lost under decoherence is commensurate with the amount ofcoherence originally
present in the system. Actually, it turns out that a good way to defineandassessthe de-
gree of coherence, or quantumness of the system is exactly toconsider the information
lost under actual or potential decoherence processes. On the other side, the ability to
quantify the classical information gained after the actionof decoherence is a precious
indication of how much an observer can learn about a quantum system through obser-
vation.
The thread binding together all studies presented in the forthcoming chapters is the
analysis of the effects of actual or potential decoherence processes on several physical
systems, with the key aid of information-theoretical quantifiers.
An important aspect of decoherence that has been properly highlighted only in re-
cent years is its effect on the correlations between two subsystems. If a measurement-
induced decoherence process locally affects a subsystem belonging to a correlated sys-
tem, a part of the correlations can be irreversibly lost. Actually, unless correlations
are in a specific, classical form,any local decoherence process entails a correlation
loss. This was recognized by Ollivier and Zurek [26] as a blatantly nonclassical fea-
ture of correlations and they considered the minimal amountof correlations lost to
define a genuine measure ofquantum correlationscalledquantum discord. Comple-
mentarily, Henderson and Vedral [27] considered the maximum amount of correlations
that can survive the effect of local decoherence to define a measure of classical cor-
relations. Discord and classical correlations have been receiving growing attention in
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recent years, as they are of relevance to the performance of several quantum informa-
tion processing tasks. In the first part of this thesis I will present two research projects
aimed at analyzing discord and classical correlations in physically important scenarios:
a quantum many-body model (Chapter 2) and a quantum optical model (Chapter 3).
Another still poorly studied aspect of decoherence is its relation todynamical entropy,
that quantifies the amount of information generated by the time evolution of a system,
i.e., that cannot be predicted on the basis of previous data on the system. This issue can
be properly addressed within the general formalism ofdecoherent histories. Originally
developed as an interpretational framework for quantum theory, decoherent histories
provide a natural language to describe coherence in the evolution of quantum systems.
Coherent effects reflect into the impossibility of assigning well-defined probabilities to
different paths or “histories” of the system, and they are simply captured by the off-
diagonal elements of a mathematical object calleddecoherence matrix(or functional).
When the decoherence matrix is diagonal, a condition calledmedium decoherence, the
evolution admits a perfectly classical description. Medium decoherence is usually ob-
tained upon discarding information, a procedure caleed coarse-graining. The ignored
information can be related either to an external environment, or to a part of the sys-
tem itself. By framing the concept of dynamical entropy in the decoherent histories
language, we will obtain a twofold yield. On one side, we willdevelop an informa-
tion theoretical quantifier of coherence in the time-evolution of a system (therelative
entropy of decoherence, Chapter 5), by comparing entropy production when coherent
effects are neglected or taken into accout, respectively. This measure will be used to ad-
dress a physically important problem, the emergence of pointer bases in Hilbert space
after interaction with a noisy environment (chapter 7). Moreover, we will analyze the
effects of decoherence and coarse-graining on entropy production by quantum systems,
comparing chaotic and integrable dynamics, and establishing under which conditions
both types of dyamics can lead to the effective production ofclassical information at a
nonvanishing rate.
Quantum information theory has contributed to highlight the tight relation between
physics and information theory. On one side, encoding, manipulating and extracting
information are tasks that sensibly depend on the physical properties and behavior of
information-bearing systems. On the other side, taking an informational perspective
can shed light onto the physics of those systems, leading to significant advances in un-
derstanding.
Exploring the effects of decoherence from an informationalperspective conforms to
this general spirit. There are two main motivations for thisexploration. From view-
point ofapplications, understanding how decoherence, information extraction,and in-
formation loss affect quantum systems is essential to control them and put them to use
for information processing tasks. From the point of view offundamental theory, we
can achieve a deeper comprehension of the difference between classical and quantum
physics.
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Contents of the chapters

• Chapter 1 contains an introductory review of quantum discord. I will high-
light the derivation of discord from decoherence theory, explain its information-
theoretic meaning and stress its potential for applications of quantum science
and technology. The chapter should enable the reader to understand and contex-
tualize the work in presented in Chapters 2 and 3.

• In Chapter 2, I investigate quantum discord and classical correlations in the ex-
tended Hubbard model, a reference model in the study of correlated electrons.
This chapter significantly overlaps with an article that hasbeen featured in Phys-
ical Review B [107], of which I am the first author. Since quantum information
has highlighted strong ties between quantum entanglement and physical proper-
ties of many-body ground states, especially at quantum critical points, it is inter-
esting to look for similar relations involving other types of quantum correlations
like quantum discord. I will assess discord and classical correlations in all phases
of the model, which has a complex phase diagram, and focus on the behavior of
correlation measures in the proximity of quantum critical points. I will uncover
a tie between long range correlations (off-diagonal long-range order) and quan-
tum discord in parameter regions where entanglement is vanishing, pinpointing a
possible general relation between discord and macroscopicquantum phenomena
like superfluidity and superconductivity. Furthermore, the separation between
discord and classical correlations at the critical points will prove essential to dis-
criminate between phase transitions that are physically different depending on
the appearance/disappearance of off-diagonal long-rangeorder.

• In Chapter 3, I will address discord for Gaussian states of two bosonic modes.
This chapter is essentially a reprint of a paper published inPhysical Review
A [64], of which I a contributing author. The computation of quantum discord
is in general very difficult, since an optimization over all local measurements is
required: One has to identify the optimal local measurementallowing for the
maximal preservation of classical correlation between twocorrelated systems.
The problem is interesting per se, besides the evaluation ofdiscord, as it sheds
light onto information extraction from the quantum system at hand. For Gaussian
states, it has been shown that the maximization problem can be solved if one re-
stricts the optimization to Gaussian measurements like homodyne detection, that
maintain the Gaussian character of the state. This left openthe question, whether
non-Gaussian measurements may allow for a better optimization. I will focus on
two large classes of Gaussian states, (squeezed thermal states and mixed thermal
states) and evaluate discord comparing results obtained with Gaussian measure-
ments, like homodyne detection, and non-Gaussian ones likephoton counting. I
will exhibit strong evidence that Gaussian measurements are optimal.

• Chapter 4 is a review of the decoherent histories formalism.The presentation
is tailored to provide the reader with sufficient knowledge to understand the fol-
lowing chapters (5,6,7).
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• In Chapter 5, I will introduce dynamical entropy and explainhow this concept
can be embedded in the decoherent histories formalism, by virtue of a general
mapping between measurements and Hilbert space partitions. I will show that
ALF-entropy, a quantum generalization of the classical Kolmogorov-Sinai en-
tropy, is related to the von Neumann entropy of the decoherence matrix of a
set of histories with fixed projections for all times. I will show that the de-
coherence matrix can be interpreted as the density matrix ofa set of quantum
registers that subsequently interact with the system, effectively performing the
“measurements” that define the set of histories under attention. This picture al-
lows to interpret ALF entropy as the rate of production of quantum information
by the dynamics. Upon casting ALF entropy in the decoherent histories lan-
guage, I will introduce a general measure of coherence for quantum histories,
the relative entropy of decoherence. The latter is defined asthe quantum relative
entropy between the actual decoherence matrix and a decoherence matrix where
off-diagonal entries are completely discarded.

• In Chapter 6, I will analyze dynamical entropy production byclosed quantum
systems in presence of two sources of randomness, (R1) randomness in the dy-
namics, i.e., in the choice of the evolution operator (R2) randomness in the choice
of measurements. By using the decoherent histories formalism, I will be able to
focus on the effects of decoherence and coarse-graining fordynamical entropy
production. Both (R1) and (R2) lead to similar results: Uponsufficient coarse-
graining, histories are decoherent and exhibit to a non-vanishing rate of entropy
production. These results entail that both chaotic and integrable quantum sys-
tems can produce effectively classical information at a non-vanishing rate. This
picture is obtained through a general, yet heuristic argument, and strengthened
by a rigorous random matrix argument that proves results forthe (R1) case. I
will test theoretical results by numerically studying decoherent histories and dy-
namical entropy in the quantum standard map, a well-known model that has a
chaotic/integrable transition. Results of this chapter are of interest for a general
issue raised by Gell-Mann, that of fundamental sources of unpredictability in
quantum mechanics.

• In Chapter 7, I will analyze the emergence of pointer bases (i.e., privileged bases
in which the open system decoheres) in a two-level small system interacting with
a non-Markovian environment. As previous literature has shown, pointer bases
depend on the strength of the system-environment coupling.While weakly cou-
pled systems decohere in their own energy eigenbasis, strongly coupled ones do
so in a basis dictated by the interaction Hamiltonian. A recent paper has sug-
gested that pointer bases exist also for intermediate values of the coupling, and
they “interpolate” between the two extremes found at weak and strong coupling.
By following previously developed methods, I will investigate pointer bases as a
function of the system-environment coupling. In addition,I will study decoher-
ent histories with fixed projections in different bases, focusing on the behavior of
the relative entropy of decoherence introduced in Chapter 4. I will test the basic
expectation that pointer bases should correspond to sets ofmutually decoherent
histories. At weak and strong coupling I will observe the appearance of clear
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pointer bases, and correspondingly a small value of the relative entropy of deco-
herence. For intermediate values of the coupling, I will argue that no true pointer
bases arise, showing that different initial states decohere in different bases. The
behavior of the relative entropy of decoherence (that showssimilar values for all
bases) strengthens this conclusion.

We, the authors of this thesis

This is my thesis, but it alsoour thesis. No part of this manuscript arose from a soli-
tary effort. In particular, I can claim no unshared credit for any of the scientific results
presented in the following chapters. It is hard to delimit the contribution given by
my supervisor at ISI, Paolo Giorda. Work presented in chapters 2 and 3 is the prod-
uct of our direct collaboration, and his steady supervision. We were both involved
in discussing ideas, making calculations, analyzing results, and writing. We also had
the pleasure to collaborate with other people. Our project on discord in the extended
Hubbard model (chapter 2) was done in collaboration with Arianna Montorsi, whose
essential ideas and physical insights have determined the very shape of the work. For
the work on non-Gaussian discord (chapter 3) we collaborated with Matteo Paris, who
gave fundamental contributions in the framing, the analysis and the writing. All work
related to decoherent histories (chapters 5,6,7) was done by me in collaboration with
Seth Lloyd. Those projects were ignited by creative bursts of his, and he later carefully
guided me along the most interesting research directions. Even if Paolo Giorda didn’t
directly collaborate on the projects described in chapter 5,6,7, his encouragement, as
well as his comments and suggestions were invaluable in bringing those projects to an
end. Although the review chapters on discord and decoherenthistories were written
solely by me, they reverberate many echoes of discussions wehad together with Paolo
and several other friends and colleagues.
I am sure that the merits, if any, of this thesis are largely a fruit of this range of collab-
orations, while I am the sole responsible for its possible flaws.
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Notations

We always consider units where~ = 1, unless otherwise specified.Subscriptson kets,
density matrices (̺) and traces (Tr), andsuperscriptson measurement mapsΠ andΦ’s
label subsystem label the subsystem(s) of reference. Primed quantities always indicate
that they are evaluated after a measurement. Logarithms aretaken in base2, unless
otherwise stated.

List of symbols

aX , a
†
X boson creator operators of modeX , Chap. 3

α displacement parameter,Chap. 3
Ai Kraus operators,Chap. 1,4,5,7
Aℓ

jℓ
Kraus operator representing alternativejℓ at timetℓ, Chap. 4,5,7

A,B,C subsystems,Chap. 1,3
|bi〉 orthonormal basis,Chap. 7
β inter-basis angle,Chap. 7
ciσ, c

†
iσ fermion creation operator for sitei and spinσ, Chap. 2

Cj history operator,Chap. 4,5,6,7
CN relative entropy of decoherence,Chap. 5,6,7
d space dimension,all chapters
d± symplectic eigenvalues,Chap. 3
D(η) displacement operator,Chap. 3
D(A|B) quantum discord with measurements onB, Chap. 1,2,3
D(B|A) quantum discord with measurements onA, Chap. 1,2,3
DG(A|B) geometric discord,Chap. 1,3
DG(A|B) Gaussian discord with measurements on modeB, Chap. 3
DNG(A|B) non-Gaussian discord with measurements on modeB, Chap. 3
DG

G(A|B) Gaussian geometric discord,Chap. 3
DNG

G (A|B) non-Gaussian geometric discord,Chap. 3
Djk decoherence matrix,Chap. 4,5,6,7
D(N,E) dec. matrix withN measurements given by POVME, Chap. 4,5,6,7
δ2 coherence ratio between pair of histories,Chap. 6
δs basis stability parameter,Chap. 7
∆ coarse-graining dimension,Chap. 5,6
∆t time interval between projections in histories,Chap. 4,5,6,7
|ei〉, |fi〉 orthonormal bases,Chap. 1
|ei〉 Schmidt basis,Chap. 7
E environment,Chap. 1,4,7
E energy density,Chap. 2
EE(̺) entanglement entropy of̺, Chap. 1
EF (̺) entanglement of formation of̺, Chap. 1,3
ES(̺) relative entropy of entanglement of̺, Chap. 1
η η-pair creation operator,Chap. 2
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f fine-graining parameter (f = d/∆), Chap. 5,6
Φ generalized measurement (POVM),Chap. 1
ΦG Gaussian POVM,Chap. 3
γ dephasing constant,Chap. 7
Γ relaxation constant,Chap. 7
h(pA) Shannon entropy ofpA, Chap. 1
hALF Alicki-Fannes entropy,Chap. 5,6
hKS Kolmogorov-Sinai entropy,Chap. 5
hN(Ω) Shannon entropy of refined partition afterN iterations ofT , Chap. 5
hN(E) von Neumann entropyD(N,E), Chap. 5,6,7

h
(c)
N (E) Shannon entropy of diagonal elements ofD(N,E), Chap. 5,6,7

h history, Chap. 4
H Hilbert space,all chapters
HX Hamiltonian of systemX , all chapters
Hint interaction Hamiltonian,Chap. 6
H(pA|pb) (classical) conditional entropy ofpA givenpB, Chap. 1,5
I, II, III, IV regions of Hubbard model,Chap. 2
I1,2,3,4 symplectic invariants,Chap. 3
I(A : B) classical mutual information,Chap. 1
I(A : B) quantum mutual information,Chap. 1,2,3
Iacc(A : B) accessible information information,Chap. 1
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Chapter 1

An introduction to quantum
discord

1.1 Introduction

There are two points at which quantum mechanics radically departs from the classical
picture of physics. The first, by far more popularized, is theimpossibility to simulta-
neously assign values to all observables of a system (“Heisenberg’s uncertainty princi-
ple”), which compels a probabilistic account of physics. The second are the collective
properties of compound quantum systems. The most importantexample thereof are the
symmetries obeyed byidentical particles, which play a crucial role in the organization
and behavior of matter. Another example, perhaps equally relevant, is the existence of
several types ofquantum correlationsbetween different parts of a system. Although
the study of quantum correlations has met changing fortunesin the course of time, the
global trend has been one of growth in importance and attention.
The field originated in the 1930es and flourished in the 1950es, when it was still con-
sidered of merely foundational interest. Several physicists at that time believed that
quantum mechanics should be ultimately reduced to classical mechanics, by virtue of
a local hidden variable model that might explain quantum indeterminacy in terms of
ignorance of some relevant variables. Much effort was payedto confirm or disprove
this intuition. Quantum entanglement, a form of quantum correlation, was soon rec-
ognized as a key concept that might tip the scales againts a reduction of quantum to
classical mechanics. Indeed, in the 1960es it was proved that entanglement is tied to
the so-called nonlocality of quantum mechanics, as discussed in the seminal work by
John Bell. The discovery of nonlocality severely diminished the appeal of local hidden
variable models.
But not only could quantum correlations explain why quantummechanics is not re-
ducible to classical mechanics. In the 1980es, they were used as the picklock that
opened the door to the quite opposite goal of reducing classical mechanics to quantum
mechanics. The theory ofdecoherenceshowed that correlations between quantum sys-
tems and their environment are essential to explain the emergence of classical reality

1
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from a quantum substrate.
In the early 1990es, the spring of quantum information theory projected quantum cor-
relations out of the niche of foundational topics, for it wassuddenly realized that quan-
tum correlations are powerful in affecting the way information can be manipulated
and transmitted by quantum systems. In fact, quantum correlations became the fun-
damentalresourceallowing for novel communicational and computational tasks at the
quantum level: quantum computation, teleportation, densecoding. Finally, in the last
decade quantum correlations have acquired a more central status in condensed matter
theory, as a relevant concept to explain so-called new phases of matter.
Correlations reflect the fact that the information contained in the global state of a sys-
tem is not equivalent to the information contained in the local states of its subsystems
taken separately. The ability to perform global operationsthat jointly involve all sub-
systems or the availability of communication between subsystems allows for ways of
encoding and decoding information beyond what can be achieved by means of sepa-
rate local operations on each subsystem. What characterizesquantum correlations, as
opposed to other (classical) types of correlations, is the quantum nature of the global
operations and/or the type of communication involved.
Traditionally, quantum information theory has focused on entanglement, that distin-
guishes states that can be prepared by local quantum operations and classical com-
munication (LOCC) from those whose preparation requires global quantum operations
or, equivalently, peferct quantum communication. In the last years, a novel view of
quantum correlations has emerged, based on the fundamentalrole bestowed onmea-
surementsrather than preparation. The essential idea thatcorrelations can be unstable
under decoherence induced by local measurementshas led to the concept ofquantum
discord.
For pure states, entanglement and discord coincide, and they are simply related to the
algebraic structure of the states. The complex, but interesting case is that of mixed
states, where entanglement and discord differ in nontrivial ways. A better understand-
ing of this difference is important to clarify the quantum aspect of correlations and
delineate the boundary between classical and quantum physics. Moreover, discord has
prompted an extended research effort aimed at elucidating the role of quantum corre-
lations in mixed state quantum information processing. This chapter provides an intro-
duction to quantum discord. I do not aim at a fully comprehensive review of the subject
(which can be found elsewhere, e.g. in [25]), but only at a short (and highly personal)
summary that may provide the reader with sufficient knowledge to understand later
chapters. In§ 1.2 I will introduce quantum discord by showing its genesis within the
theory of decoherence. In§ 1.3 I will present a more information-theoretical derivation
of discord, which will allow to define classical correlations. Moreover, I will discuss
properties of discord and classical correlations and theirpossible generalizations to the
case of general measurements and multipartite systems.§ 1.4 discusses the relevance
of discord in quantum information processing. Throughout the chapter, I assume that
the reader is familiar with the concepts of subsystems, Shannon and von Neumann en-
tropy, mutual information, entanglement, LOCC, entanglement monotones. The reader
who is not familiar with these concepts can read the background section§ 1.5 where
they are explained.
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1.2 Einselection, local measurements and correlations

The fundamental idea by Zurek [26] was that entanglement is not the only possible
form of quantum correlation. His pioneering work led to a novel view of quantum
correlations, based on measurements rather than preparations. Although Zurek’s idea
was introduced in the context of measurement theory, it is ofmuch wider applicabil-
ity. In measurement theory, one focuses on correlations between a systemS under
observation and an “apparatus”A. The process of measurement requires an interac-
tion between the two, leading to a correlated state. Correlations can be regarded as a
measurement of a fixed observableF =

∑

j fj|sj〉〈sj | only if the states|sj〉 of the
system become univocally correlated with corresponding states|aj〉 of the apparatus.
Assuming thatS andA interact unitarily, entanglement between the two is established.
TheSA state can be written as:

|ψ〉SA =
∑

i

αi|si〉|ai〉 (1.1)

where|si〉 and|ai〉 are orthogonal bases ofS andA respectively. Contrary to appear-
ances, Eq. (1.1) cannot be seen as a measurement ofF . Indeed,|ψSA〉 reflects the
so-calledbasis ambiguityproblem that we already noticed discussing the EPR para-
dox. Correlations betweenS andA can be expressed in several bases, not only in the
preferred basispreferred basescorresponding to the eigenbasis ofF . To see this, con-
sider a change of basis inS induced by a unitary rotationU , |si〉 =

∑

j Uij |s̃j〉. The
SA state can be rewritten as

|ψ〉SA =
∑

ij

αiUij |s̃j〉|ai〉 =
∑

j

βj |s̃j〉|ãj〉 (1.2)

whereβj |ãj〉 =
∑

i αiUij and theβj are fixed by the requirement that the|ai〉 be
normalized. Then|ai〉 is a new (not necessarily orthogonal) basis ofA. If the |ãj〉 are
sufficiently distinguishable, meaning that〈ai|aj〉 ≪ 1, ∀i 6= j, then correlations can be
expressed in the|s̃j〉, |ãj〉 bases, and the interaction can be fairly seen as a measurement
of a different observable with eigenbasis given by|s̃j〉, viz., G =

∑

j gj |s̃j〉〈s̃j |. In
the extreme case where the state is maximally entangled (αi = 1/d, ∀i), then for any
U the new basis|ãj〉 is orthogonal, henceSA are correlated in any possible basis and
their interaction can be seen as a measurement of an arbitrary (rather than a specified)
observable. What leads to the overcoming of the basis ambiguity issue isdecoherence.
The (unavoidable) interaction with external degrees of freedom, usually collectively
denoted as called “environment”, has the effect of stabilizing the correlation in a given
preferredbasis. The effect of interaction with the environmentE is that different states
of SA become correlated with (quasi) orthogonal states ofE . As a result, the reduced
SA state evolves into an incoherent mixture,

̺SA =
∑

ij

αiαj |si〉|αi〉〈sj |〈αj | → ̺′SA =
∑

i

|αi|2|si〉〈si| ⊗ |αi〉〈αi| (1.3)

Now correlations cannot be expressed in a different basis: they are unambiguously
fixed in the|si〉, |ai〉 basis. This process through which the environment selects apre-
ferred basis is called environment-induced superselection or einselection. Once einse-
lection has happened, the state of the apparatus can be consulted in the preferred basis
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leaving it unperturbed: if we perform an orthogonal measurement ofA in the|ai〉 basis,
PA
i = |ai〉〈ai|, then we haveΠPA(̺′SA) = ̺′SA whereΠA is the quantum operation

corresponding to the orthogonal measurement,ΠA(̺) ≡∑i P
A
i ̺P

A
i . Moreover,̺ ′

SA

is also stable under further interaction withE , whose net effect onSA is the same as
that of an orthogonal measurementP (the environment can be thought of as effectively
acting as a measuring device). Thus we are left with correlations that are stable under
environmental perturbation and repeated measurement.
Einselection decreases correlations betweenS andA, as measured by the quantum
mutual informationI(S : A) (Eq. 1.91). Indeed, we have

I(S : A) = 2
∑

i

|αi|2 log |αi|2, I ′(S : A) =
∑

i

|αi|2 log |αi|2 (1.4)

Hence,I(S : A) > I ′(S : A). However, the additional correlations present in̺SA

have the drawback of being unstable under measurement and/or environmental per-
turbation. This feature is recognized as a quantum effect. Classically, when locally
probing a subsystem we do not alter its correlations with therest of the system. The
instability of correlations under local measurement is a purely quantum phenomenon.
The excess correlations that are disrupted by any local measurement define a peculiar
kind of quantum correlation, that has been calledquantum discord.
To introduce its formal definition, let us now leave aside thesystem-apparatus setting
and just consider a generic system living in Hilbert spaceHA ⊗HB. Assume first that
its state be in the form

̺cAB =
∑

ij

pij |ei〉A〈ei| ⊗ |fj〉B〈fj | (1.5)

i.e. diagonal in a product eigenbasis|ei〉A ⊗ |fj〉B . A state in this form is calledclas-
sically correlated stateor simplyclassical-classical (CC) state. I warn the reader that
the terminology “classical state” used in the quantum discord literature may be slightly
misleading. The classical aspect of these states resides the structure of correlations.
From other standpoints, these states are not classical. In particular, they do not cor-
respond to an embedding of a classical probability distribution in a quantum setting,
unless one restricts to an observable algebra of local operations commuting with the
state’s eigenbasis. Much less can CC states be considered asa semiclassical approxi-
mation, i.e., do not correspond to a suitable quantum approximation of a phase space
distribution (like, for instance, coherent states that areoften termed “classical states”
in the quantum optics literature).
For anyCC state, there exist (at least) one pair of local measurementsPA onA and
QB onB that leave the total state – and correlations – unchanged. Indeed it is imme-
diately seen that correlations are stable under local measurements in the|ei〉A〈ei| or
|fj〉B〈fj | basis: upon performing the projective measurementsPA

i = |ei〉A〈ei| and
QB

j = |fj〉B〈fj | then we obtain

ΠA(̺AB) = ̺cAB, ΠB(̺cAB) = ̺cAB (1.6)

where againΠA(̺) ≡ ∑

i P
A
i ̺P

A
i and analogouslyΠB(̺) ≡ ∑

j Q
B
j ̺Q

B
j . As a

consequenceI(A : B) = I(ΠA(̺AB)) = I(ΠB(̺AB)). If a state is not classical,
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then there is no pair of local measurements leaving the stateunchanged. Here we can
distinguish two cases. The first case is that of states that are “classical” in one of the
two parties. States in the form

̺cqAB =
∑

i

|ei〉A〈ei| ⊗ ̺B|i or ̺qcAB =
∑

j

̺A|j ⊗ |fj〉B〈fj| (1.7)

are calledclassical-quantum(CQ) or quantum-classical(QC) respectively. Such
states are “classical” in one of the parties (B or A respectively), meaning that there
exist a local measurement on that party leaving the states and correlations invariant. It
is sufficient to considerP andQ defined above and get

ΠA(̺cqAB) = ̺cqAB , ΠB(̺qcAB) = ̺cqAB (1.8)

The second case us that of states that are neitherCQ norQC (nor,a fortiori, CC) and
hence are disturbed by any possible local measurement both on A and onB. Such a
disturbance always leads to a decrease in total correlations, as measured by the mu-
tual information. Consider a general̺AB and a (projective) measurement on partyA,
PA
i = |ei〉A〈ei|. We get

̺′AB = ΠA(̺AB) =
∑

i

|ei〉A〈ei| ⊗ 〈ei|̺AB|ei〉 (1.9)

LetI(A : B) be the mutual information before the measurement, andI ′(A : B)ΠA the
mutual information after the measurement. We always have

I ′(A : B)ΠA ≤ I(A : B) (1.10)

with equality if and only if̺AB isCQ:

I ′(A : B)ΠA = I(A : B) ⇔ ̺AB = ΠA(̺AB) ⇔ ̺AB =
∑

i

|ei〉A〈ei| ⊗ ̺B|i

(1.11)
The proof is postponed to the end of this section. The same results obviously hold true
if a measurement (ΠB) is performed on partyB.

1.3 Introducing quantum discord

1.3.1 The definition of quantum discord

Excess correlations

The minimal amount of excess correlations that are unavoidably lost in the process of
local measurement defines thequantum discord. If the measured subsystem isA, the
quantum discordD(B|A) is defined as

D(B|A) ≡ min
ΠA

(I(A : B)− I ′(A : B)ΠA) = I(̺) −max
ΠA

I ′(A : B)ΠA (1.12)
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If the measured subsystem isB, the quantum discordD(A|B) is defined as

D(A|B) ≡ min
ΠB

(I(̺) − I ′(A : B)ΠB = I(̺)−max
ΠB

I ′(A : B)QB (1.13)

States that are not CC have a non-vanishing value of eitherD(B|A) or D(A|B) and
they are termeddiscordantwith respect to measurements onA orB respectively. It has
been proven [35] that discordant states are dense in the set of all mixed states, which
a fortiori implies that almost all states are discordant Notice that “almost all” refers
to a mathematical framework where all states are granted equal a priori probability,
in the same sense that almost all pure states are entangled. In reality, decoherence is
ubiquitous and hence it is nontrivial to create states with ahigh amount of discord (or
entanglement) in the lab (i.e., in the lab probabilities arebiased in favor of classical
states).
It is in general very hard to explicitly perform the maximization required by the above
definition. So far, analytic solutions have been obtained only for finite-dimensional
2 ⊗ 2 [52, 53, 54, 55] and2 ⊗ d [56, 57, 58] systems, as well as two Gaussian modes
in the continuous variable setting [59, 60].

Quantum generalizations of the mutual information

We have just introduced discord as the difference in the total correlations before and
after a local measurement. The namediscord, though, stems from a different interpre-
tation of the same quantity which was also originally given by Zurek: the difference,
or failure to agree, of two quantum generalizations of the mutual information. Let
pAB be the joint probability distribution of random variablesA andB, andpA, pB the
marginal distributions ofA andB. Classically, the conditional entropy as ofA given
B is defined as

h(pA|pB) ≡ h(pAB)− h(pB) (1.14)

whereh is the Shannon entropy (Eq. 1.88). The conditional entropy measures the
residual uncertainty on variableA onceB is known. The classical mutual information
I(A : B) = h(pA) + h(pB)− h(pAB) can thus be rewritten as

I(A : B) = h(pA)− h(pA|pB) (1.15)

Zurek noticed that we obtain two different quantities when we try to define a quantum
mutual information by generalizing Eqs. (1.87) or (1.15). Starting from (1.87) and fol-
lowing the conventional prescription of replacing probability distributions with density
matrices and Shannon entropies with von Neumann entropies,we just obtain the stan-
dard definition of quantum mutual information,I(̺AB) = S(̺A)+S(̺A)−S(̺AB).
It is less straightforward to “quantize” Eq. (1.15). Indeed, if we start from Eq. (1.14)
and try to define a quantum conditional entropy as

S(A|B) ≡ S(̺AB)− S(̺B)

we obtain a quantity that is unsuitable as a quantum generalization of the conditional
entropy. In particular,S(̺AB)− S(̺B) can be negative. In fact, its opposite

I(A〉B) ≡ S(̺B)− S(̺AB) (1.16)
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is a well-known quantity in quantum information theory, called coherent information.
WhenA is a purification ofB andB is sent across a noisy channel,I(A〉B) measures
the amount of quantum information that can be reliably transmitted across the chan-
nel [116, 117]. UnlessS(A|B) < 0, no information can be transmitted. More recently,
another informational meaning ofS(A|B) has been found. It measures the amount of
shared entanglement needed to accomplish a protocol of state merging [119] (more in
§ 1.3.5). WhenS(A|B) < 0, the protocol can be carried over with no entanglement
cost and additional gain ofI(A〉B) units of shared entanglement. Also an interesting
thermodynamical meaning ofS(A|B) has been found in [131]) as the amount of work
needed by an observerB to eraseA. When(S(A|B) < 0, erasure can be effected with
a net work gain.
To sum up,S(A|B) is a important and meaningful quantity, that, however, cannot be
interpreted as a conditional entropy. Conceptually, conditional entropy should assess
the uncertainty about systemA once we have information about systemB. A satis-
factory quantum definition can be obtained by adopting an operational approach and
recognizing that information aboutB must be acquired through a physical process, a
local measurement process onB. Then we consider a measurementΠB onB. When
outcomei is obtained, the state ofA is projected onto

̺A|i =
1

pi
TrB[QB

i ̺ABQ
B
i ] (1.17)

with probabilitypi = TrAB[Q
B
i ̺ABQ

B
i ]. Therefore, the average uncertainty aboutA,

one we have measuredB, is given by

S(A|ΠB) =
∑

i

piS(̺A|i) (1.18)

that we may consider as a measurement-dependent conditional entropy. We always
haveS(A|ΠB) ≥ 0. To remove the dependence on the measurement, one can consider
the optimal local measurement onB allowing for the maximal reduction of uncertainty
on the state ofA. We thus defineS(A|B) = minΠB S(A|ΠB). Now, a quantum
generalization of Eq. (1.15) is achieved as

J (A|B) ≡ S(̺A)−min
ΠB

S(A|ΠB) (1.19)

J (A|B) measures the amount of correlations that can be extracted bya local measure-
ment, i.e., the amount of information aboutA that we can extract via a measurement
onB. The optimal measurement is the measurement that allows foroptimal extrac-
tion of information. In general,I andJ have different magnitudes. In particular,
J (A|B) ≤ I(A : B). In fact, one can easily prove (the proof is postponed to the end
of this section) that

J (A|B) = max
ΠB

I ′(A : B)ΠB (1.20)

i.e.,J corresponds to the (maximum) mutual information after the local measurement
on B. Therefore the quantum discordD(A|B) can be alternatively defined as the
difference betweenI andJ ,

D(A|B) ≡ I(A : B)− J (A|B) = S(̺B)− S(̺AB) + min
ΠB

S(A|ΠB) (1.21)
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Analogously, the quantum discordD(B|A) can be defined by just swapping the roles
of the two subsystems, hence by considering a measurementPA on systemA:

D(B|A) ≡ I(A : B)− J (B|A) = S(̺A)− S(̺AB) + min
ΠA

S(B|ΠA) (1.22)

The pure state case

A very simple case is that of pure states. In the Schmidt form (see§ 1.5.3) we have
|ψAB〉 =

∑

i λi|ei〉A|fi〉B. Upon locally measuringA in the Schmidt basisPA
i =

|ei〉〈ei| orB in the Schmidt basisQB
j = |fj〉〈fj |), we get

S(B|ΠA) = 0, S(A|ΠB) = 0 (1.23)

Thus we simply obtain

J (B|A) = S(̺A) = S(̺B), J (A|B) = S(̺A) = S(̺B) (1.24)

The discord is simply evaluated as

D(A|B) = D(B|A) = S(̺A) = S(̺B) (1.25)

Then for pure states the discord is symmetric and it coincides with the entanglement
entropy.

Asymmetry of discord

In general, the discord is non-symmetric under the exchangeof the measured parties,
i.e.D(A|B) 6= D(B|A). SinceI(A : B) = S(̺AB||̺A ⊗ ̺B), we can write

D(B|A) = min
ΠA

(

S
(

̺AB||̺A ⊗ ̺B
)

− S
(

ΠA(̺AB)||ΠA(̺A)⊗ ̺B
)

)

D(A|B) = min
ΠB

(

S
(

̺AB||̺A ⊗ ̺B
)

− S
(

ΠB(̺AB)||̺A ⊗ΠB(̺B)
)

)

In the special case in which the parties are symmetric,̺A = ̺B, the discord and the
classical correlations are symmetric too and we can write

D(A : B) ≡ D(A|B) = D(B|A), J (A : B) ≡ J (A|B) = J (B|A) (1.26)

In the general case, a symmetric version of discord can be defined by taking measure-
ments on both sidesA andB and looking at the mutual information before and after
the paired measurements:

D(A : B) = min
ΠA,ΠB

(

I(A : B)− I ′(A : B)ΠA,ΠB

)

= (1.27)

min
ΠA,ΠB

(

S
(

̺AB||̺A ⊗ ̺B
)

− S
(

ΠA ⊗ΠB(̺AB)||ΠA(̺A)⊗ΠB(̺B)
)

)

This equation can be also rearranged as

D(̺AB) = min
ΠA,ΠB

(

S
(

̺AB||ΠΠA⊗ΠB (̺AB)
)

(1.28)

− S(̺A||ΠA(̺A)
)

− S
(

̺B||ΠB(̺B)
)

)
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Proofs

Upon introducing a third partyC [47], originally in the state|0〉, the projective measurement on
A can be realized as a jointAC unitary rotationU |ei〉A|0〉C = |ei〉A|gi〉C such that

̺′ABC =
∑

jk

|ej〉A〈ek| ⊗ 〈ej |̺AB |ek〉 ⊗ |gj〉C〈gk| (1.29)

and we can obtain̺′
AB as a partial trace overC, ̺′AB = TrC [̺′ABC ]. Upon taking the partial

trace of̺′ABC overB we get:

̺′AC =
∑

jk

〈ej |̺A|ek〉 |ej〉A〈ek| ⊗ |gj〉C〈gk| (1.30)

We have the following relations:

S(̺′ABC) = S(̺AB) (1.31)

S(̺′AC) = S(̺A) (1.32)

S(̺′B) = S(̺B) (1.33)

To prove (1.31), expand̺AB in its eigenbasis̺AB =
∑

m
λm|vm〉AB〈vm|. Then

̺′ABC =
∑

jkm

λm|ej〉A〈ek| ⊗ 〈ej |vm〉〈vm|ej〉 ⊗ |gj〉C〈gk|

=
∑

m

λm|um〉ABC〈um|,

where we defined the orthogonal vectors|um〉ABC =
∑

j
|ej〉A ⊗〈ej |vm〉B ⊗ |gj〉C . To prove

(1.32), expand̺ A in its eigenbasis̺A =
∑

n
µn|wn〉A〈wn|. Then

̺′AC =
∑

jkn

µn〈ej |wn〉〈wn|ek〉 |ej〉A〈ek| ⊗ |gj〉C〈gk|

=
∑

n

λn|zn〉AC〈zn|,

where we defined the orthogonal vectors|zn〉AC =
∑

j
〈ej |wn〉 |ej〉A⊗|gj〉C . To prove (1.33),

just notice that̺ ′
B = ̺B (a local measurement onA cannot alter the reduced state onB).

Finally, recall that the strong subadditivity of entropy [120] implies

S(̺′ABC) + S(̺′A) ≤ S(̺′AC) + S(̺′AB) (1.34)

Hence, by using all above relations we conclude thatI(̺AB) ≤ I(̺′AB).

I(̺AB) ≡ S(̺′B) + S(̺′A)− S(̺′AB) =

S(̺B) + S(̺′A)− S(̺′AB) ≤ S(̺B) + S(̺′AC)− S(̺′ABC) =

S(̺B) + S(̺A)− S(̺AB) ≡ I(̺′AB)

In the second line we have used (1.33) and (1.34), in the thirdline we have used (1.32) and
(1.31).
Let us now inquire when the above inequality is saturated, i.e., whenI(̺AB) = I(̺′AB) holds.
Clearly, the inequality is saturated only if the state̺′ABC introduced above saturates the strong
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subadditivity inequality. Now, it is known from Refs. [121]that a necessary and sufficient con-
dition for saturation is that there exist a decomposition ofHA as

HA =
⊕

α

HαL ⊗HαR

such that̺ ′
ABC is in the form

̺′ABC =
∑

α

λα̺αLB ⊗ ̺αRC (1.35)

whereλα is a probability distribution . Since̺′ABC is invariant under exchange ofA andC, we
must also have a decompositionHC =

⊕

α
HαL ⊗HαR such that

̺′ABC =
∑

α

µα̺BαL ⊗ ̺AαR (1.36)

whereµα is a probability distribution. If both (1.35) and (1.36) hold, we must have:

̺′ABC =
∑

α

λα̺B|α ⊗ ̺AC|α (1.37)

i.e. the state is separable betweenAC andB. Moreover, because of the orthogonality of the
blocksα we must have̺ AC|α = Πα̺AC|αΠα where

Πα =
∑

l

|eαl〉A〈eαl| ⊗ |gαl〉C〈gαl|, (1.38)

and
∑

αl
|eαl〉〈eαl| = IA (we have relabeled the|ej〉 as |eαl〉 to explicitly distinguish those

belonging to different blocksα). Therefore,

̺′ABC =
∑

α lm

λα̺
lm
A|α|eαl〉A〈eαm| ⊗ ̺B|α ⊗ |gαl〉C〈gαm| (1.39)

Upon tracing outC we obtain

̺′AB =
∑

α l

λα̺
ll
A|α|eαl〉A〈eαl| ⊗ ̺B|α (1.40)

Upon undoing the measurement, we get,

̺ABC =
∑

α lm

λα̺
lm
A|α|eαl〉A〈eαm| ⊗ ̺B|α ⊗ |0〉C〈0| = (1.41)

=
∑

α

λα̺A|α ⊗ ̺B|α ⊗ |0〉C〈0|

hence, by tracing outC, we obtain

̺AB =
∑

α

λα̺A|α ⊗ ̺B|α (1.42)

We can diagonalize̺B|α as

̺A|α =
∑

l

ναl|uαl〉A〈uαl| (1.43)
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where for any fixedα the|uαl〉A are linear combinations of the|eαl〉A, and get

̺AB =
∑

α l

λαναl|uαl〉A〈uαl| ⊗ ̺B|α (1.44)

By just relabeling, we finally get:

̺AB =
∑

j

pj |uj〉A〈uj | ⊗ ̺B|j (1.45)

Thus̺AB is aQC state. The̺ B|j are equal for allj corresponding to the same blockα. If some
block α is more than one-dimensional, then any measurement in the subspace identified byα
attains zero discord. More in general, any measurementΠ = {Pj} whose projectors commute
with the block structure,[Pj ,Πα],∀j, α attains zero discord.

1.3.2 Classical correlations

The quantum discordD(A|B) (D(B|A)) has been defined as the amount of excess
correlations inI(A : B) that are unavoidably lost if a local measurement is performed
onB (A). The correlations that are stable under repeated measurements are given by
J (A|B) (J (B|A)) and they are calledclassical correlations. Such a denomination is
justified by several considerations. First, Henderson and Vedral [27] derived formula
(1.19) while trying isolate the “classical part” of total correlations inI. In particular,
they required that a good measure of classical correlationsJ (A|B) satisfy the follow-
ing properties:

1. J (A|B) ≥ 0 andJ (A|B) = 0 for product states

2. J (A|B) is invariant under local unitariesUA ⊗ UB

3. J (A|B) is non-increasing under local operations

4. J (A|B) = EE(̺) for pure states

that coincide with those of an entanglement measure (see§ 1.5.5), except for point3.
Point 1. is obvious. Point2. is required because a local change of basis should not
affect correlations. Point3. is natural because classical correlations should not increase
under local operations, but may be legitimately increased by classical communication,
contrary to an entanglement measure. Point4. is justified by the observation that total
correlations for pure states are given byI(A : B) = 2EE(̺), while the quantum part of
correlations should correspond to the entanglementEE(̺): thus classical correlations
should amount to the difference.
The classical correlationsJ (A|B) represent the maximum amount of correlations that
can be distributed among many parties by classical means (LOCC). Assume̺ AB is a
correlated state, and we haven other systemsC1, . . . , Cn, initially uncorrelated with
AB. If we can use only LOCC amongB,C1, . . . , Cn, then the maximum amount of
correlations betweenA and each of theB,C1, . . . , Cn is given byJ (A|B), as proven
by Zurek [44]. In the limitn → ∞, even allowing quantum communication among
theB,C1, . . . , Cn does not change the picture. As a consequence, only if̺AB is
QC (classical inB) can we distribute the entirety of correlations withA, measured
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by I(A : B) to additional partiesC1, . . . , Cn. The classical correlations represent the
amount of correlations that can be shared among arbitrarilymany parties. This result,
which pinpoints a limitation on the sharability of correlations, is in agreement with
other results. For instance, the no-local-broadcasting theorem [43] states that onlyCC
states can be locally “duplicated” (formally: given a state̺AB , there exists a state
σAA′BB′ with I(σAB) = I(σA′B′) = I(̺AB), that can be obtained from̺AB by
means of local operations, if and only if̺AB isCC).

1.3.3 Discord for general POVMs

So far, we have defined quantum discord and classical correlations by only considering
projective (von Neumann) measurements. More in general, one can allow for gener-
alized local measurements (POVMs), which is equivalent to allowing the use of local
ancillas. POVMsΦ are described by a set of positive operators{Ei} with

∑

iEi = I.
To any POVM we can associate a quantum operation (see§ 1.5.4) by choosing Kraus
operators{Ai} such thatEi = A†

iAi. Given a density matrix̺ , the probability of
measuring resulti is pi = Tr[̺Ei] and the post-measurement state is̺i =

∑

i Ai̺A†
i .

The definition of classical correlations and quantum discord are simply replaced by

J (A|B) = S(̺A)−min
ΦB

S(A|ΦB), D(A|B) = S(̺B)− S(̺AB) +min
ΦB

S(A|ΦB)

whereΦB = {EB
j } is a local POVM onB, and analogously forJ (B|A) andD(B|A).

Actually, the minimization can be restricted without loss of generality to rank-one
POVMs, i.e., POVMs such that allEj are one-dimensional projectors [65]. Indeed
assume thatEB

j can be refined,Ej =
∑

k E
B
jk. The refined post-measurement reduced

states onA are̺A|jk = 1
pjk

TrB[̺ABEjk] with pjk = Tr[̺ABEjk]. We have

̺A|j =
1

pj
TrB[̺ABEj ] =

∑

k

pjk
pj

TrB[̺ABEjk]/pjk =
∑

k

pjk
pj
̺A|jk =

∑

k

pk|j̺A|jk

wherepk|j =
pjk

pj
. Then we obtain

S(A|ΦB) =
∑

j

pjS(̺
A
j ) =

∑

j

pjS(
∑

k

pk|j̺A|jk)

By the concavity of von Neumann entropy, we get

S(A|ΦB) ≥
∑

jk

pjpk|jS(̺A|jk) =
∑

jk

pjkS(̺A|jk)

Thus the refined POVM can only decrease the value of conditional entropy. Since any
POVM can be written in terms of its eigendecomposition, the minimum conditional
entropy is attained on a rank-1 POVM. Furthermore,S(A|ΦB) is concave on the set of
POVMs. IfEB

j = λEB
α,j + (1− λ)EB

β,j , we have

pj̺B|j = λpα,j̺B|α,j + (1− λ)pβ,j̺B|β,j, pj = pα,j + pβ,j
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Then by using again the concavity of von Neumann entropy we get

S(A|ΦB) ≥ S(A|ΦB,α) + S(A|ΦB,β)

As a consequence, the minimum is attained on extremal pointsof the convex set of
POVMs. In the case of rank-1 POVMs, a necessary and sufficientcondition for ex-
tremality is that the set ofEj be linearly independent [126].
One may ask whether the minimization over all POVMs leads to asignificantly lower
value of the conditional entropy. In Ref. [61], it was shown that the difference between
the minimum over projective measurements and the minimum over all POVMs is very
small (or the order10−3), at least for two-qubit states.

1.3.4 Measures of discord

Entanglement is regarded as a property of all entangled states, regardless of the specific
measure (entanglement monotone) used to quantify it. In full analogy, all discordant
states are characterized by a property – having excess quantum correlations that are
lost under local measurements, independent of how they are measured. Unfortunately,
in the literature this property is simply referred to asdiscord, with a patent abuse of
terminology becausediscord also designates a specific measure of nonclassical cor-
relations). Henceforth, we will follow the literature use the worddiscordalso. With
this proviso, we may say that all discordant states have somediscord, that may be as-
sessed viameasures of discord. Paralleling the definition of entanglement monotones
(see§ 1.5.5), we may require measures of discordQ(A|B) to satisfy a minimal set of
properties. If only one party (B) is measured, a convenient list of properties is given
by

1. Q(A|B) ≥ 0 andQ(A|B) = 0 for all CQ states

2. Q(A|B) is invariant under local unitariesUA ⊗ UB

3. Q(A|B) is non-increasing under local operations onA

4. Q(A|B) = EE(̺) for pure states

If both parties are measured, we ought to replace 1. with1(b): Q = 0 for CC states
and3. with 3(b): Q is non-increasing under local operations.
Among the proposed measures of discord, we have therelative entropy of discord[29]

DS(A|B) ≡ inf̺qc∈QCS(̺AB||̺qc) (1.46)

defined as the minimum statistical distance between a state̺ and a classical state̺qc.
Upon considering the geometric distance induced by the trace norm (instead of an
entropic distance) one obtains a widely used measure of discord calledgeometric dis-
cord [29]

DG(A|B) ≡ inf̺qc∈QC ||̺AB − ̺qc||22 (1.47)

Surprisingly, it was proven in [30] that the same measure of geometric discord can be
obtained upon minimization with respect to local (orthogonal) measurements

DG(A|B) = infΠA ||̺AB −ΠA(̺AB)||22
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However, the geometric discord does not satisfy 3), as proved in [31], and, hence, is
considered by many Authors as a bad measure of quantum correlations.
Another measure of discord is based on the fact, first highlighted in [40], that discor-
dant states are such that any local measurement probing the system necessarily creates
entanglement between the system and the external apparatusthat realizes the measure-
ment. Thus generic quantum correlations can beactivated into entanglement [41].
The entanglement created in the local measurement can be measured by the negativ-
ity. Upon minimizing the system-apparatus negativity overall possible local measure-
ments one obtains a measure of quantum correlations callednegativity of quantum-
ness[41, 42].
Before closing this paragraph, let us comment on 3. If the measured party isB, often a
local operation onB can create discord [46]: for example consider a2⊗ 2 system and
an operationΛB acting as

ΛB|0〉B〈0| = |0〉B〈0|, λ|1〉B〈1| = |+〉B〈+|

(as usual,|+〉B = 1√
2
(|0〉B + |1〉B)). This map can be realized by a introducing an

ancillaB1 in the state|0〉B1 , performing a unitaryUΛ onBB1 such that

UΛ|0〉B|0〉B1 = |0〉B|0〉B1 , UΛ|1〉B|0〉B1 = |+〉B|1〉B1

and finally tracing out theB1. UnderΛ theCC state

1

2
(|0〉A〈0| ⊗ |0〉B〈0|+ |1〉A〈1| ⊗ |1〉B〈1|) (1.48)

is mapped into the state

1

2
(|0〉A〈0| ⊗ |0〉B〈0|+ |1〉A〈1| ⊗ |+〉B〈+|) (1.49)

that has non-vanishing discordD(A|B) (while D(B|A) = 0). It should perhaps not
come as a surprise that quantum correlations are created after a (quantum) operation
is performed on the system whose classicality is tested. Of course, local operations
do not increase the total amount of correlations (in this case, there is a loss of cor-
relations as measured by the quantum mutual information). By correlatingB with a
local ancilla that is later discarded, some of theAB correlations become inaccessible
to local measurements onB, so that not all correlations are classical any more. The
creation of quantum correlations occurs at the price of a loss of classical correlations
(this phenomenon is at the root of quantum data locking [124,72]). Nevertheless, sev-
eral Authors consider the increase under local operations as a sign that discord cannot
be considered as a true measure of correlations, but only as ameasure of the quantum-
ness of the state. Recently, Gessneret al. [45] have proposed a different way to define
quantum correlations, based on looking at the operator Schmidt rank of the state. Given
local bases{Ai} and{Bj} of Hermitian operators, any state can be written as

̺AB =
∑

ij

MijAi ⊗Bj (1.50)
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Via the same reasoning used for the Schmidt decomposition ofpure states, we can find
rotated bases{Ei} and{Fj} such that

̺AB =

ns
∑

i=1

λiEi ⊗ Fj (1.51)

wherens is called opersator Schmidt rank.CC states are such thatns < min(dA, dB).
It can be proved that discordant states that can be locally created fromCC states also
respectns < min(dA, dB) and are zero-measure in the set of all dicordant states. A
measure of quantum correlations that does not increase under local operations can be
obtained by a suitable function ofns.

1.3.5 Monogamy of discord and Koashi-Winter relation

It is well known that entanglement cannot be shared among many parties: if two sys-
tems are maximally entangled, they cannot be entangled witha third system. This
property is calledmonogamyand it is expressed by general inequalities of the type

M(A : B) +M(A : C) ≤ M(A : BC) (1.52)

whereM is an entanglement measure (see§ 1.5.5). In general, contrary to entangle-
ment, discord is non-monogamous. This was revealed by a few studies [33, 32, 107],
including my work with Paolo Giorda and Arianna Montorsi [107], to be presented in
later chapters. By means of a general argument, Streltsovet al. [34] later proved that
monogamy is a property of strictly entangled correlations.Consider a generic measure
of discordQ(A|B) satisfying properties 1., 2. above and

5. Q(A|B) is invariant under addition of a local ancilla in a pure stateon both sides

which all meaningful measures of discord satisfy. Assume further thatQ is monoga-
mous,

Q(A|B) +Q(A|C) ≤ Q(A|BC) (1.53)

We can prove thatQ must vanish on separable states, and hence, can be seen as a mea-
sure of entanglement. Let̺AC =

∑

i pi|ψi〉A〈ψi| ⊗ |φi〉C〈φi| be a general separable
state. We can extend̺AC as

̺ABC =
∑

i

pi|ψi〉A〈ψi| ⊗ |i〉B〈i| ⊗ |φi〉C〈φi|

The quantityQ(A|BC) is equal for̺ ABC and̺′ABC =
∑

i pi|ψi〉A〈ψi| ⊗ |i〉B〈i| ⊗
|0〉C〈0| because̺ ABC and̺′ABC are related by a local (onAC) unitary and we as-
sume 2). Moreover, since by 5. adding ancillaC does not alterQ, we must have
Q′(A|BC) = Q′(A|B). Hence because of the monogamy relation (1.53) we must
have

Q′(A|B) ≥ Q(A|B) +Q(A|C)
But Q′(A|B) = Q(A|B), whence we inferQ(A|C) = 0. Since̺AC is a general
separable state,Q must vanish on separable states. Even if we discard assumption
5., we can show thatQ must vanish for separable states by making a much weaker
assumption:
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6. Q(A|B) remains finite for a fixed subsystem dimension,Q(A|B) < f(dA) <
∞ (dA is the subsystem dimension andf a generic function).

Let ̺AB be a general separable state. It admits a symmetric extension ̺AB1...Bn
such

that̺ABi
= ̺AB, ∀i ∈ {1 . . . n}. Because of 6.,Q(A|B1 . . . Bn) must remain finite

for all n, including the limitn→ ∞. Assuming thatQ is monogamous, the relation

Q(A|B1 . . . Bn) ≥ nQ(A|B), ∀n
must hold. Thus we must haveD(A|B) = 0, lest the last inequality be violated for
sufficiently largen.

Although monogamy, Eq. (1.53) does not generally hold for measures of quan-
tum discord, it is possible to find “hybrid” monogamy relations involving a measure
of discord and other information-theoretical measures. The most well-known is the
Koashi-Winter relation [39] that involves the quantum discord and the entanglement
of formation for different partial traces of a tripartite state̺ABC . The relation can be
expressed as

EF (̺AB) ≤ D(A|C) + S(A|C) (1.54)

whereD(A|C) is evaluated with respect to all POVM measurements onC. Since

D(A|C) + S(A|C) = I(A : C)−J (A|C) + S(̺AC)− S(̺C) = S(̺A)−J (A|C)
Eq. (1.54) can be seen as a monogamy relation involvingEF (̺AB) and the classical
correlationsJ (A|C),

EF (̺AB) + J (A|C) ≤ S(̺A) (1.55)

If theABC state is a pure tripartite state|ψ〉ABC , the above relations hold with equal-
ity,

EF (̺AB) = D(A|C) + S(A|C), EF (̺AB) + J (A|C) = S(̺A) (1.56)

Let us prove (1.56). By usingJ (A|C) = S(̺A) − minΦC S(A|C)ΦC , we have to
prove

EF (̺AB) = min
ΦC

S(A|ΦC) (1.57)

Let us consider an ensemblepi, |φi〉AB for ̺AB (i.e.,̺AB =
∑

i pi|φi〉AB〈φi|) achiev-
ing the minimum of the entanglement of formation,

EF (̺AB) =
∑

i

piS
(

TrB[|φi〉AB〈φi|]
)

There must exist a POVMΨC = {EC
i } onC such that

TrC [E
C
i |ψABC〉〈ψABC |] = pi|φi〉AB〈φi|

(consider e.g.Ei = |ψi〉C〈ψi| where
√
pi|ψi〉C = AB〈φi|ψ〉ABC ). If we neglect

systemB and applyΨC on̺AC we get outcomei with probabilitypi, leavingA in the
conditional state̺A|i = TrB[|φi〉AB〈φi|]. We have

EF (̺AC) =
∑

i

piS(TrB[|φi〉AB〈φi|]) = S(A|ΨC) ≤ min
ΦC

S(A|ΦC) (1.58)
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Conversely, consider a POVMΨC = {EC
i } achieving the minimum ofS(A|ΦC).

From the above discussion, we can takeΨC to be a rank-one POVM. Let us apply
ΨC to |ψABC〉〈ψABC |. SinceΨC is rank-one, we obtainTrC [EC

i |ψABC〉〈ψABC |] =
pi|φi〉AB〈φi|. Hence we obtain an ensemble{pi, |φi〉AC} for ̺AB. We must have

S(A|ΨC) =
∑

i

piS(TrB[|φi〉AB〈φi|]) ≤ min
E

∑

i

piEE(|ψi〉AB) = EF (̺AB)

(1.59)
From (1.58) and (1.59) we get the desired result, (1.57). If̺ABC is not pure, we can
always purify it with̺ABC = TrD[|ψABCD〉〈ψABCD|]. Upon regarding systemsC
andD as a single systemC′, we get

EF (̺AB) = min
ΦC′

S(A|ΦC′

)

SinceminΦC′ S(A|ΦC′

) ≤ minΦC S(A|ΦC), we get

EF (̺AB) ≤ min
ΦC

S(A|ΦC)

hence retrieving (1.55).
Eq. (1.56) can be also used to obtain an operational interpretation of discord as the total
entanglement cost in the quantum state merging protocol [48]. The latter is a scheme
where two partiesA andB are required to swap correlations with a third systemC
via LOCC. More in detail, starting from a pure state|ψABC〉, the goal is to create a
state|ψB′BC〉, whereB′ is a local ancilla onB’s side. In general, LOCC onA andB
are insufficient to perform the task, and some prior shared entanglement entanglement
(in terms of the asymptotic number of singlets) is given byS(A|B). If S(A|B) ≤ 0,
not only does no shared entanglement have to be spent, but theprotocol can be carried
over obtaining in return an additional amount−S(A|B) of shared entanglement. At
the end of the protocol, the initial entanglement betweenA andB present in|ψABC〉 is
completely lost. If we measure such entanglement with the entanglement of formation
EF (A : B), then the total loss ofAB entanglement in the state merging protocol is

EF (A : B)− I(A〉B) = D(A|C) (1.60)

where equality comes from Eq. (1.56). Thus the discordD(A|C) of a state̺AC

acquires an operational interpretation as the total entanglement cost of performing state
merging betweenA and a third partyB holding the remainder of a purification|ψABC〉
of ̺AC .
We mention for completeness that a different interpretation of discord within a noisy
version of the state merging protocol has been given in [50].We consider state merging
betweenA andB whereA is subject to a generic decoherence process, modeled as a
quantum operationΦA acting onA. ΦA can be effectively realized by couplingA to
an external ancillaC in some pure state|0〉 through some unitaryV and then tracing
outC. After action ofΦC , it can be readily computed that

S′(A|B) ≡ S(̺′AB)− S(̺′B) = S(B|ΦA)
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hence the additional entanglement cost due to decoherence onA is given by

S′(A|B)− S(A|B) = S(̺A)− S(̺AB) + S(B|ΦA) (1.61)

The minimum additional cost over all possible decoherence processes is just the discord
S(̺A)− S(̺AB +minΦA S(B|ΦA) ≡ D(B|A). Since several quantum communica-
tion protocols (including teleportation and dense coding)can be derived from the state
merging protocol, discord also measures the additional entanglement cost to perform
such protocols in the presence of noise [82].

1.3.6 Multipartite setting

To conclude this section, we analyze how the previous definitions can be extended to a
multipartite setting. A state of anr-partite system can be said to be classical ins ≤ r
parties identified byC ⊆ {1, . . . , r} if it has the form

̺1...r =
∑

j1...js∈C

∑

js+1...jr∈C̄
pj1...jr |ej1〉1〈ej1 | ⊗ · · · ⊗ |ejs〉r〈ejs | ⊗ ̺js+1 ⊗ · · · ⊗ ̺jr

(1.62)
In this case, there is ans-tuple of local measurements on subsystemsC leaving the
state (and correlations) unchanged. Such local measurements can be specifiedP ℓ

jℓ
=

|ejℓ〉ℓ〈ejℓ | with ℓ = 1, . . . , s. A state is classical in all parties if it is in the form

̺1...r =
∑

j1...jr

pj1...jr |ej1〉1〈ej1 | ⊗ · · · ⊗ |ejr 〉r〈ejr | (1.63)

i.e., diagonal in a product eigenbasis{|ejℓ〉ℓ} with ℓ = 1, . . . , r.
A multipartite version of discord can thus be obtained upon considering ther-party
state̺1...r) and the multipartite extension of the mutual information,

I(1 : · · · : r) = S(̺1...r||̺1 ⊗ · · · ⊗ ̺r) (1.64)

which in classical information theory is called “total information” and can be expressed
asI(1 : · · · : r) = H(1) + · · ·+H(r) −H(1 . . . r). Upon extending equation (1.28)
to r parties undergoing local measurementsΠ1 . . .Πr, Rulli and Sarandy [36] define a
symmetrized multipartite discord as

D(1 : · · · : r) = min
Π1...Πr

(

S
(

̺1...r||Π1 ⊗ · · · ⊗Πr(̺1...r)
)

(1.65)

− S
(

̺1||Π1(̺1)
)

− · · · − S
(

̺r||Πr(̺r)
)

)

A different route to define the multipartite discord was taken in [37]. Classically, the
total information (like in ther = 2 case of the bipartite mutual information) can be
re-expressed by using conditional probabilities,p12...r = p1|2...rp2|3...r . . . pr and in-
troducing conditional entropies. In ther = 3 instance we have

I(A : B : C) = H(B)−H(B|A) +H(C)−H(C|AB)
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This formula can be “quantized” by introducing local measurementsΠA = {PA
i } on

A andΠB = {QB
j } onB, with post-measurement reduced density matrices̺C|ij =

1
pij

TrAB[P
A
i Q

B
j ̺ABCP

A
i Q

B
j ], ̺B|i =

1
pi

TrAC [P
A
i ̺ABCP

A
i ]. We can then define and

defining a tripartite version of the classical correlationsJ as

J (C|A : B) = max
ΠA,ΠB

[S(̺B)− S(B|ΠA) + S(̺C)− S(C|ΠA,ΠB)] (1.66)

whereS(B|ΠA) =
∑

i piS(̺B|i), S(C|ΠA,ΠB) =
∑

i pijS(̺C|ij). The tripartite
discord can then be defined as

D(C|A : B) = I(A : B : C)− J (C|A : B) (1.67)

By following the same procedure, one can define classical correlations and discord for
r > 3.

1.4 Discord in quantum information processing

Discord received little attention until it was suggested that it might be regarded as a
resourcefor quantum information processing, not unlike entanglement. In particular,
interest in discord boomed when some evidence was given [66]that discord, rather
then entanglement, might be the essential type of quantum correlation enabling quan-
tum speedup in a relevant protocol of mixed-state quantum computation, the so-called
power of one qubitmodel [141]. On one hand, the question whether some kind of
quantum correlation (and which then) can be considered the source of the quantum
advantage in the power of one qubit model (and by extension inthe complexity class
DQC1 where it belongs) has not been fully settled yet. On the other hand, the signifi-
cant research effort dedicated thenceforth to discord has allowed to highlight a precise
role of discord in several quantum information processing tasks that are unrelated to
computation. In particular, discord can be quantitativelyrelated to the performance
of a variety of protocols that effectively exploit the fact that a part of correlations are
hidden to local measurements. These protocols make use of discordant states, where
global measurements display advantage in performance overlocal measurements and
classical communication. In what follows we shall briefly discuss the potential role
of discord in mixed-state quantum computations, reviewingthe power of one qubit
model, and then succinctly list a few information processing tasks where discord leads
to a performance enhancement.

1.4.1 Discord and mixed-state quantum computing

Quantum computation consists in encoding information in a quantum state and sub-
sequently applying some logical operations (for instance,gates in the circuit model,
measurements in the measurement-based model). If there is an efficient classical de-
scription of both the states and the operations applied, thequantum process can be
efficiently simulated by a classical computer. The classical description is efficient if it
scales at most polynomially with the amount of qubits, and the classical simulation is
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efficient if it has at most polynomial overhead with respect to the quantum computation.
In a seminal paper [138], Jozsa proved that a quantum computation can be efficiently
simulated if there is a fixedp, independent of the total number of qubitsm, such that
the states at all steps in the computation arep-blocked, meaning that the qubits can be
partitioned intoK blocks such that

̺ = ̺1 ⊗ ̺2 ⊗ · · · ⊗ ̺K (1.68)

and each block contains at mostp qubits. In the case of pure states,p-blocking is vio-
lated only ifn-partite entanglement is created during the computation, wheren grows
without bounds with the input size. Thus, exponential speedup requires the generation
of entanglement. This is intuitively appealing, as there isno efficient classical descrip-
tion of entangled quantum states - the information requiredto specify the state scales
exponentially with the amount of qubits. In a following study, Vidal showed that expo-
nential speedup demands that the maximum Schmidt rank amongall bipartitions scales
exponentially. Otherwise, one has an efficient representation of the state as a matrix
product state [16] which allows to efficiently simulate the quantum computation on a
classical computer.
In the case of mixed states, the violation ofp-blocking does not imply entanglement:
even fully separable states need not bep-blocked. As a consequence, entanglement
is not a necessary condition for exponential speedup in mixed-state quantum compu-
tation. In fact, a mixed separable state has in general the same capacity for coding
information as a general mixed state (note that mixed separable states have a finite
volume in the space of density matrices) and correspondingly it may not have an effi-
cient classical description. Accordingly, Jozsa [138] deemed it plausible that separable
mixed states may have the same computational power as general mixed states. With the
same reasoning used in the pure-state case, Vidal showed that exponential speedup in
the mixed-state case requires that the maximumoperator Schmidt rankover all bipar-
titions scales exponentially. Otherwise there is an efficient representation of a state in
terms of a tree-tensor network, implying that an efficient classical simulation is possi-
ble. An exponential scaling of the operator Schmidt rank does not imply entanglement,
though, but only the presence of (possibly unentangled or even classical) correlations.
A prominent example of mixed-state quantum computing protocol is the power-of-
one-qubit model. Even if it is not computationally universal, it can evaluate the trace
of a unitary matrices with an exponential speedup over the best-known classical algo-
rithm (it is thus believed, yet not proven, that it affords anexponential advantage over
classical algorithms). This property can be put to use in various problems, including
estimating the density of states to the decay of fidelity in chaotic systems. We have a
set ofn+ 1 qubits, the first (control qubitC) initialized in the pseudo-pure state

(1− α)IC + α|0〉C〈0| (1.69)

and the remaining ones (target qubitsT ) initialized in the fully mixed stateI. Con-
ditioning on the state ofC, a unitaryU ∈ SU(2n) is applied toT , i.e., the system
undergoes a unitary evolution represented by|0〉C〈0| ⊗ IT + |1〉C〈1| ⊗ U . The initial
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CT state evolves into

̺CT =
1

2n+1
IC ⊗ IT +

α

2n+1
[|0〉C〈0| ⊗ U † + |1〉C〈1| ⊗ U ] = (1.70)

=
1

2n+1
(|0〉C〈0| ⊗ (IT + αU †) + |1〉C〈1| ⊗ (IT + αU)]

The final reduced state ofC is

̺C =
1

2

(

1 α
2n Tr[U ]

α
2n Tr[U †] 1

)

=
1

2

(

1 ατ
ατ∗ 1

)

(1.71)

whereτ = τR + iτI ≡ 1
2n Tr[U ]. This allows to evaluate the trace ofU by measuring

σx andσy onC, as

Tr[σx̺C ] =
α

2
τR, Tr[σy̺C ] =

α

2
τI

The estimation error depends only on the purity of the control qubit α and the number
of trials, but is independent of the size of the problemn. It is conjectured that there
is no classical algorithm that can efficiently solve this problem. Datta and Vidal [144]
showed that the maximum operator Schmidt rank in the model scales exponentially,
strengthening this hypothesis. This implies the presence of correlations, but not neces-
sarily entanglement. It is immediate that the control qubitC is always separable from
the target qubitsT . Therefore there can be entanglement only among theT qubits. The
negativityN was used to measure entanglement across any bipartite splitting including
C. Forα < 1

2n , N is bounded by a constant independent ofn, and hence vanishes for
n → ∞. Forα < 1

2n , N = 0. In summary, only multipartite entanglement between
theT qubits is present. The seemingly marginal role of entanglement in the model has
led to propose that the speedup may be due to nonzero quantum discord in the model.
For a typical unitaryU , chosen according to the Haar measure, we can evaluate the
discord betweenT andC (C is measured) in the final state [66, 69]:

D(T |C) = S(̺C)− S(̺CT ) + min
ΠC

S(T |ΠC) (1.72)

Here I sketch the caseα = 1. Consider the measurementPφ =
1±σφ

2 with σφ =
cosφσx + sinφσy . The reduced conditional density matrices ofT after the measure-
ment are

TrC [Pφ̺CTPφ] =
1

p±

(

IT

2n
± eiφRe(U) + e−iφIm(U)

2n+1

)

(1.73)

with p± = 1/2[1± (cosφτR + sinφτI)]. Their eigenvalues are

λ±k =
1

2n
1± cos(θk − φ)

1± (cosφτR + sinφτI)

where we have used the eigendecomposition ofU , U =
∑

j e
iθj |θj〉〈θj |. For a typical

U and largen, theθj are uniformly distributed in[0, 2π] and we getτR, τI ≪ 1, hence
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p± ≃ 1/2, λ±k = 1
2n (1± cos(θk − φ)). The results are approximately independent of

φ and we can chooseφ = 0. The conditional entropy ofT givenC is computed as

S(T |ΠC
x ) ≃ − 1

2n+1

∑

k

(1 + ck) log((1 + ck)/2
n) + (1− ck) log((1− ck)/2

n)

SinceS(̺CT ) = n, S(̺C) = H2(
1−|τ |

2 ) ∼ 1 we finally findD(T |C) ≃ 2− log e. For
generalα, one finds

D(T |C) ≃ 2−H2(
1− α

2
)− log(1 +

√

1− α2)− (1 −
√

1− α2) log e (1.74)

Thus, for atypical unitaryU there is non-vanishing discord betweenC andT for all
values ofα. This supports the hypothesis that quantum discord is involved in the quan-
tum speedup offered by the model. A contrary position was held by Dakićet al., o
proved [49] that for unitaries such thatU = eiγU † the quantum discordD(T |C) ex-
actly vanishes. However, Datta and Shaji [47] later noticedthat discord among the
parties can be created during the computational process when U has to be realized by
subsequently applying a series of (one and two-qubit) gates, U = W1 . . .Wn, sug-
gesting that for all unitaries discord is created during thecomputational process. The
idea that quantum discord must be created if the computationis to offer an exponen-
tial speedup is further supported by a completely general argument by Eastin [68]. He
devised a general procedure and showed that computations with classical states (states
with vanishing discord among all qubits) can be efficiently simulated by a classical
computer. Such a result, though strong, only concerns exactly classical state. Therefore
it does not suffice to qualify discord as a resource for quantum computation, because
it remains to be shown that a minimum amount of discord (actually, minimum scaling)
is necessary to achieve exponential speedup.
At the time of this writing, the role of discord in quantum computation is still contro-
versial. Following a penetrating discussion by Jozsa [138], many lean to the opinion
that it is meaningless to look for a single “source” of the exponential speedup in quan-
tum computation. In particular, there is no need to associate the speedup to a measure
of correlations (entanglement or discord). In principle there are several different ways
to classically describe a quantum computational process, depending on how states and
operations are represented. For instance, one can represent states as amplitudes (in a
given basis) and reproduce classically the quantum evolution with respect to this de-
scription. Unless the states are sufficiently entangled, this yields an efficient classical
description of the quantum computation, and no exponentialspeedup is possible. An
alternative formalism is the stabilizer formalism [140], where one considers the Pauli
group onn qubits and classifies states according to the subgroup elements that leave
them invariant. In the stabilizer formalism, one can identify a classX of states that
have a polynomial-sized stabilizer description. In this formalism, computations admit
an efficient classical description whenever computations remain inX , regardless of the
amount of quantum correlations among qubits. Thus, ifp(X ) stands for the property
of a state that does not have a polynomially sized stabilizerdescription, then one can
say thatp(X ) is responsible for quantum-computational power.
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1.4.2 Discord-assisted information processing tasks

Quantum discord has been found to be qualitatively, and in some cases quantitatively
related to “quantum enhancements” in several quantum information processing tasks
(by “quantitatively” I mean that discord proves a valid figure of merit to measure the
quantum advantage of these protocols).
Discord (as a property) is arguably a resource for protocolsof remote state prepara-
tion [70], whose efficiency can be quantified, at least in somecases, by geometric
discord. Discord (as a property) is needed to perform quantum state discrimination of
nonorthogonal states [76]. Discord (as a measure) is quantitatively related to the quan-
tum enhancement of different tasks involving the discrimination of local channels: the
performance gain of quantum illumination [128, 74], the sensitivity enhancement of
quantum metrology schemes [127, 75], and the advantage of global over local measure-
ments in a scheme involving local encoding of information [71]. Discord (as a mea-
sure) quantifies the amount of correlations that can be “unlocked” in the phenomenon
of locking of classical correlations [72]. Discord (as a property)is necessary to perform
quantum key distribution, sinceCC correlations between the communicating parties
can be locally duplicated by an eavesdropper without disturbing the system. Further-
more, discord (as a measure) is an upper bound to security rates in noise-assisted key
distribution protocols [73]. Finally, discord (as a property) has a deep thermodynamic
meaning [78, 77, 79]. The presence of discord implies that global strategies involving
joint coherent operations allow for the extraction of more work then purely local strate-
gies in different settings.
Intuitively, what groups all such cases together is a nonclassical effect where global
measurements are insufficient for a better extraction of information than local measure-
ment assisted by classical communication. Discussing eachof these cases is outside
the scope of this chapter, and I shall just describe a simple example, an instance of a
quantum protocol which I consider the most convincing example of a discord-assisted
process: quantum locking of classical information.

As we explained above in detail, some correlations are not accessible to local
POVMs, as if they were “locked” in the global state. The accessible correlations are
measured by theaccessible information, defined as

Iacc(A : B) = max
ΠA,ΠB

I ′(A : B) (1.75)

where̺′AB = ΠA ⊗ ΠB(̺AB). For aCQ state, the accessible information just coin-
cided with the classical correlationsIacc(A : B) = J (A|B). The amount of locked
correlations is given byI(A : B) − Iacc(A : B), that coincides withD(A|B) for a
CQ state. DiVincenzoet al. [124] discovered that the locked correlations can be “un-
locked” by allowing a small amount of classical communication between the parties.
If sendingn bits of classical communication, the parties can increaseI by at mostn
bits, but they can increaseIacc by n′ > n bits, unlocking∆ = n′ − n bits of informa-
tion. This is a purely quantum phenomenon that has no classical analogue. IfA andB
originally share aCQ state, we have∆ = D(A|B) as proved by Boixoet al. [72]. Let
us illustrate this with a simple example.
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PartyA aims to sent a classical message of lengthm (a bit string of lengthm to a
receiving partyB. The message can be encoded in a string ofm qubits

|a〉A = s1A1
. . . s1Am

(1.76)

whereA1 . . . Am areA’s qubits andsk = 0, 1. A can copy the string and send it to
B via a quantum channelΦ. If all strings are produced with equal probability, theAB
state is

̺
(0)
AB =

1

2m

∑

a

|a〉A〈a| ⊗ σa (1.77)

whereσa = Φ(|a〉B〈a|). The maximal information thatB can gain aboutA’s message
by making a POVM on his qubits is given byI(0)acc(A : B) = J (0)(A|B) ≤ m. Let us

consider an ideal channel for which we haveσa = |a〉B〈a| and henceI(0)acc(A : B) =
J (0)(A|B) = I(0)(A : B) = m, i.e., the message can be perfectly decoded. In order
to improve the communication security,A can encrypt the message with a classical key
K. Before sending|a〉 toB, she applies a unitaryUk on |a〉 depending on the key. She
can chooseUk to be such thatUk|a〉 are mutually unbiased bases for allk. If the key
is just one bit, theAB state is

̺
(1)
AB =

1

2m+1

∑

a

∑

k=0,1

|a, k〉A〈a, k| ⊗ Uk|a〉B〈a|U †
k (1.78)

whereU0 = I andU1 is such thatU1|a〉 is maximally unbiased with respect to|a〉.
After the encryption, we now haveI(1)(A : B) = m, I(1)acc(A : b) = J (1)(A|B) =
m/2. Therefore,m/2 bits of information are now locked. They can be unlocked by
sending only one bit of information. Indeed, ifA copies and sendsK toB, their state
becomes

̺
(2)
AB =

1

2m+1

∑

a

∑

k

|a, k〉A〈a, k| ⊗ Uk|a〉B〈a|U †
k |k〉B〈k| (1.79)

Now B can perfectly decode the message sinceI(2)(A : B) = I
(2)
acc(A : B) =

J (2)(A|B) = m + 1. Thus by sending onlyn = 1 bits of information,A can effec-
tively increases the accessible correlations ofn′ = m/2 + 1 bits, unlocking∆ = m/2
bits of information. The amount of unlocked correlations isequivalent to the discord
of the encrypted state,D(1)(A|B).

1.5 Background on quantum correlations

1.5.1 Definition of subsystems

The statement that a physical body is moving is incomplete, unless we specify which
reference frame we are considering. Analogously, the statement that a quantum state is
correlated (e.g., entangled) must be complemented with further information. In order
to define and assess correlations a prior definition of how thetotal system is divided



CHAPTER 1. AN INTRODUCTION TO QUANTUM DISCORD 25

into two or more subsystems is necessary. This division setsup a “reference frame” for
correlations, calledtensor product structure. Indeed for a quantum system, a division
into subsystems is expressed by a tensor factorization of the Hilbert spaceH into r ≥ 2
factors:

H = H1 ⊗H2 ⊗ · · · ⊗ Hr (1.80)

to which a tensor factorization of the observable algebra corresponds,

End
(

r
⊗

i=1

Hi

)

∼=
r
⊗

i=1

End(Hi) (1.81)

In general a large variety of tensor factorizations are possible for any system [4]. First,
one has to specify the dimensions of the subsystems. Assume the Hilbert space has
dimensiond. Then the possible choices of the subsystem dimensions are in one-to-one
mapping with the possible ways to factorized,

Fd ≡ {F ⊂ N /
∏

m∈F

m = d} (1.82)

Any factorizationF = {m1 ≤ m2 ≤ . . . ≤ m|F |} ∈ Fd of d provides a possible
choice of the subsystem dimensions.
Second, givenF , one has to specify which are the product vectors inH. Choose any
orthonormal set of vectors{|i〉}, i = 1, . . . , d. By using|F | indicesij ∈ {1, . . . ,mj}
we can relabel vectors as

|i〉 ≡ |i1i2 . . . ir〉, (1.83)

and identify the set{|i1i2 . . . ir〉} as an (orthonormal) set of product vectors:

|i1i2 . . . ir〉 ≡ |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |ir〉 (1.84)

Upon rotating the given set byU ∈ U(d), we generally obtain a different set of vec-
tors. However, that are two kinds of unitary operators that leave the set of product
states invariant: i) factorized unitaries in the formU =

⊗r
j=1 Uj where eachUj

acts only onHj = span
(

{|ij〉}
)

ii) “exchange” unitaries that permute the tensor
factorsH1, . . . ,H|F |. Thus possible choices of product vectors are parametrizedby
U(d)/(U(m1)×· · ·×U(mr)×P) whereP is a discrete permutation group. A choice
of F , together with a choice of the product vectors, identifies atensor product structure
(TPS) onH.
What the meaningful TPS are depends on the context. In many cases, a TPS may natu-
rally reflect the fact that the degrees of freedom (DOF) of thesystem are naturally split
among different physical entities. For instance, if we havetwo spins (e.g. two atoms,
neglecting the orbital DOF), then the four DOF of the joint system can be naturally
divided into two pairs, each pertaining to one spin. Correspondingly, we identify a
natural TPS in the total Hilbert spaceH ∼= C4 ∼= C2 ⊗ C2, that also induces a tensor
factorizationEnd(C4) ∼= End(C2) ⊗ End(C2) of the observable algebra. More in
general, a partition of the DOF into separated sets may depend on our ability to mea-
sure and manipulate the system [5]. If the DOF can be split into r sets that can be
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separately, but not jointly addressed, then the actions that we can perform on the sys-
tem have a factorized formA1 ⊗ · · · ⊗ Ar, and correspondingly the Hilbert space has
a meaningful tensor factorization asH1 ⊗ · · · ⊗ Hr .

1.5.2 Correlations and mutual information

Upon fixing a tensor factorization, and hence a definition of subsystems, we are able to
define correlations. IfH = H1 ⊗ · · · ⊗Hr, a state represented by the density matrix̺
is uncorrelated whenever it is in the product form:

̺ = ̺1 ⊗ · · · ⊗ ̺r (1.85)

else it iscorrelated. For a pure state represented by vector, the above definitionreduces
to

|ψ〉 = |ψ〉1 ⊗ · · · ⊗ |ψ〉r (1.86)

Correlation implies that the subsystems are not statistically independent. In classical
information theory, a general measure of statistical dependence is themutual infor-
mation. Let pAB be the joint probability distribution of random variablesA andB,
andpA, pB the marginal distributions ofA andB. The classical mutual information is
defined as

I(A : B) ≡ h(pA) + h(pB)− h(pAB) (1.87)

whereh(p) is the Shannon entropy

h(p) =
∑

i

pi log pi (1.88)

I(A : B) vanishes only ifA andB are independent,pAB = pApB. The quantum
analogue of this function can be obtained by replacing probability distributionsp with
density matrices̺ and Shannon entropiesh(p) with von Neumann entropiesS(̺),
where

S(̺) ≡ −Tr[̺ log ̺] (1.89)

Marginal probability distributions are to be replaced withreduced states

̺A ≡ TrB[̺AB], ̺B ≡ TrB[̺AB] (1.90)

This prescription has its origin in a classical study by Schumacher [115], where he
proved the quantum noiseless coding theorem: just asH(p) represents the number of
bits (asymptotically) required to encode a signal represented byp, the von Neumann
entropyS(̺) represents the number of qubits necessary to represent a quantum signal
represented by̺. Starting from (1.87) and applying this prescription, we obtain the
quantum mutual information[118]:

I(̺AB) ≡ S(̺A) + S(̺A)− S(̺AB) (1.91)
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This quantity vanishes if and only if the state is uncorrelated,̺AB = ̺A ⊗ ̺B. Indeed
Eq. (1.91) can be rewritten as

I(̺AB) = −TrA[̺A log ̺A]− TrB[̺B log ̺B] + TrAB[̺AB log ̺AB] =

= −TrAB[̺AB log ̺A]− TrAB[̺AB log ̺B] + Tr[̺AB log ̺AB] =

= TrAB[̺AB log ̺AB − ̺AB log(̺A ⊗ ̺B)] = S(̺AB||̺A ⊗ ̺B)

whereS(̺||σ) = Tr[̺ log ̺−̺ log σ] is the quantum relative entropy that measures the
“statistical distance” between states̺ andσ (with S(̺||σ) = 0 if and only if ̺ = σ).
ThusI represents a “statistical distance” between̺AB and the fully uncorrelated state
̺A ⊗ ̺B. I can be regarded as a measure of total correlations, since it is equivalent
to the amount of local randomness necessary in order t bring the state to an uncorre-
lated form [28] (this is the most important operational interpretation, but other exist,
for instance as the maximal amount of classical informationthat can be securely ex-
changed in a one-time pad cryptographic protocol between two parties sharing a state
̺AB [133]). The fundamental idea behind all notions ofquantumcorrelations is some
of the correlations accounted for byI can neither be created nor extracted by local op-
erations on the subsystem – joint quantum operations and/orquantum communication
between subsystems is required. The notion of entanglementfocuses on the preparation
of states, while that of discord focuses on information retrieval by measurements.

1.5.3 Entanglement for pure states

Given an arbitrary tensor factorizationH = H1 ⊗ · · · ⊗ Hr of the Hilbert space,
the general notion of entanglement for pure states is formulated as a straightforward
algebraic condition. By definition, a pure state isseparableif and only if it can be
written as a product vector:

|ψ〉 = |ψ1〉1 ⊗ · · · ⊗ |ψr〉r (1.92)

else it isentangled. Thus any correlated pure state is entangled. Entanglementalways
implies that contrary to the global system, each subsystem cannot be ascribed a state
vector but only a density matrix. It has recently been provedin full generality [8]
that all entangled pure states are “nonlocal” in that they violate a Bell’s inequality, a
result referred to as “Gisin’s theorem” since Gisen was the first to prove it, albeit for
the restricted case of bipartite states of two qubits [7]. Ifr = 2 (bipartition), it is
easy to characterize entangled states and even assess the amount of their entanglement.
Let us start from an arbitrary bipartite state|ψ〉 =

∑

ij Mij |i〉A ⊗ |j〉B . The matrix
M admits a singular value decompositionM = UΛV † whereU, V are unitaries and
Λ = diag(λi). Upon defining new local orthonormal bases|ek〉A = Uik|i〉A, |fk〉B =
Vjk|j〉B, we can bring|ψ〉 in a standard form calledSchmidt form,

|ψ〉 =
∑

k

λk|ek〉A ⊗ |fk〉B (1.93)

The numberns of nonzero singular values ofM is calledSchmidt rank. Whenever
ns > 1, the state is entangled. The reduced states of the subsystems are̺A =
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∑

k λk|ek〉A〈ek| and̺B =
∑

k λk|fk〉B〈fk| and wheneverns > 1 they are mixed.
The extent to which the reduced states are mixed can be seen asa measure of the de-
gree of entanglement present in the global state|ψ〉. It can be assessed by the von
Neumann entropy of the reduced states, calledentanglement entropy(EE):

EE(|ψ〉) ≡ S(̺A) = S(̺B) = −
ns
∑

k=1

λk logλk (1.94)

The entanglement entropy holds as a universal quantifier of entanglement for pure bi-
partite states. Whenns = n = min(dimHA, dimHB) andλi = 1√

n
the entanglement

entropy reaches its maximum valuesS(̺A) = S(̺B) = logn and the states are called
maximally entangled. For a generic bipartition, almost all states with respect to the
uniform measure on the complexn-sphere are entangled (i.e., separable states are a set
of null measure). For large Hilbert space dimension, almostall pure states are even
close to being maximally entangled [9].

1.5.4 LOCC and entanglement for mixed states

The definition of entanglement for mixed states cannot be achieved by simply identify-
ing the set of entangled states with the set of correlated states, as in the pure state case,
lest entanglement lose its characteristic traits. A defining trait of pure entangled states
is that they cannot be prepared by means of a product of local operatorsE1 ⊗ · · · ⊗ Er,
but only through a global, non-factorized operator acting on all subsystems jointly (for
instance, a unitary operator that couples all subsystems).Consider now a correlated
state that is simply a mixture of separable (product) pure states|φi〉:

̺ =
∑

i

pi|φi〉〈φi|, |φi〉 = |ϕ1〉1 ⊗ · · · ⊗ |ϕr〉r (1.95)

Such a state can be prepared from an uncorrelated state by applying for eachi a dif-
ferent set of local operatorsE1

i ⊗ · · · ⊗ Er
i with probabilitypi – a procedure involving

only local operations and classical communication (LOCC, to be precisely described
later). In fact, Werner proved [10] that states in the form (1.95) are “local” in the sense
that they cannot violate any Bell inequality (and hence admit a local hidden variable
model description). For this reason, Werner defined the set of separable states as those
states that can be written as mixtures of product states (which also matches the intu-
itive expectation that a statistical mixture of separable states should be itself separable).
Conversely, if a state cannot be written as a mixture of product states it is entangled.
This definition of separable and entangled states obviouslyreduces to the previous one
in the pure state case.
This definition of entanglement is fully grounded within theoperational framework
of local operations and classical communication (LOCC). The LOCC paradigm is
meaningful in the “distant lab” scenario [10, 11], where thesubsystems are at dif-
ferent locations (widely) separated in space, so that experimenters ad different lo-
cations cannot perform joint operations, but only local operations, possibly assisted
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by classical communication among them. LOCC are defined as follows (we describe
the bipartite case, but the following discussion triviallygeneralizes to more than two
parties). A generalquantum operationis defined by a trace-preserving, completely
positive (TPCP) mapΛ. For any suchΛ, there exists a set of Kraus operators{Ai}
such that

∑

i A†
iAi = I andΛ(̺) =

∑

i Ai̺A†
i . Any operation can be seen as a

measurement, followed by a unitary “feedback” [129]. Indeed, by virtue of the polar
decomposition we haveAi = UiPi wherePi is positive andUi is unitary. We thus
obtainΛ(̺) =

∑

i UiPi̺PiU
†
i . This can be seen as a measurement whereby outcome

i is obtained with probabilitypi = Tr[Pi̺Pi], projecting the state to̺i = 1
pi
Pi̺Pi.

Depending on the outcomei, the state is rotated byUi: Λ(̺) =
∑

i piUi̺iU
†
i . Given

a bipartitionH = HA ⊗ HB, separable operationsare such thatAi = AA
i ⊗ AB

i .
LOCC form a subset of separable operations in which the KrausoperatorsAi ⊗ Bi

are restricted by the requirement that they be generated according to the following pro-
cedure.A performs an operationΛ(1) with Kraus operators{A(1)

i } and transmits the
measurement outcomei toB via a classical communication channel. On the basis of
i, B chooses and performs operationΛ(2,i) with Kraus operatorsB(2,i)

j , and transmits
the outcomej back toA. A’s next operation can depend oni andj, and so forth. The
final result of this procedure is a separable operation, but it is very difficult to describe
in precise mathematical terms what distinguishes LOCC frommore general separable
operations [13, 14].
Entanglement of a state is equivalent to the impossibility of preparing it with the sole
aid of LOCC starting from an uncorrelated state. States thatcan be prepared by LOCC,
and hence are separable have the general form of a convex combination of product
states:

̺ 6=
r
∑

i=1

pi̺
i
1 ⊗ · · · ⊗ ̺ir (1.96)

(with no loss of generality, the̺i can be chosen to be pure). The set of separable
states is by definition convex, and hence compact. Therefore, in the space of density
matrices there is a clear boundary between separable and entangled states. In general,
it is very hard to decide whether a given state is separable orentangled, i.e., whether
a state admits a decomposition of the type (1.96). This is theso-called separability
problem. In fact, it has been proven that for states that are close to the boundary of the
separable set (i.e, states that are slightly entangled) theseparability problem becomes
NP-hard [15].

1.5.5 Entanglement monotones and monogamy

Another closely related, and hence difficult task is to assess theamount of entanglement
present in a state. For general bipartite states, there is a class of entanglement measures
calledentanglement monotones[16]. Any such measureM(A : B) is required to have
the following properties:

1. M(A : B) ≥ 0 andM(A : B) = 0 for all separable states

2. M(A : B) is invariant under local unitariesUA ⊗ UB
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3. M(A : B) is non-increasing under LOCC

4. M(A : B) = EE(̺AB) for pure states

In addition, one may demand that the entanglement monotone be faithful, modifying
1) in 1’): M(A : B) ≥ 0 andM(A : B) = 0 if and only if the state is separable.
In general, entanglement monotones are very hard to computebecause some optimiza-
tion procedure is involved in their definition. An example offaithful entanglement
monotone is therelative entropy of entanglement[18]

ES(̺AB) ≡ infσ∈SEPS(̺AB||σ) (1.97)

defined as the minimum statistical distance between a state̺AB and a separable state
σ. Another faithful monotone is theentanglement of formation[17]

EF (̺AB) ≡ min
E

∑

i

piEE(|ψi〉) (1.98)

where
∑

i pi|ψi〉〈ψi| is a given ensemble realization of̺AB. The entanglement of
formation corresponds to the minimum number of maximally entangled qubits (singlets
or ebits) needed to synthesize̺AB by LOCC. A third faithful entanglement monotone
is thesquashed entanglement[21, 122] , defined as

ECMI(̺AB) ≡
1

2
min
̺ABC

I(AB|C), (1.99)

where̺ ABC is an extension of̺AB (a state such that TrC [̺ABC ] = ̺AB) andI(AB|C)
is the conditional mutual information (CMI)I(AB|C) = S(̺AC)+S(̺BC)−S(̺C)−
S(̺ABC). A widely used, though non-faithful monotone is thenegativity[19]

N (̺AB) ≡
||̺ΓA ||1 − 1

2
(1.100)

where̺ΓA is the partial transpose of̺with respect to subsystemA. The negativity is
based on the fact thatΓA is a positive map when acting on separable states, but it can
be negative on entangled states. Therefore̺ΓA has in general negative eigenvalues.
SinceΓA is trace-preserving, Tr[̺ΓA ] = 1 and hence|̺ΓA ||1 ≥ 1.
For two qubits, there exists a faithful entanglement monotone that can be expressed in
a simple analytical form for all states. Theconcurrence[20] is defined as

K(ρAB) ≡ max(0, λ1 − λ2 − λ3 − λ4) (1.101)

whereλ1, . . . , λ4 are the eigenvalues, in decreasing order, of the Hermitian matrix
R =

√√
̺AB ˜̺AB

√
̺AB with ˜̺AB = (σy ⊗ σy)̺

∗
AB(σy ⊗ σy) the spin-flipped state

of ̺AB, σy a Pauli spin matrix, and the eigenvalues listed in decreasing order (alter-
natively, theλi’s represent the square roots of the eigenvalues of the non-Hermitian
matrix̺AB ˜̺AB). From the concurrence, the entanglement of formation can be calcu-
lated as

EF (̺AB) = h

(

1 +
√

1−K(̺AB)2

2

)

(1.102)
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where h(x) ≡ −x log x− (1− x) log(1− x).

An important property of entanglement is that two maximallycorrelated systems
cannot be entangled with a third system: if a tripartite state ̺ABC is such that̺ AB =
TrC [̺ABC ] = |φm〉〈φm| where|φm〉 is a maximally entangled state, then we must
have̺ABC = |φm〉〈φm| ⊗ ̺C . Such a property is calledmonogamy of entanglement.
More in general, two strongly entangled systems cannot share but a limited amount of
entanglement with other systems. This limitation can captured bymonogamy relations,
i.e., inequalities involving entanglement monotones in the form:

M(A : BC) ≥ M(A : B) +M(A : C) (1.103)

whereM(X,Y ) represents the monotoneM calculated across the bipartitionX,Y .
This inequality may be extended for an arbitrary number of parties as

M(A : B1 . . . Bk) ≥ M(A : B1) + · · ·+M(A : Bk) (1.104)

Eq. (1.103) was proved to hold for the squared concurrenceK2 in Ref. [22], and the
proof was later extended to a multiqubit system proving Eq. (1.104) [23]. In Ref. [122],
it was proved that squashed entanglement is monogamous in all dimensions. Not all
entanglement measures satisfy monogamy inequalities. Forinstance, Eq. (1.103) is not
satisfied for the entanglement of formation nor for the relative entropy of entanglement.



Chapter 2

Quantum discord in the
extended Hubbard model

2.1 Introduction

A very fertile interplay between the theories of quantum-information and condensed
matter has developed during the last decade. On one side, condensed-matter theory has
suggested a wide range of possibilities for the implementation of quantum communi-
cational [137] and computational [142] tasks. On the other side, quantum information
theory has yielded novel insights into the physics of condensed-matter systems.
One of the main intersection points between the two fields is the study of the ground
state structure of many-body systems. As several models show – e.g., the Laughlin the-
ory of quantum Hall systems and the BCS theory of superconduction – ground states
can be dominated by quantum correlations, which frustratesattempts to describe them
by means of simple and classical-like ansätze. Quantum information theory provides
a conceptual toolkit that facilitates addressing the role of correlations in many-body
states within a general perspective. In particular, quantum information theoretical no-
tions have become relevant in characterizing quantum critical phenomena [84]. Quan-
tum phase transitions (QPT) occur in quantum systems at zerotemperature. For critical
values of some parameters (quantum critical points), the structure of the ground states
changes abruptly. QPTs are usually associated with a singular behavior of correlation
functions and the correlation length. These indicators of correlations should not be in-
dependent from the behavior ofquantum correlationsin the sense outlined in the previ-
ous chapter, e.g., entanglement and discord. Thus one expects to find a critical behavior
of quantum correlations measures, too. The critical behavior of quantum correlations
has been extensively studied, mainly in one-dimensional integrable spin models that
offer the advantage of analytical tractability. Two pioneering works [85, 86] addressed
entanglement (as measured by single-site entropy and two-site concurrence) in simple
spin chain models. These works showed that entanglement hasa non-analytic behavior
at the transition points, where it generally has a peak. Moreimportantly, it exhibits
universal behavior, e.g., in the finite-size scaling. A stronger sign of universality came

32
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from analyzing the entanglement entropy between a block ofL sites and the rest of the
chain (block entropy) [87]. In the noncritical regime, the entropy saturates asL→ ∞,
while in the critical regimeL has a logarithmic divergence. The coefficient of the log-
arithmic divergence is manifestly universal, and it is related to the central charge of
the associated1 + 1 conformal field theory. Thus the entanglement entropy of crit-
ical spin chains behaves like the entanglement entropy of the vacuum in conformal
field theories [88]. As was later shown in [89], the non-analytic behavior of quantum
correlation measures at quantum critical points is a general feature, which implies a
capability of entanglement to mark quantum phase transitions (QPT). Moreover, the
logarithmic divergence in the critical regime suggests that entanglement spreads over
all scales, a hypothesis that was given support in [90]: At the quantum-critical point,
a deep minimum in the pairwise-to-global entanglement ratio shows that multipartite
entanglement between the spins is strongly enhanced.
In all these studies, quantum correlations and entanglement have been usually identified
as one and the same concept. However, as we have discussed at length in the former
chapter, the notion of entanglement is unfit to wholly capture the quantum character
of correlations present in a system. The theory of quantum discord has shown that a
part of the total correlations present in quantum states areunstable under (and inacces-
sible) under local measurements – a highly nonclassical feature which qualifies these
correlations as quantum. Quantum discord has proved effective in better explaining the
nonclassicality of several phenomena, including the quantum advantage of many quan-
tum information processing tasks. Therefore, it is naturalto inquire whether quantum
discord can be also useful in characterizing quantum features of many-body systems,
in particular critical ones . Unsurprisingly then, the behavior of discord has been an-
alyzed in several one-dimensional many-body systems, especially in relation to QPTs
and thermal effects [100, 101, 102, 103, 104, 106, 105]. The main results of these
analyses show that two-point discord and classical correlations between near as well
as distant sites show clear signatures of QPTs (discontinuities or divergences), which
can be understood within a general framework [100] and agreewith finite-size scaling
theory in the case of finite chains. Research has mostly concentrated on spin-1/2 mod-
els [100, 101, 102, 103, 104, 105] (except for the Lipkin-Meshkov-Glick model [101]
and the Castelnovo-Chamon model [106], where a topologicalQPT occurs). Therefore,
a thorough analysis of discord and classical correlations in correlated electron systems
was still lacking. The latter, at variance with the simplestspin systems, requires the
evaluation of the discord for pairs of q-dits and hence presents more difficulties. A first
step in filling this gap was taken in our paper [107], upon which the present chapter is
based.
The subject of this chapter is the behavior of discord and classical correlations for the
ground states of the one-dimensional bond-charge extendedHubbard model [162, 160],
which is a reference model in correlated-electron theory. The model has an inte-
grable point, and its entanglement properties have been thesubject of recent studies
[95, 97, 98, 99, 161] where use of two-point and multipartiteentanglement measures
led to a classification of QPTs into multipartite or two-point driven. These studies left
open the problem of addressing the general role of bipartitecorrelations for all two-
points driven QPTs, as well as their relation with the presence of off diagonal long
range order (ODLRO) which characterizes some ordered phases of the model. The in-
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troduction of discord and classical correlations allows tosolve this problem in a proper
framework. We will systematically consider the quantum discord and the classical cor-
relations, in direct space between two-sites and in momentum space between two cou-
ples of modes, and we will study their interplay and their ability to properly describe
the rich zero temperature phase diagram and the various phase transitions exhibited by
the extended Hubbard model under consideration. We will show how that discord and
classical correlations can highlight the presence of a so-called entanglement transition,
where a different role of quantum and classical correlationat a transition is revealed by
the different behavior of discord and classical correlations, both in their maxima and
in the divergence of their derivatives (subsection 2.3.1).The study of the derivatives
of discord and classical correlations close to the criticallines allows to confirm the
two-point/multipartite nature of the various transitionsand to distinguish transitions
that are physically different based on a different role of long range quantum correla-
tions(ODLRO) (subsection 2.3.3). I will demonstrate that these long-range correlations
correlations, which are at the basis of superconductivity,are related to two-point dis-
cord rather than two-point entanglement: indeed a direct relation between ODLRO and
discord can be found (subsection 2.3.2). This relation is true both in the direct and in
the reciprocal lattice picture, since a functional relation between the two-site discord
and the two mode discord can be established (subsection 2.3.4). As an example of how
condensed matter systems constitute a natural playground to test quantum information
concepts, the ground state properties also shed light onto an aspect of the quantum
correlations that is very relevant in the general context ofquantum information theory:
the monogamy property (I will address this issue in detail inthe self-contained sub-
section 2.3.5). Upon considering ground states of the modelalso at finite system size,
I will extend previous analyses of the monogamy relation to an n-partite setting with
n ≥ 3. In a phase of the model the ground states coincide with a class of permutation-
invariant states, for which I will show that the monogamy relation is always violated,
both in presence and in absence of entanglement. In the TDL the entanglement van-
ishes and the violation of the monogamy property for discordbecomes maximal: due
to the presence of ODLRO, a single qubit can exhibit finite amount of discord with an
infinite number of other qubits. The monogamy relation can beviolated also in absence
of ODLRO, but in this case the violation is not maximal.

This chapter is organized as follows.§ 2.2 is a brief review of the main features of
the extended Hubbard model: Hamiltonian, phase diagram., etc. § 2.3 is the core of
the chapter, where the behavior of discord and classical correlations in the whole phase
diagram of the model is analyzed, with a special focus on quantum critical points/lines.
In § 2.4 I will highlight and summarize the main conclusions. This chapter essentially
reproduces an article of ours already published in PhysicalReview B [107].

2.2 The bond-charge extended Hubbard model

2.2.1 Basics of the model

The bond-chargeextended Hubbard model was derived as an effective one-band Hamil-
tonian for the description of cuprate superconductors [162]. The model is described by
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the following Hamiltonian:

HBC = −
∑

<i,j>σ

[1− x(niσ̄ + njσ̄)]c
†
iσcjσ − µ

∑

iσ

niσ

+u
∑

i

(

ni↑ −
1

2

)(

ni↓ −
1

2

)

(2.1)

wherec†iσ andciσ are fermionic creation and annihilation operators on a one-dimensional
chain of lengthL; σ =↑, ↓ is the spin label,̄σ denotes its opposite,njσ = c†jσcjσ is
the spin-σ electron charge, and〈i, j〉 stands for neighboring sites on the chain;u and
x (0 ≤ x ≤ 1) are the (dimensionless) on-site Coulomb repulsion and bond-charge
interaction parameters;µ is the chemical potential, and the corresponding term allows
for arbitrary filling.
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Figure 2.1: Ground-state phase diagram ofH . LEFT: n-u plane; empty circles stand
for empty sites, slashed and full circles stand for singly and doubly occupied sites,
respectively. RIGHT:µ-u plane.

The model is considered here atx = 1, in which case the system becomes inte-
grable. This happens for two reasons. First, the1 − x(niσ̄ + njσ̄) term suppresses
several hopping possibilities. As a result, we can separatethe four possible states at
site i into two groups, namelyA = {| ↑〉, | ↓〉} andB = {|0〉, | ↑↓〉}: hopping per-
mutes states of groupA with states of groupB, but not states of the same group. The
role of spin orientation becomes dynamically irrelevant, and the system behaves as if
at each site the local space had dimension3: | ↑〉 and | ↓〉 can be considered as the
same state. Second, the hopping term commutes with the termsin u, µ and the number
of doubly occupied sites becomes therefore a conserved quantity.
The physics of the system described byH is basically that ofNs spinless fermions –
singly occupied sites– which move in a background ofL − Ns bosons, of whichNd

are doubly occupied sitesand the remaining are empty sites .BothNs andNd are con-
served quantities, and determine the total number of electronsNt = Ns + 2Nd.
The situation may be understood in the formalism developed by Sutherland in Ref.
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[158]. We can say that, apart from constant terms,H acts as a permutator of just two
Sutherland species(SSs), theNs fermions, and theL−Ns bosons. In practice, empty
and doubly occupied sites —though different as physical species— belong to the same
SS, since the off-diagonal part of the Hamiltonian (i.e., the hopping term) cannot dis-
tinguish between them. It is only the constant term countingdoubly occupied sites
which depends on the actual value ofNd.
It is convenient to rewrite both the Hamiltonian and the local vector space in terms of
the Hubbard-like projection operatorsXαβ

i
.
= |α〉i〈β|i, with local algebraXαβ

i Xγδ
i =

δβγX
αδ and nonlocal (anti-)commutation relations given by

Xαβ
i Xγδ

j = (−)(α+β)(γ+δ)Xγδ
j Xαβ

i , i 6= j ; (2.2)

hereα = 0, 1, 2, |0〉i ≡ |vac〉i is the local vacuum,|1〉i .
= X10

i |0〉i is the singly
occupied state (with odd parity), and|2〉i .

= X20
i |0〉i is the doubly occupied state.

More precisely, as far as the ground state is concerned, the model Hamiltonian in the
one-dimensional case can be fruitfully written as

H = −
∑

i

(

X10
i X01

i+1 −X21
i X12

i+1 + H.c.
)

+ u
∑

i

X22
i

−
(

µ+
u

2

)

∑

i

(

X11
i + 2X22

i

)

. (2.3)

The eigenstates are easily worked out [160, 95], and read

|ψ(Ns, Nd) >= N(η†)NdX̃10
k1

· · · X̃10
kNs

|vac〉 ; (2.4)

HereN = [(L−Ns −Nd)!/(L−Ns)!Nd!]
1/2 is a normalization factor;̃X10

k is the
Fourier transform of the Hubbard projection operatorX10

j , i.e.,

X̃10
k =

∑

j

1√
L
exp(i

π

L
jk)X10

j

Moreover,η† =
∑L

i=1X
20
i is also known as the eta operator, commuting withH ;

(η†)Nd createsNd pairs which are fully spread over the chain. These are theη pairs first
introduced by Yang [159]. This structure corresponds to a very simple physical picture:
eigenstates containNs spinless fermions in momentum eigenstates{ 2πk1

L , . . . ,
2πkNs

L }
andNd spinless bosons (η pairs).
The energy eigenvalues are given by

E({nk}, Nd) = −2

L
∑

k=1

cos(
2πk

L
)nk − 2µNd − (µ+

u

2
)Ns (2.5)

wherenk = 0, 1 is the number of fermions with momentum2πkL . For any givenNs =
∑

k nk andNd the minimum is achieved by occupying withNs fermionic particles the
momentum modes{π(Ns − 1)/L, . . . , π(Ns − 1)/L}, the corresponding eigenvalue
being

E(Ns, Nd) = −2 sin

(

π
Ns

L

)

/ sin
(π

L

)

− 2µNd −
(

µ+
u

2

)

Ns
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whence we obtain the ground state energy density in the TDL

E(ns, nd) = − 2

π
sin(πns)− 2µnd −

(

µ+
u

2

)

ns (2.6)

with E = E/L, ns = Ns/L, nd = Nd/L.
The actual ground state is found by requiring thatns andnd minimize (2.6).
Forµ < 0 we havend = 0, hence upon minimizing we getns =

1
π arccos

(

−µ
2 − u

4

)

.
For−4 − 2µ ≤ u ≤ 4 − 2µ we have empty and singly occupied sites (phase I), for
u > 4 − 2µ we have only singly occupied sites (phase IV) and foru < −4 − 2µ we
have only empty sites.
Forµ > 0 we havend = (1−ns), hence upon minimizing we getns =

1
π arccos

(

µ
2 − u

4

)

.
For−4 + 2µ ≤ u ≤ 4 + 2µ we have doubly and singly occupied sites (phase I’), for
u > 4 − 2µ we have only singly occupied sites (phase IV) and foru < −4 − 2µ we
have only doubly occupied sites.
Forµ = 0 we getns = 1

π arccos
(

−u
4

)

. For−4 ≤ u ≤ 4 we have empty, doubly and
singly occupied sites (phase II), while foru > 4 − 2µ we have only singly occupied
sites (phase IV) and foru < −4− 2µwe have empty and doubly occupied sites (phase
III).
Hence we get in theµ-u plane the phase diagram depicted in Fig. 2.1, right. In the left
part, the same ground-state phase diagram is drawn in then-u plane (withn = Nt/L
average per-site filling). The phase diagram presents various QPTs driven by param-
etersu andµ (or n). Each transition is characterized by a change in the numberof
on-site levels involved in the state. Phase IV has just one level per site since each site
is singly occupied. Phases I and I’ (which is the particle-hole counterpart of phase
I) have two on-site levels: singly occupied sites and empty or doubly occupied sites
respectively. This holds for phase III as well, where only empty and doubly occupied
sites appear. Phase II is the only phase in which all three on-site levels are involved.
Phases II and III are characterized by the occurrence of off-diagonal long-range order
(ODLRO)and superconducting correlations, evaluated as:

lim
r→∞

〈X20
i X02

i+r〉 = nd(1− nd − ns) . (2.7)

Note that ODLRO —though not allowing real superconducting order atx = 1 due
to spin degeneracy, which implies the vanishing of spin gap,is at the very root of
superconducting order, which occurs atx 6= 1. [96]
Before discussing the various transitions in terms of the discord behavior, let us recall
some feature of each of them in terms of standard theory. First of all, sinceNd andNs

are both conserved quantities, the transitions should be originated from level crossing.
Indeed, they also occur at finiteL. Nevertheless, none of them is of first order, since
it can be easily checked that the first derivative ofEGS is always smooth. In fact, the
transitions I (I’)→ IV and II → IV and II → III are second-order QPTs, while the
transition II→ I (I’) is an infinite-order QPT.

2.2.2 Reduced density matrices

The present work focuses on two-point correlations. To evaluate them, knowledge of
the ground-state reduced density matrices is necessary, and we shall report their ex-
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pression for completeness (for a full derivation, the reader may refer to Refs. [97, 99]).
Correlations can be analyzed within two different and complementary pictures. Obvi-
ously, one can examine correlations between sites of the lattice (direct lattice picture).
In addition, the structure of eigenstates in the model suggests yet another approach,
namely to consider the reciprocal lattice, whose elementary nodes are momentum
modeskj = 2π

L j, j = 0, . . . , L− 1. In some respects, the reciprocal lattice picture
affords a simpler description of the system [95, 98].
Let us start by giving reduced density matrices the direct lattice picture. The one-site
reduced density matrixρi when expressed in terms of the basis{|0〉, |1〉, |2〉}i is diag-
onal in all the regions of the phase diagram:

ρi = diag{1− ns − nd, ns, nd} , (2.8)

the two-site reduced density matrixρij in the basis{|00〉, |01〉, |02〉, |10〉, |11〉, |12〉, |20〉, |21〉, |22〉}ij
reads [97]:

ρij =





























D1 0 0 0 0 0 0 0 0
0 O1 0 O2 0 0 0 0 0
0 0 Q 0 0 0 Q 0 0
0 O∗

2 0 O1 0 0 0 0 0
0 0 0 0 D2 0 0 0 0
0 0 0 0 0 P1 0 P2 0
0 0 Q 0 0 0 Q 0 0
0 0 0 0 0 P ∗

2 0 P1 0
0 0 0 0 0 0 0 0 D3





























. (2.9)

Here

D1 = Pij(1− c)2 , O2 = Γij(1− c) ,
D2 = n2

s − |Γij |2 , P1 = c (1− ns − Pij) ,
D3 = c2Pij , P2 = cΓij ,
O1 = (1− ns − Pij) (1− c) , Q = c(1− c)Pij ,

with c = nd/(1− ns), Pij = (1− ns)
2 − |Γij |2, andΓij =

sin(nsπ|i−j|)
π|i−j|) .

Let us now turn to the reciprocal lattice picture. To each momentum modekj corre-
sponds a 4-dimensional Hilbert space, spanned by the basis

Bkj
= |0〉kj

, | ↑〉kj
, | ↓〉kj

, | ↑↓〉kj
, (2.10)

The reduced density matrix for any such mode reads, in the TDL, and in the basis
(2.10),

ρkj
= diag(a2, ab, ab, b2) (2.11)

wherea = 1−ns−nd

1−ns
andb = nd

1−ns
.

The two-mode (16 × 16) reduced density matrix for modeski andkj , ki 6= kj , is
diagonal with respect to the local basisBki

⊗ Bkj
. In the TDL, the eigenvalues are

aαb4−α with multiplicity mα =
(

4
α

)

.
The caseki = −kj has to be treated separately. The two-mode (16 × 16) reduced
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density matrix for modeskj and−kj has support on a4 × 4 subblock. Indeed the
sole states that can be built by the action of theη†kj

operators belong to the subspace
spanned by:

Bkj ,−kj
= {|0, 0〉j, | ↑, ↓〉j, | ↓, ↑〉j, | ↑↓, ↑↓〉j} (2.12)

where|α β〉j ≡ |α〉kj
⊗ |β〉−kj

.
In the TDL, and in this basis, the non-vanishing subblock of the matrix reads:

ρ|Bkj ,−kj
=









a2 0 0 0
0 ab ab 0
0 ab ab 0
0 0 0 b2









. (2.13)

2.2.3 Behavior of entanglement at QPTs

Two-point entanglement at the QPTs of the model was thoroughly analyzed in Refs. [95,
97, 98, 99], upon consideration of different correlation measures: the two-point con-
currenceK(̺ij) (1.101) or the two-point negativityN (̺ij) (1.100) as measures of en-
tanglement (notice that definition of concurrence is available for two-qutrit systems),
the mutual informationI(i : j) ( 1.87) as a measure of total two-point correlations, and
the single site entropyS(̺i) as a measure of multipartite entanglement between one
site and the rest of the chain. The behavior of all correlation measures was studied as
a function ofx (x = µ or x = u) in the vicinity of the quantum critical points. Results
are briefly summarized in the table below.

transition x dS(̺i)
dx

dI(i:j)
dx

dK(̺ij)
dx

dN (̺ij)
dx ent

I → IV µ ∝ 1√
µ−µc

∝ 1√
µ−µc

∝ 1√
µc−µ

Q2

II → I u ∝ log(uc − u) finite finite QS
II → III u ∝ 1√

u−uc
∝ 1√

u−uc
finite Q2

II → IV u ∝ 1√
uc−u

∝ 1√
uc−u

finite Q2

The analysis of divergences allows to classify the different transitions into those
driven by two-point correlations (Q2: II→ III, II → IV, I → II), where some two-
point correlation measure (K(̺ij), N (̺ij) or I(i : j)) diverges, and those driven by
multipartite correlations (QS: II→ I) where onlySi diverges. However, the two-point
character of the transitions II→ III, II → IV is only detected byI(i : j) (a measure of
total correlations), whileN (̺ij) (the measure of quantum correlations used) is unfit to
discriminate between those transitions and the multipartite-driven one (II→ I).

2.3 Behavior of discord and classical correlations

In the following, we will evaluate two-site correlations (discord and classical corre-
lations) in all phases of the model. The two-site density matrix is symmetric in the
exchange of parties,̺i = ̺j. Therefore, both discord and classical correlations are
symmetric, too, and we can use the notationD(i : j), J (i : j) introduced in Eq.(1.26).
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The difficult step in evaluating the discord is the minimization of the conditional en-
tropyS(ρij |Πj) with respect all local measurementsΠj (with no loss of generality, we
assume that the measurement is performed onj but the same results would be obtained
for measurementsΠi on i). As we discussed in§1.3.3, allowing for general POVMs
instead of just von Neumann measurements may allow for a better minimization, but
the results are not significantly different from the numerical standpoint. Therefore, in
the following we will restrict to von Neumann measurements.
The minimization can be done analytically for some simple cases of two-qubits, namely
for the class of X states which have non-zero entries only on the diagonal and antidiago-
nal and include states with maximally mixed marginals (see Refs. [52, 53] and [54, 55]
for recent developments). On the contrary, the two-qutrit case must be handled numer-
ically.

2.3.1 Region I (I’)

We start our analysis by evaluating two-site correlations (discord and classical corre-
lations) in phase I. Results for phase I’ are omitted, since they are exactly equal (by
virtue of the particle-hole symmetry one just has to replaceempty with doubly occu-
pied sites).
Phase I (I’) is characterized by the absence of doubly occupied (empty) sites, so that
the effective number of on-site levels reduces to2. Consequently, the 2-site reduced
9 × 9 density matrixρij has nonzero entries only in the4 × 4 subblock spanned by
{|00〉, |01〉, |10〉, |11〉}ij . D andJ can be evaluated analytically through the methods
developed in Refs [52, 53, 54, 55].

Since in phases I and III the density matrixρij corresponds to an X-state for which
minΠjS(ρij |Πj) can be easily evaluated with a fully analytical way by resorting to the
method developed in [53], which we briefly review.
An arbitrary (single-qubit) von Neumann measurement is defined by a couple of or-
thogonal projectorsP0 andP1, which can be obtained from|0〉〈0| and |1〉〈1| by an
arbitrarySU(2) rotationV :

P0 = V |0〉〈0|V † P1 = V |1〉〈1|V † (2.14)

SinceV = tI + i~y · ~σ with t2 + y21 + y22 + y23 = 1, von Neumann measurements are
parametrized by three independent numbers.
The key result of [53] is that the minimum ofS(ρij |Πj) is always attained for some
special values of the parametersm = (ty1+y2y3)

2, n = (ty2−y1y3)(ty1−y2y3),k =
t2 + y23 , namely

{k = 0,m = 0, n = 0}and

{k = 1/2,m = 0, 1/4, n = 0,±1/8} (2.15)

Therefore the minimization procedure reduces to comparingthe expressionsS(ρij |Πj)
obtained in correspondence of these two sets of values. Furthermore, when the two-
site reduced density matrix element(ρij)1,4 = 0, which is our case,m andn become
irrelevant andS(ρij |Πj) depends only onk. Therefore, we only have to compare
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S(ρij |Πj) for k = 1/2 andk = 0.
By the formulas in Ref. [53], fork = 1/2 we have

S(ρij |Πj) ≡ S1(ρij) = (2.16)

− 1−θ1
2 log2

1−θ1
2 − 1+θ1

2 log2
1+θ1
2

where

θ1 =
√

[(ρij)11 − (ρij)33 + (ρij)22 − (ρij)44]2 + 4|(ρij)23|2 (2.17)

while for k = 0 we have

S(ρij |Πj) ≡ S2(ρij) = (2.18)

−(1− p0)
1−θ2
2 log2

1−θ2
2 − (1− p0)

1+θ2
2 log2

1+θ2
2

−p0 1−θ3
2 log2

1−θ3
2 − p0

1+θ3
2 log2

1+θ3
2

where p0 = (ρij)11 + (ρij)33 and

θ2 =
|(ρij)22 − (ρij)44|
|(ρij)22 + (ρij)44|

, θ3 =
|(ρij)11 − (ρij)33|
|(ρij)11 + (ρij)33|

(2.19)

All we must do is take the minimum between (2.16) and (2.18):

minΠjS(ρij |Πj) = min{S1, S2} (2.20)

Evaluating the mimimum of the reduced conditional entropy reduces, Eq. (2.20), to
taking the minimum among two functions, i.e., minΠjS(ρij |Πj) = min{S1, S2},

whereS1, S2 depend onθ1 =
√

(1 + 4n2 − 4n) + 4|Γij |2 , θ2 =
|n−2n2+2|Γij |2|

n ,

θ3 =
|1+2n2−3n−2|Γij |2|

1−n (2.16-2.19).
We verify that for all values of|i− j| we always haveS1 ≤ S2 and therefore two-point
classical correlationJ (i : j) and quantum discordD(i : j) can be written in terms of
S1.
In order to compare quantum discord and entanglement, we also evaluate two-point
concurrence [97]

K(̺ij) = min
{

0,
∣

∣

∣Γij −
√

((1− n)2 − |Γij |2)(n2 − |Γij |2)
∣

∣

∣

}

. (2.21)

In the following, lettersD(i : j),J (i : j), I(i : j),K(̺ij) always denote quantum
discord, classical correlations, mutual information and concurrence respectively. The
values ofI(i : j), J (i : j), D(i : j) andK(̺ij) for region I and different values of
|i− j| are plotted in Fig. 2.2.

We first see that theD(i : j) andJ (i : j) have the typical oscillating behavior already
shown by the mutual information [97]. At variance with the previous analysis, where
the quantum correlations measured by the concurrence were different from zero only in
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Figure 2.2: quantum mutual informationI(i : j) (blue, solid), quantum discordD(i :
j) (red, solid), classical correlationJ (i : j) (green, solid), concurrenceK(̺ij) (red,
dashed) as a function ofµ in region I (u = 4), for |i − j| = 1 (top, left), |i − j| = 2
(top, right),|i− j| = 3 (bottom, left),|i− j| = 4 (bottom, right).

proximity of the borders of the regions i.e., forµ→ −4, 0, here we see that the system
exhibits non zero discord within the whole region I except atsome nodal points defined
by the equationΓij = 〈c†i cj〉 = sin(nsπ|i−j|)

π|i−j|) = 0 where all correlation measures
vanish,I(i : j) = J (i : j) = D(i : j) = 0. Classical correlations show a similar
behavior. Therefore, in the central region of phase I, whereK(̺ij) vanishes∀|i −
j| > 1, two-point discord and classical correlations are still present. Correlations are
modulated by the sinusoidal behavior induced byΓij and at fixedµ they all decay
algebraically with the distance:I(i : j), D(i : j),J (i : j) ≃ |i− j|−2, see Fig.2.3.

In proximity of the transition I→ IV it was shown in [97] that the system exhibits
anentanglement transition[91]: the entanglement rangeRK , i.e., the maximal distance
|i − j| for whichK(̺ij) 6= 0, goes to infinity when approaching the transition. In
particular,K(̺ij) have a maximum value forns → 1 as|i − j| → ∞. This behavior
is reflected in that ofI(i : j), D(i : j),J (i : j), which also exhibit a global maximum

at a valuen(i,j)
s ≈ 1− 1/(2|i− j|) which approachesns = 1 for |i− j| → ∞. Hence,
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Figure 2.3: quantum mutual informationI(i : j) (blue, solid), quantum discordD(i :
j) (red, solid), classical correlationJ (i : j) (green, solid) as a function of|i − j|
in region I forµ = −0.1, u = 4. Upper dashed lines represent the envelope of the
respective maxima which exhibits a power law decay (∼ |i− j|−2)

the behavior of discord mirrors that of the entanglement. This behavior is depicted in
Fig.2.4. In fact, also the mutual information and the classical correlations exhibit the
same kind of behavior. However the values of the maxima for the various measures
I(i : j), D(i : j),J (i : j) scale in a different way with the distance:
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Figure 2.4: maxima of quantum discordD(i : j) (solid lines) and concurrenceK(̺ij)
(dashed lines) for|i − j| = 16 (blue), |i − j| = 32 (red), |i − j| = 64 (green),
|i− j| = 128 (black) as a function of

√

|µ| in region I (u = 4)
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I(n(i,j)
s , |i− j|) ≃ 1

|i− j| (2.22)

D(n(i,j)
s , |i− j|) ≃ 1

|i− j| (2.23)

J (n(i,j)
s , |i− j|) ≃ log(|i− j|)

|i− j|2 (2.24)

(2.25)

Therefore, when approaching the metal insulator transition I→IV the maxima of cor-
relation measures (I(i : j), D(i : j),J (i : j)) decay in algebraic way along the chain.
Quantum discord dominates for high distances, since the spreading of the classical
correlation is suppressed by a factorlog(|i − j|)/|i − j|. This difference in the be-
havior of discord and classical correlations defines the different role that they have at
the transition and can be further appreciated by studying the derivatives of the different
correlation measures with respect toµ. In the critical limitµ→ 0,−4 we have

∂µD(i : j) ≃ − 1

π
√

|µ− µc|
(2.26)

while

∂µJ (i : j) ≃ 1

π2
log |µ− µc| (2.27)

Therefore, while the∂µD(i : j) correctly agrees with the scaling behavior of∂µI(i : j)
and∂µK(̺ij) evaluated in [97],∂µJ (i : j) though being singular has a lower degree
of divergence, so that classical correlations are subleading in the vicinity of the critical
point.
We therefore see that the introduction of the new measures ofcorrelationsD(i : j)
andJ (i : j) and the study of their derivatives allows on one hand to properly identify
the metal-insulator transition and to properly classify itas a two-point QPT [97], and
on the other hand allows for a refinement in description of theQPT. The importance of
this feature will be more evident in the following paragraphs where we will describe the
other two-point QPTs i.e., II→ IV and II→ II. We close this subsection by discussing
the role of the divergences of the different correlation measures and their relation with
the divergences of the energy density of the system. In [89],the authors found a
direct relationship between the singularities (discontinuities and divergences) in the
derivatives of the energy density of the systemE = E/L with respect to the parameter
λ that drives the QPTs, and the singularities in the elements of the two-point reduced
density matrixρij or their derivatives with respect toλ. In our case the, the divergences
in ∂λI(i : j) and∂λD(i : j) inherit the non-analyticities of the derivatives of the
elements ofρij at the critical point. In particular the elements:

∂λD2, ∂λO1, ∂λO2 → 1
√

|λ− λc|
(2.28)

show the same divergences exhibited by the second derivative of the energy density
(2.6) with respect toλ = µ (I→IV), i.e., ∂2µE ∼ 1/

√

|µ− µc|. However, as we have
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Figure 2.5: quantum mutual informationI (blue), quantum discordD (red), classical
correlationJ (green) as a function ofnd in region III

seen above, classical correlations, though diverging, show a logarithmic divergence
instead of an algebraic one, and accordingly one might believe that this is an acciden-
tal fact due to the definition of the correlation measure (i.e., that classical correlations
always display a lower degree of divergence). However, as wewill see in the next
sections, the classical correlationsJ (i : j) behave likeD(i : j) andI(i : j), in terms
of their derivatives with respect toλ = u, at the transition II→III, and therefore they
coherently behave as the energy density at that transition i.e.,∂2uE ∼ 1/

√

|u− uc|. In
summary, while the derivatives of different elements ofρij and of some of the corre-
lations measures defined on theρij show the same divergent behavior at the various
transitions, which agrees with that of the energy density∂2λE , the classical correla-
tions may show different kind of divergences and are thus able to discriminate between
quantum phase transitions that are physically different.

2.3.2 Region III: discord and ODLRO

Phase III is characterized by the absence of singly occupiedsites, so that the number
of on-site levels effectively reduces to2, and the quantum discord can be evaluated
analytically in the same way as above. Moreover in this case the number of Sutherland
species reduces to 1. The quantum discord may be evaluated inthe same way as above.
We have minΠjS(ρij |Πj) = min{S1, S2}, whereS1, S2 depend onθ1 = (1− nd)

2 +
n2
d andS2 onθ2 = 1− 2nd, θ3 = 1− 2nd (2.16-2.19). Since two-site density matrices
ρij are equal for alli, j, the values of two-site correlations are equal for each pairof
sites,I(i : j) = I,J (i : j) = J ,D(i : j) = D. We haveS1 ≤ S2 and therefore the
classical correlations and the discord can be written in terms ofS1.
The values ofI, J andD for region III are plotted in Fig. 2.5.
The first result of our analysis is that while in the TDL the concurrenceK(̺ij) =
min{0,−2n2

d(1 − nd)
2} = 0 vanishes everywhere in region III, the discord is always

different from zero in the region; we thus have that theη-pair states display two-point
quantum correlations, though not in the form of entangled correlations but rather in
the form of discord. Moreover, we notice that discord, as well as classical correlations,
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between any two sites has the same value, irrespective of their distance: this reflects the
way in which theη-paring mechanism spreads the correlations equally along the whole
chain. Theη-pairing is also the ground for the appearance of ODLRO, which follow
directly from (2.7). It is intuitive to suppose that these superconducting correlations
might be related to some kind of two-point quantum correlations, and indeed many
authors have tried to find such a relation, see for example [92, 93]. While a relation
with the entanglement properties ink space was found in [99] in the case of forη-pairs
and BCS states, in direct space this relation could not be established in terms of the
concurrence since the latter vanishes in the TDL [97].

While ODLRO in η-pair states cannot be related to two-point entanglement, our
analysis allows instead to connect the ODLRO to the two-point quantum discord. In-
deed we find that in the TDLD(i : j) = DTDL

2 , ∀i, j and we have

DTDL
2 = f(x) = 1

log 4 [4x arctanh(1− 2x) + x log 16 + (2.29)
√
1− 4x log(−1− 2

−1+
√
1−4x

) + log( 1
(x−1)2 ) + log x]

wheref(x) a monotonically increasing function ofx = nd(1 − nd), i.e., of the
ODLRO. The above analysis allows to establish adirect relation between a funda-
mental quantum property such as ODLRO and the presence of two-point (two-qubit)
discord. It therefore seems that the important two-point quantum correlations neces-
sary in direct space for the appearance of the ODLRO are represented by the discord
and not by the entanglement.
We finally note that the presence of the ODLRO inη-paris states is reflected also by
the behavior of classical correlations, which also are a monotonically increasing func-
tion of nd(1 − nd). The relation between classical correlations and ODLRO will be
important in the discussion of the transitions described inthe next section.

2.3.3 Region II

Region II contains empty as well as singly and doubly occupied sites, so that there are
3 on-site levels. This means that the evaluation of discord and classical correlations is
more difficult than in the previous cases. In order to evaluateD(i : j) andJ (i : j) we
used two numerical recipes. As for the two-qutrit case, we have that the possible von
Neumann measurements correspond to unitary rotations,

P0 = V |0〉〈0|V † , P1 = V |1〉〈1|V † , P2 = V |2〉〈2|V † (2.30)

where nowV ∈ SU(3).
Unfortunately, to proceed forward in the computation of thediscord, one cannot simply
mimic the procedure described for qubits. The main difficulty is that no easy, explicit
parametrization ofV ∈ SU(3) by 8 real parameters (the group dimension) can be
found. [222]. We therefore must compute the discordnumerically. Our strategy is to
minimizeS(ρij |Πj) over a (large) set of randomly-generated unitary matrices [224].
More precisely, we generate a large ensemble of unitary matrices taken from the uni-
form distribution over theSU(3) group manifold, evaluatingS(ρij |Πj) for each ma-
trix. We then keep the minimum as our esteem ofinf{Bk} S(ρij |Πj). To be rigorous,
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Figure 2.6: quantum mutual informationI(i : j) (blue), quantum discordD(i : j)
(red), classical correlationJ (i : j) (green) as a function ofu in region II forn = 1,
|i − j| = 1 (top, left), |i − j| = 2 (top, right),|i − j| = 3 (bottom, left),|i − j| = 4
(bottom, right)

this esteem is to be regarded as an upper bound: however, since we are generating a
rather large set of random matrices we are confident that the bound is very stringent.
Alternatively, we can use theSU(3) parametrization given in Ref. [223]. This allows to
parametrizeSU(3) in terms of trigonometric functions of8 independent parameters,3
anglesη1, η2, η3 and5 phasesα, β, γ, ρ, σ. This parametrization makes it apparent that
the phasesρ andσ are completely irrelevant for the computation of the discord, since
orthonormal projectors (von Neumann measurements) are independent of the choice
of such phases. This method has the advantage that it is basedon a more transparent
parametrization of von Neumann measurements. Again, we generate a large ensemble
of unitary matrices find the minimum ofS(ρij |Πj)
In all cases under study, the two methods applied led to the same results, which pro-
vides us with full confidence on their reliability. In particular, the two methods show
perfect agreement in the value of the discord throughout thewhole region, and this is
a first indication of their reliability. A further element ofconfidence in the methods
used is the fact thatD(i : j) andJ (i : j) must be continuous in the transitions II→
I , III (since all matrix elements ofρij are): when we approach the phase boundaries,
the numerical limits ofD(i : j) andJ (i : j) in region II coincide with the analytical
values determined in region I and III.

In Fig. 2.6 and Fig. 2.7 we plotI(i : j), J (i : j),D(i : j) in region II as a function
of u for |i− j| = 1, 2, 3, 4, and forn = 1 andn = 0.5 respectively. In the Table below,
we summarize the critical behavior of the derivatives of quantum discordD(i : j) and
classical correlationsJ (i : j) for the transitions II→ I, II → III, IV. These values
are obtained as follows. We find numerically (with either of the procedures sketched
above) the optimal measurement which minimizes the reducedconditional entropy.
Contrary to what happens in region I, the orthogonal measurement minimizing the
conditional entropy varies throughout region II, i.e., theparameters of the unitary rota-
tion V are not constant throughout the whole region. However, in the neighborhood of
the critical lines (u → −4 andu → −4 cosπn) they are found to remain constant at
any fixedn. We therefore use these constant values in the expressions for the reduced
conditional entropy and obtain analytical formulas forD(i : j) andJ (i : j) as a func-
tion of u. We then extrapolate the critical behavior by studying these functions in the
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Figure 2.7: quantum mutual informationI(i : j) (blue), quantum discordD(i : j)
(red), classical correlationJ (i : j) (green) as a function ofu in region II forn = 1,
|i − j| = 0.5 (top, left), |i − j| = 2 (top, right),|i − j| = 3 (bottom, left),|i − j| = 4
(bottom, right). We note that at the multipartite transition II→I (u = 0) all the two-
point correlation measures behave in a smooth way

critical limit.

transition n u dI
du

dD
du

dJ
du

II → I 1/2 → 0 finite finite finite
II → III 1/2 → −4 ∝ 1√

u−uc
∝ 1√

u−uc
∝ 1√

uc−u

II → IV 1 → 4 ∝ 1√
uc−u

∝ 1√
uc−u

∝ log(uc − u)

II → III 1 → −4 ∝ 1√
u−uc

∝ 1√
u−uc

∝ 1√
uc−u

The results can be summarized as follows. In the transition II → I o (or I’) two-point
D(i : j), I(i : j), J (i : j) are regular, thus confirming that this transition has a
multipartite nature.

As for the transitions II→IV and II→III, previous analyses [97] have shown that
both transitions have a two-point character. As a first result, we see that at both tran-
sitions quantum discord is able to correctly detect the divergence expected, whereas
negativity fails for this aspect[95] (see Sec. 2.2.3). The two transitions are however
physically inequivalent, since they lead to two completelydifferent phases: transition
II→IV is characterized by the disappearance of ODLRO, whereas at transition II→III
ODLRO is present. We now show how this difference can be properly described by the
study of the two-point classical correlations.
In the transition II→ III, while ∂uI(i : j), ∂uD(i : j) > 0 and∂uJ (i : j) < 0 all
the derivatives display the same kind of algebraic singularity. On the other hand, in
the transition II→ IV, we have that∂uI(i : j), ∂uD(i : j), ∂uJ (i : j) < 0, they
all diverge, butJ (i : j) has a lower degree of divergence i.e., it is logarithmic; this
property allows to correctly describe the transition as a two-point one and furthermore
to assimilate it to the metal-insulator transition I→IV, where the classical correlations
show the same kind of divergence.
The result can be further deepened by considering the following argument. All two-
point correlations in region II can always be split into a finite and an infinite range
contributions:AII

i,j = Ãi,j +AII
∞, whereA = I,J , D andAII

∞ = lim|i−j|AII
i,j .

The infinite range contributions can be analytically evaluated and they all explicitly
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depend on the value of the ODLRO in this phase,nd(1 − ns − nd). Therefore, their
derivatives with respect tou have all the same behavior: they display the same type of
algebraic singularity in case of transition II→III (ODLRO), while they do not display
any singularity in case of transition II→IV (disappearance of ODLRO).
On the other hand, as for the finite range contributions we findthat ∂uJ̃i,j diverges
at both transitions but with a logarithmic behavior that is dominant only in the tran-
sition II→IV (where∂uJ̃∞ is regular) while its quantum counterpart∂uD̃i,j diverges
algebraically. The above results show that the introduction of the discord and classi-
cal correlations allows to discriminate between two apparently similar but inequiva-
lent two-point QPTs, and to root their difference in the persistence (disappearance) of
ODLRO at the transitions.

2.3.4 Reciprocal Lattice

We now consider quantum discord between two momentum modes in the reciprocal
lattice; the analysis is significant in region II and III, where η-pairs are present, and
for values ofkj > ks whereks = 2πNs

L is the maximum single-fermion momentum,
since the portion of k-space pertaining to single fermions is factorized. Let us fist con-
sider two modeskj 6= kj . From the results derived in [98] we have that the measures
of correlations all depend on a single parametera linked to the average occupation
number of a generic modekj , a = 〈nkj

〉/2 = nd/(1 − ns), ∀kj . In particular, the
only pairs of modes(ki, kj) which are correlated are the ones for whichki = −kj ,
while if ki 6= −kj the relative momentum modes are completely uncorrelated i.e.,
I(ki : kj) = 0 and thereforeD(ki : kj) = 0. Whenki = −kj the single-mode von
Neumann entropy readsS(ρkj

) = −2(a log a+(1−a) log(1−a)), the two-mode von
Neumann entropy isS(ρki,kj

) = S(ρkj
)+2a(1−a) and hence the mutual information

is I(ki : kj) = −2(a log a+ b log b− ab).
In order to evaluate the quantum discord, we should now consider the reduced condi-
tional entropy after a generic measurement is performed on modekj , and minimize
with respect to all measurements. It turns out that, a von-Neumann measurement
B = {Π0,Π↑,Π↓,Π↑↓} onto the trivial basisB−kj

yields

ρ0 =
1

p0
Tr−kj

Π0ρkj ,−kj
Π0 = a2|0〉〈0|

ρ↑ =
1

p↑
Tr−kj

Π↑ρkj ,−kj
Π↑ = ab| ↑〉〈↑ |

ρ↓ =
1

p↓
Tr−kj

Π↓ρkj ,−kj
Π↓ = ab| ↓〉〈↓ |

ρ↑↓ =
1

p↑↓
Tr−kj

Π↑↓ρkj ,−kj
Π↑↓ = b2| ↑↓〉〈↑↓ | (2.31)

so that
∑

α pαS(ρα) = 0 and the minimum is immediately attained. Consequently we
have that the quantum discord has a simple expression

D(kj : −kj) = I(kj : −kj)− S(ρkj
) = 2a(1− a) ∝ N (̺kj ,−kj

) (2.32)
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Figure 2.8: Left: monogamy ratioRM in phase III for chains of varying lengthL, with
Nd = 1/L (red),Nd = ⌊L/2⌋/L (green). Right: monogamy ratioRM in phase I in
the TDL.

and it is simply proportional to the negativityN (̺kj ,−kj
)[99]. . This result allows

us to derive some important conclusions. On one hand, the relationship found in [99]
between ODLRO and negativity in region II can be rewritten interms of the discord
D(kj : −kj) showing once again the quantum roots of the ODLRO:

lim
|i−j|→∞

〈X20
i X02

j 〉 = (1− ns)
2a(1− a) = (1− ns)

2D(kj : −kj)/2. (2.33)

This result, together with Eq. 2.29, allows to establish a functional relation between
the two-site discordD(i : j) and the two mode discordD(ki : −ki).

On the other hand, the linen = 1 is aniso-correlationline [98]: sincea = 1/2 =
const, and therefore the momentum particle density〈nkj

〉, and all the correlations
between subsystem in the momentum picture are maximal and constant in the whole
phase II. In particular, they are constant at the transitionII→III, therefore this transi-
tion cannot be identified by studying the derivatives of the correlation measures ink
space. On the other hand, at the transition II→IV there is a sudden change in all corre-
lations that discontinuously drop to zero in correspondence of the insulating phase that
is characterized by a ground state which is factorized also in the momentum space i.e.,
|ψ〉 = ⊗kj

|σ〉kj
, with σ =↑, ↓. We therefore see that the two-point transitions II→III

and II→IV can be distinguished even in momentum space, and this reinforces the re-
sult obtained in the previous section in the direct lattice picture, where the difference
between the two transitions is highlighted by the behavior of J (i : j).

2.3.5 Monogamy of quantum discord

The study of the ground state properties of the extended Hubbard model can be fruit-
fully extended in order to assess a relevant quantum information problem: the relations
between entanglement and discord. In this framework an interesting question to ad-
dress is whether the discord may satisfy amonogamyrelation like (1.104). As we
know from §1.3.5, this relation cannot be satisfied for all states (otherwise the quan-
tum discord would vanish for all separable states). Nevertheless, it is still possible
that the relation holds for a given class of states. In fact, the satisfaction/violation of a
monogamy inequality highlights the structure of multipartite correlations in the state,
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as we will now show by focusing on the ground states in region III and I.
In Region III, theη-pairs states coincide with class of two-qubits permutation-invariant
states that can be written as

|ψ(Nd, L)〉 =
(

L
Nd

)−1
∑

P

P |Nd, L−Nd〉 (2.34)

where

(

L
Nd

)

is the binomial coefficient,|Nd, L −Nd〉 is a fixed state with a given

sequence ofNd ones (pairs) andL − Nd zeros (empty sites), and the sum is taken
over all possible permutationsPs (the3-partiteW state belongs to this class of states).
For states of these form, at fixedNd < L the single and two site reduced density
matrices can be easily evaluated from (2.8) and (2.9) and they are equal for all sites,
i.e.,ρi = ρ1 andρij = ρ2 and the discord can be evaluated as described in the previous
sections. Since|ψ(Nd, L)〉 is a pure state the discord between one site and the rest
of the chain is equal for all sitesD(1|2, · · · , L)) = D1 and it simply coincides with
the entanglement between the site and the rest of the chain,D1 = S(ρ1). ThusD1

is a function ofnd only and and it is bounded by1. Both for finiteNd, L and in the
TDL the two point discordD(1 : j) = D2(nd, L) does not depend onj and therefore
∑

j D2(nd, L) = (L− 1)D2(nd, L). As already mentioned, similar arguments can be
applied to the concurrenceK: with ns = 0 the dependence on|i−j| disappears and, in
particular for largeL one hasK(̺1,j) ≈ 1/L; for finiteNd, L the concurrence is small
but different from zero, and the monogamy property is alwayssatisfied by the squared
concurrence. On the other hand, a direct evaluation of the above quantities shows that
∀Nd andL ≥ 3 one has

RM ≡ D1/[(L− 1)D2(nd, L)] < 1 (2.35)

In Fig. 2.8 (left panel) we show themonogamy ratioRM for Nd = 1/L, ⌊L/2⌋/L
and different values ofL. While a general analytical demonstration of this result isnot
straightforward, one can note that in the case of permutation-invariant states, for any
fixed value ofnd it is always possible to find an infinite number of states|ψ(Nd, L)〉
with L = Nd/nd and such thatD1 ≤ (L − 1)D2(nd, L), i.e., the monogamy relation
is violated. Indeed, whileD1 just depends onnd, D2(Nd, L) is a decreasing function
of L which is lower bounded by its TDL expression (2.29). Therefore all the states
for which L = Nd/nd satisfies the relationD1 ≤ (L − 1)DTDL

2 will violate the
monogamy relation.
As for the TDL, whileK1,j → 0, Ds is constant at fixednd andD2 = DTDL

2 as in
(2.29) and thereforeRM → 0.
Since the above arguments apply to a whole class of permutation invariantn-partite
two-qubit states (2.34), we can state in full generality a property of two-qubit discord:
for n-partite states (n ≥ 3) discord can be polygamous both in presence (for finite
Nd, L) and in absence (TDL) of two point entanglement.

While it is tempting to relate the violation of a monogamy relation by the discord
to the presence of those correlations that are typical ofη-pairs states, and that give rise
in the TDL to ODLRO, our model shows that there are other classes of states in which
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such violation can occur. Indeed, in Fig. 2.8 (right panel) we report the ratioRM for
the ground state of region I, which reads:

|ψ(Ns, L)〉 = |k1, . . . , kNs
〉 = X̃10

k1
· · · X̃10

kNs
|vac〉 (2.36)

i.e., containsNs fermions in momentum eigenmodes (k1, . . . , kNs
), created by action

of the Fourier transform of the Hubbard projection operatorX̃10
k onto the vacuum. The

results refer to the TDL case and they show that for such states, althoughD(i : j)
does depend on the distance|i − j|, the monogamy property is violated by the two
point discord in proximity of the QPT I→ IV. This feature reflects the fact discussed in
Section 2.3.1 that whenµ→ 0, there is a spreading of the quantum correlations over the
whole chain. Indeed, the violation of the monogamy condition starts in correspondence
of µ ≈ −0.2, where the entanglement has already started to spread alongthe chain and
has a finite range (RN diverges only at the transition).
This result has two interesting consequences. On one hand the ground states in region I
show that, depending on the parameters that define them (ns in this case) for the same
class of states the discord may or may not violate a monogamy relation [32]. On the
other hand the behavior of the discord allows to refine the description about region I
carried out in [97]. There, by means of the entanglement and correlation ratio it was
pointed out that the ground states in region I have a truly multipartite character in the
center of the region, while when approaching the transitionthe weight of the two-
point correlations starts to increase; and this agrees withthe two-point character of this
transition. Here this picture is revealed by the violation of the monogamy property
displayed by the discord: In order to prepare the two-point transition atµ = 0, the
system reorganizes its correlations in such a way that theirtwo point character starts to
prevail; one can therefore identify the point in which this process starts with the value
of the parameters i.e.,µ ≈ −0.2 at which the monogamy property is violated by the
discord.

We finally compare the two above cases in terms of the violation of the monogamy
property. Here the key observation is the different kind of violation exhibited by the
discord. In region I the discord can be polygamous but the amount of quantum correla-
tions shared by a single site with the other sites of the chainis finite i.e.,0 < RM < 1
for µ 6= 0 and it vanishes at the transitionµ = 0 becauseD1 → 0, while

∑

j D(i : j)
tends to a finite value. On the contrary, forη-pair states the violation has a completely
different nature: Each site can be equally correlated with all the other sites of the chain:
RM ≡ 0 ∀nd. This difference is indeed rooted in the presence of ODLRO inthe TDL
and in the previously found relation between discord and ODLRO. This kind of vio-
lation is associated by the disappearance of the two-sites entanglement, while for the
state in region I, the violation occurs in presence of bipartite entanglement.
The above results allows to give a general statement about quantum discord for mul-
tipartite pure states: It can be non-monogamous both in presence and in absence of
bipartite entanglement. However the violation of the monogamy property can be max-
imal when ODRLO is established in the TDL and no bipartite entanglement is present
in the state.
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2.4 Conclusions

In this chapter we have addressed several important questions related to the ground
state correlation properties of a reference fermionic model, the bond-charge Hubbard
model. We have applied quantum discord and classical correlations to study how these
relate to quantum phase transitions displayed by the model.By means of analytical
and numerical analysis we have derived and analyzed the expressions of discord and
classical correlations for two-qubits and two-qutrits systems both in the direct lattice
and in momentum space. Our results allow to describe the different quantum phase
transitions in terms of the divergences of the various correlation measures. As shown
in [95, 97, 98] the transitions can be classified on the basis of the relevance of the
two-point and multipartite correlations involved. At variance with other entanglement
measures [95], such as negativity, discord (and classical correlations) exhibits the ex-
pected non analyticities that define the two-point transitions. Moreover, the comparison
of their behavior allows to discriminate between two apparently similar kind of two-
point transitions. In particular, a careful study of the contributions in which classical
correlations can be decomposed gives the possibility to detect the presence (disappear-
ance) of the off diagonal long range order (ODLRO) and to identify its consequences
at the various transitions.
Furthermore, the study of the discord between two generic sitesi, j and two momenta
modeski,−ki allows to establish a direct relation between ODLRO and the two-
site/momenta modes discord, which turns out to be a monotonic function of ODLRO.
This result is remarkable, since in the TDL no two-site entanglement is present in this
states. By means of the same analysis it is possible to establish a functional relation
between the two-sites discord in direct spaceD(i : j) and two-modes discord in mo-
mentum spaceD(ki : −ki).

The study ofD(i : j) for η-pairs states is also important for describing the be-
havior of the discord with respect to themonogamyproperty. [22, 23]. Indeed, the
η-pairs states are isomorphic to a relevant class of permutational invariant multipartite
qubit states. While in the finite size case, all the states in the class display non-zero
two-qubit entanglement, in the TDL the latter vanishes. However, in both cases we
have shown that two-qubit discord is in general different from zero and furthermore
it violates a monogamy relation. Finally, we have shown for another class of states,
the non-interacting fermionic ground states in region I, the discord can be polygamous
depending on the values of the parameters. The main difference between the two class
of states analyzed resides in the kind of violation of the monogamy property: only for
theη-pair states the single qubit can be arbitrarily correlatedwith all the other infinite
sites, thus leading to a maximal violation of the monogamy property. This fact is rooted
in the presence of ODLRO in these states and in the direct relation between ODLRO
and discord.

Our results confirm that the application of quantum information concepts to con-
densed matter systems can fruitfully lead to a precise description of the role of corre-
lations in quantum phase transitions and at the same time to the development of useful
relations that shed new light on the nature of quantum correlations as measured by
discord.



Chapter 3

Non-Gaussian quantum discord
for Gaussian states

3.1 introduction

In the realm of continuous variable (CV) systems, initial research efforts on quantum
discord have focused on Gaussian measurements. The Gaussian quantum discord, pro-
posed in [59, 60], is defined by restricting the minimizationinvolved in the definition
of discord to the set of Gaussian POVMs [125] and it can be analytically computed for
Gaussian states. Its behavior in noisy channels has been studied in Ref. [109, 110] –
where it was shown that it is more robust than entanglement tothe decorrelating effect
of independent baths and more likely to yield non-zero asymptotic values in the case
of a common bath – while its relation to the synchronization properties of detuned,
correlated oscillators has been analyzed in Ref. [80].

It is natural to investigate CV quantum discord beyond Gaussian measurements:
non-Gaussian ones may indeed allow for a stronger minimization of discord, and in
this case the Gaussian discord would be an overestimation ofthe true discord. Here
we focus on Gaussian states and ask whether Gaussian measurements are optimal in
this case, i.e.,whether the Gaussian discord is the true discord for Gaussian states.
This question is relevant for two main reasons: On one hand, if discord is a truly useful
resource for quantum information protocols [71, 82], then it is crucial to have a reliable
estimate of its actual value. On the other hand, from a fundamental point of view it is
important to establish how different kinds of measurementscan affect correlations in
quantum states. A further motivation comes from the fact that indeed for some non-
Gaussian states e.g., CV Werner states, non-Gaussian measurements such as photon
counting have been proven to lead to a better minimization [62].

The optimality of Gaussian measurements has already been proven analytically for
two-mode Gaussian states having one vacuum normal mode [60], by use of the Koashi-
Winter relation (1.56), but no analytic argument is available in the general case. We ad-
dress the question numerically, for the case of two-modes, upon considering two large
classes of Gaussian states, the squeezed thermal states (STS) and the mixed thermal

54
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states (MTS), and allowing for a range of experimentally feasible non-Gaussian mea-
surements based on orthogonal bases: the number basis, the squeezed number basis,
the displaced number basis. As a result, we provide evidencethat Gaussian quantum
discord is indeed optimal for the states under study. In addition, we also investigate the
CV geometric discord [63], comparing the case of Gaussian and non-Gaussian mea-
surements.

This work is structured as follows. In§ 3.2 we review Gaussian quantum discord;
in § 3.3 we thoroughly describe the basic question we want to address in this work
and introduce non-Gaussian measurements and non-Gaussiandiscord; in§ 3.4, 3.5,
3.6, we present our key results concerning non-Gaussian discord upon measurements
in the number basis, squeezed number basis and displaced number basis; in§ 3.7 we
discuss the behavior of non-Gaussian geometric discord; finally, § 3.8 closes the paper
discussing our main conclusions.
This chapter essentially reproduces our paper [64], previously published in Physical
Review A.

3.2 Gaussian discord

In the realm of continuous-variable systems, theGaussian discord[59, 60] is defined
by restricting the set of possible measurements in Eq. (1.21) to the set of Gaussian
POVMs [125], and minimizing only over this set. The Gaussiandiscord can be ana-
lytically evaluated for two-mode Gaussian states, where one mode is probed through
(single-mode) Gaussian POVMs. The latter can be written in general as

ΦG
B(η) = π−1DB(η)̺MD

†
B(η)

whereDB(η) = exp(ηb†−η∗b) is the displacement operator, and̺M is a single-mode

Gaussian state with zero mean and covariance matrixσM =

(

α γ
γ β

)

. Two-mode

Gaussian states can be characterized by their covariance matrix σAB =

(

A C
CT B

)

.

By means of local unitaries that preserve the Gaussian character of the state, i.e. local
symplectic operations,σAB may be brought to the so-called standard form, i.e.A =
diag(a, a), B = diag(b, b), C = diag(c1, c2). The quantitiesI1 = detA, I2 = detB,
I3 = detC, I4 = detσAB are left unchanged by the transformations, and are thus
referred to as symplectic invariants. The local invarianceof the discord has therefore
two main consequences. On the one hand, correlation measures may be written in
terms of symplectic invariants only. On the other hand, we can restrict to states withσ
already in the standard form. Before the measurement we have

S(̺AB) = f(d+) + f(d−), (3.1)

S(̺A) = f(
√

I1), S(̺B) = f(
√

I2) (3.2)

wheref [x] = (x+1/2) log(x+1/2)−(x−1/2) log(x−1/2)andd± are the symplectic
eigenvalues of̺AB expressed byd2± = 1/2[∆±

√
∆2 − 4I4,∆ = I1+I2+2I3. After

the measurement, the (conditional) post-measurement state of modeA is a Gaussian
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state with covariance matrixσP that is independent of the measurement outcome and
is given by the Schur complementσP = A−C(B+σM )−1CT . The Gaussian discord
is therefore expressed by

DG(A|B) = f(
√

I2)− f(d−)− f(d+)

+minσM
f(det

√
σP ) (3.3)

where we use two key properties: i) the entropy of a Gaussian state depends only on
the covariance matrix, and ii) the covariance matrixσP of the conditional state does
not depend on the outcome of the measurement. The minimization overσM can be
done analytically. For the relevant case of states withC = diag(c,±c), including
STS and MTS (see below), the minimum is obtained forα = β = 1/2, γ = 0 i.e.
when the covariance matrix of the measurement is the identity. This corresponds to the
coherent state POVM, i.e. to the joint measurement of canonical operators, say position
and momentum, which may be realized on the radiation field by means of heterodyne
detection. Forseparablestates the Gaussian discord grows with the total energy of the
state and it is bounded,DG ≤ 1; furthermore, we haveDG = 0 iff the Gaussian state
is in product form̺ AB = ̺A ⊗ ̺B.

3.3 Non-Gaussian discord

In this work we consider Gaussian states, and ask whether non-Gaussian measurements
can allow for a better extraction of information than Gaussian ones, hence leading to
lower values of discord.

The optimality of Gaussian measurements has been already proven for a special
case [60]: that of two-mode Gaussian states having one vacuum normal mode. Indeed
any bipartite state̺AB can be purified,̺ AB =⇒ |ψ〉ABC ; then, the Koashi-Winter
relation (1.56),

D(A|B) = EF (A : C) + S(̺B)− S(̺AB) (3.4)

relates the quantum discordD and the entanglement of formationEF of reduced states
̺AB and̺AC respectively. Given a (mixed) two-mode Gaussian state̺AB, there exists
a Gaussian purification|ψ〉ABC . In general, the purification of̺AB requires two addi-
tional modes, so that̺AC is a three-mode Gaussian state. In the special case when one
normal mode is the vacuum, the purification requires one modeonly. In this case,̺AC

represents a two-mode Gaussian state andEF (A : C) can be evaluated [24]. From
EF (A : C), by means of Eq. ([39]), one can obtainD(A|B) (the exact discord) and a
comparison withDG(A|B) proves thatD(A|B) = DG(A|B).

In the general case, there is no straightforward analyticalway to prove that Gaus-
sian discord is optimal. Therefore, we perform a numerical study. Since taking into
account the most general set of non-Gaussian measurements is an extremely challeng-
ing task, one can rather focus on a restricted subset. We choose to focus on a class of
measurements that are realizable with current or foreseeable quantum optical technol-
ogy. These are the the projective POVMs,Π = {Pn}, represented by the following
orthogonal measurement bases:

Pn = D(α)S(r)|n〉〈n|S(r)†D(α)†, n = 0, · · · ,∞ (3.5)
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whereS(r) = exp (−r∗ a2

2 − r (a
†)2

2 ) andD(α) = exp(αa†−α∗a) are respectively the
single-mode squeezing and displacement operators [150]. The set of projectors in (3.5)
is a POVM for any fixed value ofα andr. If α = r = 0 we have the spectral measure
of the number operator, describing ideal photon countingPn = |n〉〈n|. If α > 0, r = 0
we are projecting onto displaced number states [151], ifα = 0, r > 0 onto squeezed
number states [153, 154, 155]. While more general non Gaussian measurements are in
principle possible, the class (3.5) encompasses most of themeasurements that can be
realistically accessed.

In the following, we will evaluate the non-Gaussian quantumdiscord defined by

DNG(A|ΠB) = f(
√

I2)− f(d−)− f(d+) + SNG(A|ΠB) (3.6)

where the non-Gaussian measurements are given by Eq. (3.5) above. For the non-
Gaussian conditional entropy we have

SNG(A|ΠB) =
∑

n

pnS(̺A|n) ,

̺A|n =
1

pn
TrB[Pn̺ABPn] ,

pn = TrAB[Pn̺ABPn] (3.7)

In the following we consider two classes of Gaussian states in order to assess the perfor-
mances of the above measurements. These are the two-mode squeezed thermal states
(STS) [146, 147, 148]:

̺ = S(λ)νA(N1)⊗ νB(N2)S(λ)
† (3.8)

and the two-mode mixed thermal states (MTS) [149]

ρ = U(φ)νA(N1)⊗ νB(N2)U(φ)† (3.9)

whereνX(Ni) are 1-mode thermal states (X = A,B) with thermal photon number
Ni (i = 1, 2); S(λ) = exp{λ(a†Aa

†
B − aAaB)} is the two-mode squeezing operator

(usually realized on optical modes through parametric down-conversion in a nonlin-
ear crystal); andU(φ) = exp{φ(a†AaB − aAa

†
B)} is the two-mode mixing operator

(usually realized on optical modes through a beam splitter).
In particular, in the following we will focus on the simplestcase of symmetric

STS withN1 = N2 ∈ [10−5, 1] λ ∈ [0, 0.5]. As for MTS, we cannot consider the
symmetric case (since ifN1 = N2 then the mutual information vanishes and there are
no correlations in the system), therefore we consider the unbalanced case and focus on
φ ∈ [0, π/2] andN1, N2 ∈ [10−5, 1].

3.4 Number basis

LetPn = |n〉〈n|. In this case, the post-measurement state is

̺A|n = ⊗|n〉〈n| =





∑

h,k

̺(h,k),(n,n)|h〉〈k|



⊗ |n〉〈n| (3.10)
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and we have the following expression for the density matrix elements

̺(h,k),(n,n) =
∑

s,t

pths (N1)p
th
t (N2)Ohn(st)O

∗
kn(st) (3.11)

wherepths (N) = Ns (1 +N)−(s+1) andOhn(st) = 〈hn|O|st〉 with O = S(λ), U(φ)
for STS and MTS respectively. The post-measurement state

̺A|n = TrB[I⊗ |n〉〈n| ̺ I⊗ |n〉〈n|]/pn (3.12)

(here,pn = Tr[̺I ⊗ |n〉〈n|]) of STS and MTS after local measurement in the number
basis is diagonal,

〈h|̺A|n|k〉 = δhk ̺(h,h),(n,n) (3.13)

Proof. We have indeed:

̺ =
∑

s,t

pths (N1)p
th
t (N2)O|st〉〈st|O† =

=
∑

(h,n),(k,m)

|hn〉〈km|
(

∑

s,t

pths p
th
t Ohn(st)O

∗
km(st)

)

(3.14)

wherepths (N) = Ns (1 + N)−(s+1) whereOhn(st) = 〈hn|O|st〉 andO∗
km(st) =

〈st|O†|km〉 = 〈km|O|st〉∗, whereO = S(λ), O = U(φ) for STS and MTS respec-
tively. The post measurement states can be written as:

̺A|n ⊗ |n〉〈n| =





∑

h,k

̺(h,k),(n,n)|h〉〈k|



⊗ |n〉〈n| (3.15)

and therefore we need to evaluate the matrix elements

̺(h,k),(n,n) =
∑

s,t

pths p
th
t Ohn(st)O

∗
kn(st) (3.16)

The elements of the two-mode squeezing operator are given in[155] (Eq. 22):

〈hn|S(λ)|st〉 = δt+h,s+nf
λ(h, n, s, t) = δt+h,s+n ×

min(s,t)
∑

a=0

min(h,n)
∑

b=0

(−1)a+b(sechλ)t+h−a−b−1µa−b+h−s ×

(t+ h− a− b)![s!t!h!n!]1/2

a!(t− a)!(s− a)!b!(n− b)!(h− b)!
(3.17)
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whereµ = eλ, while the elements of the two-mode mixing operator

〈hn|U(φ)|st〉 = δh+n,s+t

min{h,s}
∑

a=max{0,h−t}
As t

a h−a

= δh+n,s+t

min{h,s}
∑

a=max{0,h−t}

√

h!(s+ t− h)!

s!t!
(−1)h−a ×

(

s

a

)(

t

h− a

)

sinφs+h−2a cosφt+2a−h (3.18)

In order to evaluate (3.16), we needOhn(st)O
∗
kn(st). Due to theδ’s appearing in both

(3.17) and (3.18), the following relations must be satisfied:

t− s = n− h

t− s = n− k.

and this impliesh = k; therefore the post-measurement state is diagonal in the number
basis:

(̺A|n)h,k = δh,k
∑

s,t

pths (N1)p
th
t (N2)|Ohk(st)|2 (3.19)

QED.

As a consequence, the entropy of the post-measurement statecan be expressed as:
S(̺An ) = H({̺(h,h),(n,n)}) = H(~p(A|B = n)) whereH is the Shannon entropy of
the conditional probability~p(A|B = n) = (p(0, n), p(1, n), · · · )/pn, and therefore
the overall conditional entropy can be simply expressed in terms of the photon number
statistics:

S(A|{Pn}) =
∑

n

pnh(~p(A|B = n)) =

= h(~p(A,B)) − h(~p(B)) (3.20)

with ~p(A,B) = {p(A = n,B = m)} and~p(B) = {p(B = n)}. In view of this
relation, the only elements of the number basis representation of the density matrix̺
that are needed are the diagonal ones, i.e. one has to determine the photon number
statistics for the two-mode STS or MTS state. The required matrix elements can be
obtained in terms of the elements of the two-mode squeezing and mixing operators (see
Eqs. (3.17) and (3.18) above). One has of course to define a cutoff on the dimension of
the density matrix. This can be done upon requiring that the error on the trace of each
state considered be sufficiently small:ǫerr = 1− Tr̺ ≤ 10−3.

We have compared Gaussian and non-Gaussian quantum discord(with the non-
Gaussian measurements corresponding to photon number measurements) for STS and
MTS states with a wide range of squeezing, mixing and thermalparameters. In Fig.
3.1 we show results for STS with varyingλ andN1 = N2 = 10−2,N1 = N2 = 1. The
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Figure 3.1: Gaussian and non-Gaussian quantum discord for STS as a function ofλ,
for different values ofN1 = N2
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Figure 3.2: Gaussian and non-Gaussian quantum discord for MTS states as a function
of φ for different values ofN1 andq = N2/N1

key result is that the non-Gaussian quantum discord is always greater than its Gaussian
counterpart for all values ofN1 andλ. The gap grows with increasingN1 andλ. In
Fig. 3.2 we show results for MTSN1 = {0.1, 1} andq = N2/N1 = {0, 0.1, 0.4, 0.5}.
Also in this case, the non-Gaussian discord is always higherthan the Gaussian one.
Both results indicate that the Gaussian (heterodyne) measurement is optimal for STS
and MTS states, at least compared to photon counting, in the sense that it allows for a
better extraction of information on modeA by a measurement on modeB.

3.5 Squeezed Number basis

We now analyze the case of non-Gaussian measurements represented by the squeezed

number basis|nr〉〈nr| = S(r)|n〉〈n|S(r)†, whereS(r) = exp (−r∗ a2

2 − r (a
†)2

2 ) is
the single mode squeezing operator. A local measurement in the squeezed number basis
is equivalent to a measurement in the number basis, performed on a locally squeezed
state. In formulas, the probability of measuringnr on one subsystem when the state is
the̺ is

p̺(nr) = Tr(I⊗ |nr〉〈nr|̺) = Tr(I⊗ |n〉〈n|S†(r)̺S(r)) =

= Tr(I⊗ |n〉〈n|̺r) = p̺r(n) (3.21)
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Figure 3.3: Gaussian and non-Gaussian quantum discord for STS withN1 = 1 as a
function ofλ and for different values of local squeezingr
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Figure 3.4: Gaussian and non-Gaussian quantum discord for MTS states forN1 = 1,
N2 = 0 as a function ofφ and for different values of local squeezingr

i.e., is equal to the probability of measuringn on the locally squeezed state̺r =
S(r)̺S(r)†, and the relative post-measurement state is

̺A|nr
= TrB[I⊗ |nr〉〈nr|̺I⊗ |nr〉〈nr|]/p̺(nr) =

= TrB[I⊗ |n〉〈n|̺rI⊗ |n〉〈n|]/pr̺(n) = ̺rA|n (3.22)

The general idea is that measurements on a state̺ in a basis that is obtained by perform-
ing a unitary (Gaussian) operationV on the number basis|n〉〈n| can be represented as
measurements on the number basis of a modified state̺V = V ̺V † on which the local
unitary operation acts.
In the case of the squeezed number basis, the post-measurement state is not diagonal,
therefore the reasoning leading to Eq. (3.20) does not hold.The post-measurement
state matrix elements(̺rA|n)h,k = ̺(h,k),(n,n) can be obtained directly by evaluat-
ing the expression (3.11) where now the expressionOhk(st) = 〈hk|O|st〉 (where
O = S(λ), U(φ)) must be replaced with

O′
hk(st) = 〈hk|S(r)O|st〉 =

∑

q

〈k|S(r)|q〉〈hq|O|st〉

and the elements of the single mode squeezing operator are given in [156] (Eq. 20) or
in [153] (Eq. 5.1).
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Figure 3.5: Gaussian and non-Gaussian quantum discord for STS withN1 = 1 as a
function ofλ and for different values of local displacementα

We have evaluated the Gaussian and non-Gaussian quantum discord for STS and MTS
states with a wide range of two-mode squeezing and thermal parameters. Non-Gaussian
measurements are done in the squeezed photon number basis,Pn = S(r)|n〉〈n|S(r)†
with variabler ∈ [0, 0.5]. The effect of local squeezing on non-Gaussian quantum dis-
cord is negligible in the whole parameter range under consideration: we compare the
non-Gaussian discord for different values ofr and find that all curves collapse. This
can be seen in Fig. 3.3 and Fig. 3.4 where plot the behavior forN1 = N2 = 0.01 (STS)
andN1 = 1, N2 = 0 (MTS). The same behavior is observed in the whole parameter
range under investigation. We have verified numerically that the post-measurement
states of modeA ̺rA|n are not equal asr varies (i.e., the post-measurement states cor-
responding to measurement resultnr change withr), yet the sum

∑

n pnS(̺
r
A|n) is

equal for all values ofr under investigation. Therefore, the squeezing in the measure-
ment basis has no effect on the discord, at least for the values of squeezing considered:
in particular, it cannot afford a deeper minimization than that obtained without local
squeezing. This indicates that the heterodyne measurementremains optimal also with
respect to measurement in the squeezed number basis.

3.6 Displaced Number basis

We finally analyze the case of non-Gaussian measurements represented by the dis-
placed number basis|nα〉〈nα| = D(α)|n〉〈n|D(α)†, whereD(α) = exp(αa† − α∗a)
is the single mode displacement operator. According to the general considerations
above, a local measurement in the displaced number basis is equivalent to a mea-
surement in the number basis, performed on a locally displaced state̺ α. As in the
case of the squeezed number basis, the post-measurement state is not diagonal and
we need all matrix elements(̺αA|n)h,k = ̺(h,k),(n,n). They can be obtained directly
by evaluating the expression (3.11) where the expressionOhk(st) = 〈hk|S(λ)|st〉
(whereO = S(λ), U(φ)) must be substituted withO′

hk(st) = 〈hk|D(α)O|st〉 =
∑

q〈k|D(α)|q〉〈hq|O|st〉, and the elements of the single mode displacement operator
are given in [145] (Eq. 1.46).

The evaluation of the non-Gaussian quantum discord can be simplified by first
noticing that one can consider real values ofα only. Indeed, we can prove that the
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Figure 3.6: Gaussian and non-Gaussian quantum discord for MTS states forN1 = 1,
N2 = 0 as a function ofφ and for different values of local displacementα

quantum discord only depends on the modulus|α|. Before proceeding to the detailed
proof (that requires the characteristic function formalism), let us just sketch the argu-
ment. Consider̺αA|n, the post-measurement state of modeA after measurement result

nα is obtained onB. If we change the phase ofα, α → α′ ≡ eiθα we find that

̺α
′

A|n = U̺αA|nU
† (3.23)

whereU is a unitary operation corresponding to a simple quadraturerotation

aA → aAe
iθ a†A → a†Ae

−iθ (3.24)

Therefore, we have̺α
′

A|n 6= ̺αA|n, but̺αA|n and̺α
′

A|n have the same spectrum, since they
are related by a unitary. Therefore, the entropy of the reduced post-measurement state
̺αA|n does not depend on the phase ofα but just on|α|. If follows that the non-Gaussian
quantum discord of̺α does not depend on the phase ofα.

Proof. We show that the (non-Gaussian) discord in the displaced number basis does
not depend on the phase of displacement for STS and MTS. The arguments is best
given in the characteristic function representation of thestates [145]. The STS and
MTS states have a Gaussian characteristic functionχ[̺](Λ) = exp(− 1

2Λ
TσΛ) where

Λ = 1√
2
(ReλA, ImλA,ReλB, ImλB) and the covariance matrix is given by

σ =

(

A C
CT B

)

=









a 0 c 0
0 a 0 ±c
c 0 b 0
0 ±c 0 b









(3.25)

where±c is−c in the case of STS and+c in the case of MTS. For STS we have

χ[̺](λA, λB) = exp(−a|λA|2 − b|λB|2 + 2cRe[λAλB ]) (3.26)

while for MTS the same expression holds upon changing2cRe[λAλB ] → 2cRe[λ∗AλB ].
In the following, we shall carry on the argument for STS, but the MTS case is fully
equivalent. If we perform a displacement on one mode,̺ → D(α)̺D†(α) ≡ ̺α, the
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effect on the characteristic function is easy to evaluate. Using the relationD(α)D(λ)D†(α) =
D(λ) exp(−2iIm[λα∗]) [145] we obtain

χ[̺α](λA, λB) = χ[̺](λA, λB) exp(−2iIm[λBα
∗]) (3.27)

Suppose we perform a measurement on modeB in the number basis{Pn = |n〉〈n|}.
The post-measurement state of modeA is̺αA|n = 1

pn
TrB[̺αΠn]wherepn = Tr[̺αΠn].

By use of the trace formula [145]

Tr[O1O2] =
1

π

∫

Cm

d2mλ χ[O1](λ)χ[O2](−λ)

we obtain the characteristic function

χ[̺αA|n](λA) =
1

πpn

∫

C

d2λB χ[Πn](λB) χ[̺
α](λA,−λB) (3.28)

Sinceχ[Πn](λB) = e−
1
2 |λB |2Ln(|λB |2), whereLn is the Laguerre polynomialLn(|λB |2) =

∑n
i=0

(

n
n−i

) |λB |2i
i! , we have explicitly

χ[̺αA|n](λA) =
1

πpn

∫

C

d2λB Ln(|λB |2) exp
(

−a|λA|2

−(b+ 1/2)|λB|2 − 2cRe[λAλB]− 2iIm[λBα
∗]
)

(3.29)

In order to see that this expression depends on|α| only we can implement the change
α→ α′ ≡ eiθα and we have

χ[̺α
′

A|n](λA) =
1

πpn

∫

C

d2λB Ln(|λB |2) exp
(

−a|λA|2

−(b+ 1/2)|λB|2 − 2cRe[λAλB ]− 2iIm[λBα
∗e−iθ]

)

By changing variableλB → e−iθλB we see that

χ[̺α
′

A|n](λA) = χ[̺αA|n](λAe
−iθ) (3.30)

Therefore, we haveχ[̺α
′

A|n] 6= χ[̺αA|n], hence̺ α′

A|n 6= ̺αA|n. However,̺ α′

A|n and̺αA|n
have the same spectrum. Indeedχ[̺αA|n](λA) andχ[̺αA|n](λAe

iθ) are related by a
simple quadrature rotation

aA → aAe
iθ a†A → a†Ae

−iθ (3.31)

which means that
̺α

′

A|n = U̺αA|nU
† (3.32)

whereU is the free evolution of modeA, U = eiθa
†

A
aA . Since̺α

′

A|n and̺αA|n are
related by a unitary, they have the same spectrum. Therefore, the spectrum (hence, the
entropy) of the reduced post-measurement state̺αA|n does not depend on the phase of
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α but just on|α|. If follows that the non-Gaussian quantum discord of̺α does not
depend on the phase ofα. QED.

We have evaluated the Gaussian and non-Gaussian quantum discord for STS and
MTS states with a wide range of two-mode squeezing and thermal parameters. Non-
Gaussian measurements are done in the displaced photon number basis,

Pn = D(α)|n〉〈n|D(α)†

with variableα ∈ [0, 2.5]. In Fig. 3.5 and Fig. 3.6 we plot the Gaussian and non-
Gaussian quantum discord. We see that greater displacements lead to lower values of
the non-Gaussian quantum discord, but the decrease is insufficient to match the Gaus-
sian quantum discord, which remains optimal. However, the non-Gaussian quantum
discord approximates the Gaussian one asα → ∞. Indeed, we find that for both STS
and MTS

̺αA|n → ̺αA|0 as α→ ∞ (3.33)

Proof. In order to show that̺ αA|n → ̺αA|0 asα → ∞ we adopt the characteris-
tic function formalism. The post-measurement state of modeA has the characteristic
function (3.29). Since the phase ofα is irrelevant for the discord, we will assumeα ∈ R

in the following. The post-measurement state characteristic function, Eq. (3.29), is the
Gaussian integral of a polynomial. By using a well-known trick of Gaussian integrals,
we can rewrite

χ[̺αA|n](λA) =
1

πpn
e−a|λA|2

∫

C

d2λB Ln(d/dγ)×

exp
(

−γ|λB|2 + 2cReλAReλB − (2cIm[λA] + 2iα)Im[λB]
)

whereγ = b + 1/2 and the formal expressionLn(d/dγ) means
∑n

i=0

(

n
n−i

)

1
i!

dn

dγn .
This expression can now be moved outside the integral, so that we are now left with a
purely Gaussian integral of the form

∫

R

d2ΛB e−
1
2Λ

T
BMΛB+ΛT

BB

whereM = diag{4γ, 4γ}, B = (2cReλA,−2cImλA + 2iα), ΛB = (ReλB, ImλB).
The integral gives 2π√

detM
e

1
2BTM−1B so that we finally get

χ[̺αA|n](λA) =
1

pn
e−

1
2a|λA|2Ln(−d/dγ)× (3.34)

1

γ
exp

(

c2|λA|2 − α2 − 2iαcImλA
2γ

)

Let us definex = c2|λA|2 − α2 − 2iαcImλA. Then we have

Ln(−d/dγ)
1

γ
exp

(

c2|λA|2 − α2 − 2iαcImλA
2γ

)

=

= Ln(−d/dγ)
1

γ
ex/2γ = Fn(γ, x)e

x/2γ
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Figure 3.7:χ[̺αA|n](λ) for α = 0.1 (red),α = 1 (green),α = 5 (blue) andn = 0

(solid), n = 1 (dashed),n = 2 (dotted). Here, we haveA = (N + 1/2) coshλ,
C = (N + 1/2) sinhλ with λ = 0.5,N = 0.5.

whereFn(γ, x) =
∑

k fk(γ)x
k is necessarily a polynomial of degreen in with γ-

dependent coefficientsfk(γ). Therefore,

χ[̺αA|n](λA) =
1

pn
e−(a−c2(b+1/2)−1)|λA|2 × (3.35)

e−ic(b+1/2)−1αImλAe−α2/2γFn(γ, x)

The norm is

pn = e−(a−c2(b+1/2)−1)|λA|2e−ic(b+1/2)−1αImλA ×
e−α2/2γFn(γ, x)

∣

∣

∣

λA=0
= e−α2/2γFn(−α2)

so that

χ[̺αA|n](λA) = e−(a−c2(b+1/2)−1)|λA|2 × (3.36)

e−ic(b+1/2)−1αImλA
Fn(γ, x)

Fn(γ,−α2)

This function is exponentially decaying ase−s|λA|2 wheres = a − c2/(b + 1/2),
hence it is vanishing for|λA|2 ≫ 1/s. Therefore, we can consider values of|λA|2 in
the regionλ2A . 1/s. In this region, we we havelimα→∞ x = −α2 becauseα ≫ λA
and thus

lim
α→∞

Fn(γ, x)

Fn(γ,−α2)
=
fn(γ)α

2n

fn(γ)α2n
= 1

In conclusion, asα→ ∞ we have

χ[̺αA|n](λA) → χ[̺αA|0] (3.37)

which implies the desired result (3.33),QED.

This result means that the conditional state ofA is independent ofn and equal to
then = 0 result. In Fig. 3.7 we showχ[̺αA|0], χ[̺

α
A|1], χ[̺

α
A|2] for growing values of
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α. The three curves converge already forα ∼ 5. As a consequence ofn-independence,
we have

SNG(A|ΠB) =
∑

n

pnS(̺
α
A|n) → S(̺αA|0) (3.38)

But ̺αA|0 is just the post-measurement state corresponding to POVM element

D(α)|0〉〈0|D†(α) = |α〉〈α|

i.e, a Gaussian state with covariance matrixσP = A−C(B+ I/2)−1CT (Schur com-
plement), and meanµP = X(B + I/2)−1CT , whereX = (α, 0). On the other hand,
from the discussion in§ 3.2 we know that the optimal Gaussian POVM is a heterodyne
measurement{Πβ = D(β)|0〉〈0|D†(β) = |β〉〈β|}. In this case, as already explained
in § 3.2, the entropy of the post measurement state̺A|β is independent of the mea-
surement resultβ, hence the conditional entropy coincides with the entropy of of the
β = α result. Therefore, we also haveSG(A|B) = S(̺αA|0). Therefore, we conclude

that the non Gaussian discordDNG(A|ΠB) in the displaced number basis tends to the
Gaussian discordDG(A|B) asα → ∞, QED.
To be rigorous, we did not prove that theDNG(A|ΠB) is lower bounded byDG(A|B),
and we cannot rule out the possibility thatDNG(A|B) < DG(A|B) for intermediate
values ofα. However, our numerical data do not support this possibility since we never
observeDNG(A|ΠB) < DG(A|B) and we expect thatDNG(A|ΠB) → DG(A|B)
from above asα → ∞.
In conclusion, we have analytical and numerical evidence that the heterodyne mea-
surement remains optimal also with respect to measurement in the displaced number
basis.

3.7 Geometric discord

In this section, we briefly consider geometric discord (1.47), defined as

DG(A|B) ≡ inf̺qc∈QC ||̺AB − ̺qc||22

We recall that this quantity can also be evaluated as a minimum over local measure-
ments

DG(A|B) = infΠB ||̺AB −ΠB(̺AB)||22
Notice thatDG andD are not monotonic functions of one another and the relation
between them is still an open question. However, in many casesDG is much simpler
to evaluate thanD.

Analogous to the case of Gaussian discord, a Gaussian version of the geometric
discord can be defined by restricting to Gaussian measurements [63]. Again, it can be
analytically computed for two-mode Gaussian states. With the same reasoning of§ 3.2
one easily obtains

DG
G(A|B) = minσM

Tr[(̺AB − ̺P ⊗ ̺M )2] (3.39)
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Figure 3.8: (Top) Gaussian and non-Gaussian geometric discord for STS withN1 = 1
as a function ofλ and for different values of local squeezingr; (Bottom) Gaussian and
non-Gaussian geometric discord for MTS states forN1 = 1, N2 = 0 as a function of
φ and for different values of local squeezingr

Exploiting the property that Tr[̺1̺2] = 1/ det[(σ1 + σ2)/2], for any two Gaussian
states̺ 1 and̺2,

DG
G(A|B) = minσM

{1/
√

det σAB + (3.40)

+1/
√

det(σP ⊕ σM )− 2/
√

det[(σAB + σP ⊕ σM )/2]}

For for the relevant case of STS and MTS, the minimum is obtained with theσM ele-

ments given byα = β =
√
ab(

√
4ab−3c2+

√
ab)

3a , γ = 0. The least disturbing Gaussian
POVM for STS, according to the Hilbert-Schmidt distance, isthus a (noisy) heterodyne
detection, a result which is analogous to what found in the case of quantum discord. If
one constrains the mean energy per mode, the Gaussian quantum discord gives upper
and lower bounds to the Gaussian geometric discord. In absence of such a provision,
the geometric discord can vanish for arbitrarily strongly nonclassical (entangled) Gaus-
sian states, as a consequence of the geometry of CV state spaces.

Also in this case, we may consider non-Gaussian measurements and evaluate a
non-Gaussian geometric discord:

DNG
G (A|ΠB) = Tr[(̺AB −ΠB(̺AB))

2] (3.41)

For measurement in the number basis, we can easily obtain

DNG
G = µ(̺) +

∑

npq

|〈pn|̺|qn〉|2 (3.42)

whereµ(̺) = 1

4
√

det(σ)
is the (Gaussian) state purity [145]. In the case of measure-

ments in the squeezed or displaced number basis, we have to use̺r and̺α instead of
̺ in Eq. (3.42). In general, in order to compute the geometric discord we need to com-
pute matrix elements, and we use the same numerical methods described above. Note
that by the same arguments leading to Eq. (3.32) we can easilyfind that the geometric
discord noes not depend on the phase ofα like the normal discord.
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Figure 3.9: (Top) Gaussian and non-Gaussian geometric discord for STS withN1 = 1
as a function ofλ and for different values of local displacementα (Bottom) Gaussian
and non-Gaussian geometric discord for MTS states forN1 = 1,N2 = 0 as a function
of φ and for different values of local displacementα

3.7.1 Results

We have compared the Gaussian and non-Gaussian geometric discord for STS and
MTS in a wide range of parameters. We have considered measurements in the number,
squeezed number and displaced number basis for the same values of the parameters
given in the preceding sections. Results are plotted in Figs. 3.8 and 3.9. In general, at
variance with the results for quantum discord, we find that non-Gaussian measurements
can provide lower values of geometric discord than Gaussianones. Among the class
of non-Gaussian measurements we have considered, the optimal one is provided by the
number basis, which gives values of geometric discord that are always lower than those
given by the optimal Gaussian measurement. The non-Gaussian geometric discord in-
creases for increasingr andα, and it can become greater than its Gaussian counterpart.
These results are very different from the quantum discord case: on one hand, the (non-
Gaussian) geometric discord is substantially affected by the local squeezing; on the
other hand, it does not approach the Gaussian one when the displacementα → ∞,
but it grows monotonically. Indeed if we increase the squeezing or displacement in
the measurement basis, the post-measurement state is more distant (in Hilbert-Schmidt
norm) from the original one. As already noticed, performingthe measurement is the
squeezed (displaced) number basis in equivalent to first squeezing (displacing) the state
and then measuring it in the number basis. The local squeezing and displacement have
the effect of increasing the energy of the state, shifting the photon number distribu-
tion P (B = n) towards greater values ofn. This causes the overlap between the post
measurement state and the original state to decrease, and therefore their distance to
increase.

Let us further comment on the difference between the quantumdiscord and the
geometric discord cases. Quantum discord and geometric discord both vanish for clas-
sical states, but are not monotonic functions of one another, and thus they are truly
different quantities. The geometric discord, based on the Hilbert-Schmidt distance, is
a geometric measure of how much a state is perturbed by a localmeasurement, while
quantum discord assesses to which extent correlations are affected by a local mea-
surement. While for the quantum discord well-defined operational and informational
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interpretations can be found [71, 82], for the geometric discord the situation is more
problematic. Indeed, one can design protocols in which the geometric discord can in
some cases be related to the protocols’ performances [70, 81]; however, recent discus-
sions [31], show that, as consequence of the non-invarianceof the Hilbert-Schmidt
norm under quantum evolutions, it is difficult to find a conclusive argument about the
relevance of geometric discord as a measure of quantumness of correlations. Our data
show that non-Gaussian measurements can yield optimal values of the geometric dis-
cord, contrary to the case of quantum discord. Hence, the behavior of quantum discord
and geometric discord with respect to different types of measurements is different. This
is a further indication that the geometric discord cannot beused as a good benchmark
for the quantum discord and that the degree of quantumness measured, if any, by such
a quantity has a fundamentally different nature.

3.8 Discussion and conclusions

The definition of discord involves an optimization over all possible local measure-
ments (POVMs) on one of the subsystems of a bipartite composite quantum system.
In the realm of continuous variables (CV), initial researchefforts on quantum discord
restricted the minimization to the set of (one-mode) Gaussian measurements.

In this work we have investigated CV quantum discord beyond this restriction. We
have focused on Gaussian states, asking whether Gaussian measurements are optimal
in this case, i.e., whether the Gaussian discord is the true discord for Gaussian states.
While a positive answer to this question had already been given for the special case of
two-mode Gaussian states having one vacuum normal mode (by means of an analyti-
cal argument based on the Koashi-Winter formula), no general result was available so
far. We have addressed our central question upon considering two large classes of two-
mode Gaussian states, the squeezed thermal states (STS) andthe mixed thermal states
(MTS), and allowing for a wide range of experimentally feasible non-Gaussian mea-
surements based on orthogonal bases: the photon number basis, the squeezed number
basis, the displaced number basis. For both STS and MTS states, in the range of param-
eters considered, the Gaussian measurements always provide optimal values of discord
compared to the non-Gaussian measurements under analysis.Local squeezing of the
measurement basis has no appreciable effect on correlations, while local displacement
leads to lower values of the non-Gaussian discord, which approaches the Gaussian one
in the limit of infinite displacement.

Overall, for the explored range of states and measurements,we have evidence that
the Gaussian discord is the ultimate quantum discord for Gaussian states. We note
that the optimality of Gaussian measurements suggested by our analysis is a property
which holds only for Gaussian states. In the case of non-Gaussian states, e.g., CV
Werner states, non-Gaussian measurements such as photon counting can lead to a better
minimization, as was recently proven in Ref. [62].

We also have investigated the CV geometric discord [63], comparing the Gaussian
and non-Gaussian cases. We have shown that the behavior of geometric discord is
completely different from that of quantum discord. On one hand, non-Gaussian mea-
surements can lead to lower values of the geometric discord,the number basis measure-
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ment being the optimal one; on the other hand, the effects of both local squeezing and
displacement are strong and consist in a noteworthy increase in the non-Gaussian ge-
ometric discord. The remarkable differences between quantum and geometric discord
imply that the latter cannot be used as a benchmark of the former.

Both in the case of the discord and geometric discord a definite answer on the op-
timal measurement minimizing the respective formulas would require the extension
of the set of non-Gaussian measurements to possibly more exotic ones and the ap-
plication of those realizable in actual experiments to a broader class of Gaussian and
non-Gaussian states. While we leave this task for future research, our results on discord
support the conjecture that Gaussian measurements are optimal for Gaussian states and
allow to set, for the class of states analyzed, a tighter upper bound on the entanglement
of formation for1× 2 modes Gaussian states, via the Koashi-Winter relation.



Chapter 4

An introduction to decoherent
histories

4.1 Introduction

Few topics in physics have ever been a source of wider disagreement, and have ignited
a fiercer debate than the interpretation of quantum mechanics. Most of the times, pur-
ported solutions to the problem have encountered more difficulties that they wished to
get rid of, and aroused more skepticism than they wished to overcome. Among the
most contentious solutions, I may just remind Everett’s many-worlds interpretation –
whose awkwardness can elicit an almost rabid rejection on the part of many people,
or Bohm’s pilot wave theory – that many consider nothing morethan a convoluted and
unnecessary effort to save realism in quantum physics. For many a physicist, the whole
topic ofdecoherentor consistent histories[163, 164, 165] may be just another chapter
in the endless book on interpretations of quantum mechanics. True, purely interpreta-
tional and foundational issues have played a key role in the developement of this topic.
But there is much more to it.
This thesis is not concerned with the foundations of quantummechanics and the re-
lated quarrels. Rather, I wish to show how foundational discussions, apparently de-
tached from the urges of the “working physicist”, have oftenled to the development of
new concepts and tools that have later proved useful (if not indispensable) to solve and
discuss more mundane physical problems. According to this spirit, I view decoherent
histories not as an interpretation, but rather as alanguagethat, under diverse condi-
tions, may prove effective in formulating and analyzing physical problems of interest.
In this sense, I believe that the study of decoherent histories has something in common
with the whole field of decoherence [167]: It contributes to clarifying how informa-
tion is produced by, and how it can be extracted from quantum systems. This fact is
epitomized by a tight relation between decoherent histories and the notion of quantum
dynamical entropy, which will be the subject of Chapter 5.
This chapter is intended to be a concise review of decoherenthistories. My way of
presentation will be tailored to my main goals, i.e., provide the reader with the mini-

72
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mal range of notions needed to understand to the work exposedin subsequent chapters.
Nevertheless, for the sake of completeness I will briefly mention some interpretational
issues and difficulties that have inspired the creation of the formalism, and still make it
a disputed topic.
This chapter is organized as follows: In§ 4.2 I will review the basics concepts of the
decoherent histories formalism. In§ 4.3 I will briefly discuss the connection between
decoherent histories and the wider notion of decoherence. Iclaim no originality as for
any of the concepts exposed in this chapter, except for the way of presenting them.

4.2 quantum histories

The formalism of decoherent (or consistent) histories has been developed by several
authors under slightly different perspectives. The approach has been pioneered by
Griffiths [163], who named itconsistent historiesand whose main goal was to provide
quantum mechanics with an interpretational framework devoid of the concept of mea-
surement. Griffiths’ approach was was later embraced by Omn`es [164]. Griffiths and
Omnès’ basic achievement was to find a consistency condition under which quantum
mechanics can be applied to closed systems, giving predictions for specific sequences
of events in time (histories). Later, Hartle and Gell-Mann essentially rediscovered the
formalism of consistent histories while trying to apply quantum mechanics to cosmol-
ogy [165]. They called their approachdecoherent histories, the terminology that we
will use throughout this work. Gell-Mann and Hartle’s formalism is nearly equivalent
to Griffiths’, apart from a slight reformulation of the consistency condition and a higher
emphasis on physical mechanisms of decoherence that secureits fulfillment.
What unites all authors is the yearning to consistently apply quantum mechanics to
closed systems - what is precluded in the standard interpretation of quantum mechan-
ics. According to the latter, quantum mechanics can only predict the probabilities of
experiment outcomes. Experiments must be performed by someagent (a device or an
observer) that is external to the system, which then by definition ought to be open.
Furthermore, it is postulated that the measuring agent obeyclassical mechanics - a re-
quirement macroscopic devices or observers are generically assumed to satisfy. This
framework is totally satisfactory for the original aim of quantum mechanics, that was
developed as a theory to describe macroscopic observationsof microscopic (atomic
and subatomic) systems. In this setting, the quantum object-classical observer dualism
is neither a problem nor a limit. However, after quantum mechanics was successfully
applied to explain the behavior of matter from elementary particles to large molecules,
people started to think of it as a universal theory that should adequately describe any
physical system, regardless of its size. In principle, it should be even possible to consis-
tently describe the whole universe in quantum mechanical terms, a mission that defines
the field of quantum cosmology.
Decoherent histories were born to address these challengesand set up an interpreta-
tional framework for quantum mechanics that does not require measurements and ob-
servers (even if it can consistently include those, too). Inthis framework, the physics
is essentially the same as in the standard formalism, but experiments are replaced by
the consistency condition and probabilities of measurement outcomes are replaced by a
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prescription to compute the probabilities ofhistories. The key role assigned to histories
has several motivations [169]. First, histories are so general to cover virtually all sit-
uations one may be interested in describing. Second, their classical limit are classical
trajectories, which makes the decoherent histories formalism particularly convenient to
study the quantum-classical transition. Third, in cosmology one needs to reconstruct
a “narrative” of past events: Histories are the right tool toconstruct a narrative that is
compatible with quantum mechanics.

4.2.1 Events and histories

In what follows, I will introduce the notion of histories of aclosed quantum system. As
I mentioned above, I look at histories primarily as an effective language to talk about
quantum physics. In my opinion, such a language is strongly affine to the so-called
quantum logicdeveloped by von Neumann in the classic paper [168]. Since quantum
logic provides us a nice conceptual toolkit and a useful lexicon, I will glean a few
words and concepts from it.
Let us consider a finite-dimensional quantum system characterized by a Hilbert space
H with dimH = d and a unitary dynamicsU(t) = e−iHt generated by a Hamilto-
nianH . We can start by introducing quantumevents, that are the elementary building
blocks of histories. According to von Neumann, “saying something” about a quantum
systems, i.e., specifying a property thereof, is equivalent to specifying a linear sub-
spaceP ⊆ H. For instance, the proposition “the system has energyE” is encoded the
subspacePE , the energy eigenspace corresponding toE:

PE =
∑

s

|E, s〉〈E, s| where H |E, s〉 = E|E, s〉

Linear subspaces ofH are in one-to-one correspondence with projectors, i.e., opera-
torsP such thatP 2 = P . To anyP we can indeed associate the projectorP such that
∀|φ〉 ∈ H, P |φ〉 = |φ′〉 ∈ P . In what follows, we will then identifyP andP .

Hence,any quantum proposition can be identified with a projectorP . This allows
to develop a logical calculus based on projectors:

• The logical negation ofP is given byI − P , which projects onto the subspace
complementary toP .

• GivenP1 andP2, their logical product (“and”) is given byP = P1P2. This
is well-defined only when the two projectors commute,P1P2 = P2P1, which
implies thatP is a projector too. The productP1P2 specifies joint properties
of the system. Two propositionsP1, P2 areexclusiveif the projectors (and the
corresponding subspaces) are orthogonal,P1P2 = 0.

• Given two exclusive propositionsP1 andP2 we can define their logical sum
(“or”) by summing projectors,P = P1 +P2. Orthogonality guarantees thatP is
a projector too.
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• A set ofn exclusive propositionsPj , j = 1, . . . , n, PiPj = δij is exhaustiveif
the projectors sum up to the identity,

∑n
j=1 Pj = I.

A quantumeventis defined as a pairP, t of a projectorP and a timet. It can be in-
terpreted as an objective statement that the propositionP holds at timet. A logical
calculus with events immediately stems from the above logical calculus for proposi-
tions. Accordingly, two eventsP1, t, P2, t areexclusiveif their projectors are orthog-
onalP1P2 = 0. A set ofn exclusive events{t, Pj}, PiPj = 0, ∀i, j ∈ {1, . . . , n}
at timet is exhaustiveif the projectors sum up to the identity,

∑n
j=1 Pj = I. An ex-

haustive set of exclusive events corresponds to the possible outcomes of an orthogonal
measurement (von Neumann measurement) at timet.

Given an ordered sequence of timest1 < · · · < tN , a history is defined as a se-
quence of eventsh = P 1, t1 . . . , P

N , tN . If we haveN exhaustive sets of events
{tℓ, P ℓ

jℓ
}, jℓ = 1, . . . , nℓ with P ℓ

jℓ
P ℓ
kℓ

= δjℓkℓ
,
∑

jℓ
Pjℓ = I, we can define an exhaus-

tive set of exclusive histories asΣ = {hj}, wherehj = t1, P
1
j1
, . . . , tN , P

N
jN

and the
multi-indexj ≡ j1, . . . , jN labels different alternative histories. For simplicity, in the
following we will always denote a history with the corresponding multi-index,j instead
of the “heavier” notationhj. The projectorsP ℓ

jℓ
are formally equivalent to a projective

measurement for eachtℓ.

4.2.2 fine-graining and coarse-graining

coarse-graining

A set of historiesΣ corresponds to a description of the system in time. A less detailed
descriptionΣ′ can be obtained from it by a process calledcoarse-graining, whereby
the events of the new histories ofΣ′ are defined by taking the logical sum of events
of histories inΣ for all times. For instance, given two exclusive historiesj,k the
coarse-grained historyj∨k is defined bytℓ, P ℓ

jℓ
+P ℓ

kℓ
, ∀ℓ, that is by taking the sum of

projectors for each time.
In general, given a setΣ of exclusive and exhaustive histories, we can obtain a setΣ′ of
coarse-grained histories by the following coarse-graining procedure. For eachtℓ, there
arenℓ projectorsP ℓ

jℓ
, jℓ = 1, . . . , nℓ. We can partition the setΣℓ = {1, . . . nℓ} into

mℓ < nℓ disjoint subsetsΣℓ
j̄ℓ
, j̄ℓ = 1, . . . ,mℓ. To each̄jℓ, we associate the projector

P̄j̄ℓ =
∑

jℓ∈Σj̄ℓ

Pjℓ . The resulting set of histories labelled byj̄ = j̄1, . . . , j̄N is a set

of coarse-grained exclusive and exhaustive histories. Obviously, by applying a similar
coarse-graining procedure toΣ′ we obtain a new set of historiesΣ′′ with a higher
degree of coarse-graining.
A special type of coarse-graining is thetemporal coarse-graining. Consider a coarse-
graining such that at some timetℓ we havemℓ = 1 and correspondingly we have only
one coarse-grained projectorP̄ ℓ

1 =
∑

jℓ∈Σℓ
1
P ℓ
jℓ

= I. Then histories inΣ′ contain no
event at timetℓ, becauseI is a trivial event that can be neglected and hence removed
from the string of projectors defining the history.
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fine-graining

Conversely, given a setΣ of exclusive and exhaustive histories, we can obtain a set
Σ′ of less coarse-grained (more fine-grained) histories through the opposite procedure
calledfine-graining. For eachtℓ, there arenℓ projectorsP ℓ

jℓ
, jℓ = 1, . . . , nℓ. If nℓ < d,

at least one of theP ℓ
jℓ

is not one-dimensional. We can thus define a set ofmℓ fine-
grained projectors (d ≥ mℓ > nℓ) P ℓ

j̃ℓ
by “splitting” projectors with TrPjℓ > 1 into

projectors on lower-dimensional subspaces. Let TrPjℓ = njℓ and partition the set
1, . . . ,mℓ into nℓ disjoint subsetsΣjℓ with |Σjℓ | ≤ njℓ . We can then define fine-
grained projectors̃Pj̃ℓ

asPjℓ =
∑

j̃ℓ∈Σjℓ

P̃j̃ℓ
The resulting set of histories labeled by

j̃ = j̃1, . . . , j̃N is a set of fine-grained exclusive and exhaustive histories.A temporal
fine-graining at timetℓ is obtained by inserting events attℓ, that is, by splitting the
trivial eventI at tℓ into the sum of more events.

complete fine-graining

In the literature histories that have one-dimensional projectors for all times (and hence
admit no further fine-graining except for temporal ones) areoften simply calledfine-
grained. A history iscompletely fine-grainedif it admits no further coarse-graining tout
court. Completely fine-grained histories are given by sequences of one-dimensional
projectorsPjt for all timest > 0. A completely fine-grained set of histories affords to
the maximally detailed description of a system. Completelyfine-grained histories con-
stitute the basis of Feynman’s sum-over-histories formulation of quantum mechanics,
which we now briefly review in the decoherent histories language.
The quantum-mechanical amplitude between state|ψ0〉 at timet0 and state|φf 〉 at time
tf is given by〈φf |U(tf − t0)|ψ0〉. Upon insertingN decompositions of the identity
∑

jℓ
Pjℓ = I at timestℓ = t0 + ℓ∆t with ∆t = |tf − t0|/(N + 1), we get

〈φf |U(tf − t0)|ψ0〉 =
∑

j=j1...jN

〈φf |U(tf − tN )PjNU(tN − tN−1)PjN−1×

U(tN−1 − tN−2) . . . Pj1U(t1 − t0)|ψ0〉

Using the Heisenberg representation

P ℓ
jℓ
(t) ≡ U †(t− t0)P

ℓ
jℓ
U(t− t0), |φ(h)f 〉 = U †(tf − t0)|φf 〉, |ψ(h)

0 〉 = |ψ0〉

as well as the notationCj ≡ PN
jN (tN ) . . . P 1

j1(t1), we get

〈φf |ψ0〉 =
∑

j

〈φ(h)f |Cj|ψ(h)
0 〉 =

∑

j

〈φ(h)f |ψ(h)
j 〉

where|ψ(h)
j 〉 ≡ Cj|ψ(h)

0 〉. Thus we can express the transition amplitude as a sum
over amplitudes, each amplitude corresponding to a specificfine-grained historyj. The
histories become maximally fine-grained in the limitN → ∞,∆t→ 0. For an infinite-
dimensional system we can consider projections corresponding to sharp values of the
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continuous coordinatesPq = |q〉〈q|. Hence in the limitN → ∞,∆t→ 0 histories can
be labeled by a continuous indexq(t) and the sum becomes a path integral,

〈ψf |ψ0〉 =
∫

Dq 〈ψ(h)
f |eiS[q(t)]|ψ(h)

0 〉

Here,S[q(t)] is the fundamental action associated with historyq(t). The physical
meaning ofq depends on the system at hand and its configuration space. Fora particle
living in a one-dimensional space it is a real spatial coordinate. More in general,q is a
shorthand for an arbitrarily long string of values that specify coordinates in a configu-
ration space of arbitrary dimension. In the extreme case, wemay looking at histories
of the whole universe: thenq(t) should include the values of all fundamental physical
fields.

4.2.3 Probabilities of histories

In the standard formulation of quantum mechanics, given a sequence ofN projec-
tive measurements we can predict the probability of any sequence of outcomesj ≡
j1 . . . jN , provided that we know the initial state and the dynamics governing the sys-
tem, which is unitary for a closed system. If the initial state is pure – hence represented
by a vector|ψ0〉 – outcomesj = j1 . . . jN are obtained at timest1, . . . , tN with proba-
bility

pj = ||PN
jNU(tN − tN−1)P

N−1
jN−1

U(tN−1 − tN−2) . . . Pj1U(t1 − t0)|ψ0〉||2 ≡ |||ψj〉||2

where|ψj〉 is an un-normalizedpath-projected vector. After outcomesj = j1 . . . jN
are obtained at timest1, . . . , tN , the system is left in the state1√pj

|ψj〉.
Upon adopting the Heisenberg representationPjℓ(t) = U †(t− t0)PjℓU(t− t0) we can
rewrite the formula above as

pj = ||PN
jN (tN )PN−1

jN−1
(tN−1) . . . Pj1(t1)|ψ0〉||2 (4.1)

If the initial state is mixed – hence represented by a densitymatrix ̺0, outcomesj =
j1 . . . jN are obtained at timest1, . . . , tN with probabilitypj = Tr[̺jj], where

̺jj ≡PN
jNU(tN − tN−1)P

N−1
jN−1

U(tN−1 − tN−2) . . . Pj1U(t1 − t0)̺0×
U †(t1 − t0)Pj1 . . . U

†(tN−1 − tN−2)P
N−1
jN−1

U †(tN − tN−1)P
N
jN

is an un-normalized path-projected density matrix. After outcomesj = j1 . . . jN are
obtained at timest1, . . . , tN , the system is left in the state1pj

̺j. In the Heisenberg
representation, we can write

pj = Tr[PN
jN (tN ) . . . Pj1 (t1)̺0Pj1(t1) . . . P

N
jN (tN )] (4.2)

Introducing thehistory operatorsCj ≡ PN
jN

(tN ) . . . P 1
j1
(t1), we thus have:

pj = ||Cj|ψ0〉||2 (pure states) pj = Tr[Cj̺0C
†
j ] (mixed states) (4.3)
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In the decoherent histories formulation, formulas (4.3) are still of use, but the inter-
pretation is different.Probabilities are not assigned to measurement outcomes, but to
histories within an exhaustive set of exclusive historiesΣ. Alternatives at each time are
characterized by projectors, that are generally not associated with measurements, as
they would be in the standard view. Probabilities are assigned to sequences of events,
independent of whether a system interacts with an external measuring device (or any
system whatsoever). However, probabilities cannot beconsistentlyassigned to each
and anyΣ. Indeed, for an arbitraryΣ, probabilities (4.3) do not comply with the classi-
cal rules of probability logic, as we will shortly demonstrate. Probabilities can assigned
only to thoseΣ that satisfy a particular consistency condition, calleddecoherence con-
dition.

4.2.4 the decoherence (or consistency) condition

Classically, for a coarse-grained history we would expectpj∨k = pj + pk. Instead,
what we find applying formula (4.3) is

pj∨k = Tr[(Cj + Ck)̺(Cj + Ck)
†] = pj + pk + 2Re(Tr[(Cj̺C

†
k])

Thus, the classical rule for the sum of probabilities is violated. The non-classical
term Re(Tr[(Cj̺C

†
k]) represents quantum interference, orcoherencebetween the two

histories. The interference can be constructive or destructive depending on whether
Re(Tr[(Cj̺C

†
k]) > 0 or Re(Tr[(Cj̺C

†
k]) < 0.

In the standard approach, coherence manifests itself in thefact that probabilities for
a sequence of measurement outcomes depend on whether some ofthe experiments are
performed or not, and with which accuracy. The most common example is the double
slit experiment. Let us consider a photon emitted by a sourceS at t0, passing through
either of two slits (L orR) at timet1 and hitting the screen at timet2. The probabilities
px that the photon will hit different pointsx on the screen depend on whether detec-
tors are placed in front of the slit to determine which slit the photon goes through. If
AL

x , A
R
x represent the amplitudes for the photon to reachx having passed throughL or

R we havepx = |AL
x + AR

x |2 if no detectors are present, elsepx = |AL
x |2 + |AR

x |2.
In the language of decoherent histories, the two historiest1, L, t2, x andt1, R, t2, x do
not decohere, and thus the probabilitypL∨R of the coarse grained historyt2, x (which
is a temporally coarse-grained history where we ignore the alternatives a timet1) is not
given bypL + pR.

The condition under which the classical probability rule holds is that interference van-
ish,

Re(Tr[(Cj̺C
†
k]) = 0 (4.4)

Given a setΣ of exclusive and exhaustive histories, if interference vanishes for all pairs
of histories,

Re(Tr[(Cj̺C
†
k]) = 0, ∀j 6= k (4.5)

we say that histories inΣ areweakly decoherentor weakly decohere, andΣ obeys
weak decoherence(the specification “weakly” is needed to distinguish this criterion



CHAPTER 4. AN INTRODUCTION TO DECOHERENT HISTORIES 79

from stronger ones that we will mention below).
Weak decoherence inΣ is necessary and sufficient to ensure that the classical proba-
bility rules apply to histories inΣ. Assume indeed that weak decoherence holds forΣ
and consider a coarse-grainingΣ′ of Σ. The probabilities the histories ofΣ′ are

pj̄ =
∑

j1∈j̄1

∑

k1∈j̄1

· · ·
∑

jN∈j̄N

∑

kN∈j̄N

Tr[PjN (t) . . . Pj1(t)̺Pk1 (t) . . . PkN
(t)]

where we have used the notationjℓ ∈ j̄ℓ as a shortcut ofjℓ ∈ Σℓ
j̄ℓ

. Due to weak
decoherence, this formula simplifies to

pj̄ =
∑

j1∈j̄1

· · ·
∑

jN∈j̄N

Tr[PjN (t) . . . Pj1(t)̺Pj1 (t) . . . PjN (t)] =

=
∑

j1∈j̄1

· · ·
∑

jN∈j̄N

pj1...jN

Oviously, if S obeys weak decoherence, so doesS′ as well as any futher coarse-
grainingS′′, since probability sum rules continue to be valid.

The basic axiom of the decoherent histories approach is the following: probabili-
ties can be assigned only to individual members of a set of weakly decoherent histo-
ries. A set of exclusive, exhaustive, and weakly decoherent histories provides a set of
alternative descriptions of the system in time that complies with the rules of classical
probability theory. Within such a set, we can make predictions and retrodictions. The
conditional probability of a subset of events{tℓ, jℓ}, ℓ ∈ A ⊂ {1, . . . , N} given the
remaining events{tℓ, jℓ}, ℓ ∈ Ā = {1, . . . , N}/A can be defined as

p{jℓ},ℓ∈A|{jℓ},ℓ∈Ā =
pj1...jN
p{jℓ},ℓ∈Ā

(4.6)

For instance, the probability of eventsjℓ+1, . . . , jN given that eventsj1, . . . , jℓ have
already occurred (prediction) is

pjℓ+1...jN |j1...jℓ =
pj1...jN
pj1...jℓ

(4.7)

The probability that eventsj1, . . . , jN−1 happened in the past, given the present event
jN (retrodiction) is

pj1...jN−1|jN =
pj1...jN
pjN

(4.8)

Weak decoherence ensures that all the above defined conditional probabilities correctly
add up to1.
A particular usefulness of retrodictions is in cosmology, where an important goal is to
reconstruct the past of our universe on the base of current data. Within the standard in-
terpretation, no statement can be made about what happened in the far past, not even in
probabilistic terms, because no measurement was performedat that time. On the con-
trary, the framework of decoherent histories can easily accommodate such statements.
Within this framework, one can legitimately speak of what “happens” or “happened”
in the universe (the number of possible histories for the observable universe has been
evaluated in Ref. [182]).



CHAPTER 4. AN INTRODUCTION TO DECOHERENT HISTORIES 80

4.2.5 The decoherence matrix

The matrix

Djk = Tr[Cj̺C
†
k] = Tr[PN

jN (tN ) . . . P 1
j1(t1)̺0P

1†
j1
(t1) . . . P

N†
jN

(tN )]. (4.9)

is calleddecoherence matrixor decoherence functional(I will reserve the latter term to
the case of infinite-dimensional systems). The diagonal elements inD are probabilities
of histories and its off-diagonal elements are coherences between pairs of histories.
Weak decoherence implies that the real parts of the off-diagonal elements of the deco-
herence matrix vanish.
We can immediately verify thatDjk is diagonal injN , kN ,

Djk =Tr[PN
jNU(tN − tN−1) . . . Pj1U(t1 − t0)̺0U

†(t1 − t0)Pk1 . . . U(tN − tN−1)P
N
kN

] =

=δjNkN
Tr[PN

jNU(tN − tN−1) . . . P1U(t1 − t0)̺0U
†(t1 − t0)P1 . . . U(tN − tN−1)]

due to the orthogonalityPjNPkN
= δjNkN

. Stated otherwise,Djk is block diagonal
with each block corresponding to a fixedjN . Furthermore, the following properties
hold

• D = D† (Djk = D∗
kj)

• Tr[D] = 1, indeed Tr[D] =
∑

j Djj =
∑

j pj = 1

• the size of the off-diagonal elements is bounded by the size of diagonal elements,

|Djk|2 ≤ DjjDkk (4.10)

and hence the matrix is positive (semidefinite),D ≥ 0.

For a pure initial state, the last property immediately follows from the Schwartz in-
equality for the scalar product inH, sinceDjk = 〈ψ0|C†

j Ck|ψ0〉 = 〈ψj|ψk〉, Djj =

〈ψ0|C†
j Cj|ψ0〉 = |||ψj〉||2, Dkk = 〈ψ0|C†

kCk|ψ0〉 = |||ψk〉||2. For a general density
matrix, consider

Tr[Cj̺C
†
k] = Tr[Cj̺

1/2̺1/2C†
k] = Tr[Cj̺

1/2(Ck̺
1/2)†] (4.11)

Since the Hilbert-Schmidt scalar product between two operators is defined as(A,B) ≡
Tr[A†B], the last expression is just the Hilbert-Schmidt product ofCj̺

1/2 andCk̺
1/2.

The Hilbert-Schmidt respects the Schwarz inequality|Tr[A†B]|2 ≤ Tr[A†A]Tr[B†B].
By applying the latter, the desired result follows. Finally, the expressionDjk =
Tr[(Cj̺

1/2(Ck̺
1/2)†] implies thatDjk is the Gram matrix of the set of linearly in-

dependent vectors{Cj̺
1/2}. Thus, it is a semipositive definite matrix.

The decoherence matrix is a Hermitian, positive, trace-onematrix and thus has the
same properties of a density matrix. In the next chapter (§ 5.1) we will show that such
an interpretation is indeed warranted, becauseD can be seen as the density matrix of
a set of registers interacting with the system in such a way asto effectively induce the
projective measurementsPjℓ on it.
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4.2.6 Medium decoherence

While the weak decoherence condition is sufficient to ensurethat the probability rules
apply, several authors – most notably, Gell-Mann and Hartle– have proposed to replace
it with the stronger condition that both the real and imaginary parts of the off-diagonal
terms of the decoherence matrix vanish:

Tr[Cj̺C
†
k] = 0, ∀j,k (4.12)

This condition is calledmedium decoherencein the literature. It implies that the deco-
herence matrix is diagonal,Djk = δjkpj.
There are several strong arguments in favour of medium decoherence, as opposed to
weak decoherence as the right condition to assign probabilities to a set of histories.
First, there are several physical mechanisms that can lead to medium decoherence, but
it is hard to think of any that may lead to weak decoherence alone, without inducing
medium decoherence at the same time. Indeed, in most in most situations weak deco-
herence between histories arises only as a consequence of coarse-graining (see§ 4.3)
and environmental noise. In this case, weak decoherence is always accompanied by
medium decoherence. Second, there are strong conceptual arguments [179] pointing
out the inadequacy of weak decoherence, of which I will mention the most striking.
Consider two independent systemsA andB with density matrices̺A and̺B and two
independent sets of historiesΣA = {j} andΣB = {j′} forA andB respectively. Inde-
pendence implies that the compound systemAB has density matrix̺AB = ̺A ⊗ ̺B.
FromΣA andΣB we obtain a natural set of historiesΣ = {jj′} for the joint system by
takingP ℓ

jℓj′ℓ
= PAℓ

jℓ
⊗ PBℓ

j′
ℓ

, with a decoherence matrix

DAB
jj′ kk′ = Tr[CA

j ⊗ CB
j′ ̺1 ⊗ ̺2 C

A†
k ⊗ CB†

k′ ] = DA
jkDB

j′k′ (4.13)

If ΣA andΣB are weakly decoherent, we would expectΣ to be weakly decoherent as
well. However, we can immediately verify that

Re(Tr[CA
j ̺AC

A
k ]) = 0, ∀j 6= k, Re(Tr[CB

j′ ̺BC
B
k′ ]) = 0, ∀j′ 6= k′

does not ensure
Re[DAB

jj′ kk′ ] = 0, ∀jj′ 6= kk′

If weak decoherence holds for two statistically independent systems, it is not guar-
anteed that it holds for the composite system that joins them. In other words, if we
can separately assign well-defined probabilities to given sets of histories forA andB,
which are independent systems, it might be impossible to assign well-defined proba-
bilities to the corresponding histories for the jointAB system. This can be regarded
as a serious drawback, since it collides with any notion of statistical independence. By
inspection, on can see that the medium decoherence condition does not suffer from
the same flaw: medium decoherence for independent componentsystemsdoesimply
medium decoherence for the composite system.

For the case of pure states, medium decoherence is equivalent to the presence of so-
calledgeneralized records. Indeed the medium decoherence condition can be rewritten
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as〈ψj|ψk〉 = 〈ψ0|C†
j Ck|ψ0〉 = 0. The orthogonality of the|ψj〉 is equivalent to the

existence of orthogonal projectors

PjPk = δjkPj,
∑

j

Pj = I, PjCk|ψ0〉 = δjkCj|ψ0〉

Remind thatCj need not be themselves projectors. ThePj together constitute a pro-
jective measurement on different histories of the system, and so they yieldgeneralized
recordsof the history. This suggests that medium decoherence may arise as a con-
sequence of physical decoherence, when each branch|ψj〉 becomes correlated with
orthogonal states of the degrees of freedom that are traced over by the coarse-graining
procedure (see the discussion in§ 4.3).

4.2.7 Decoherent histories and generalized measurements

In the literature, one finds also a more general definition of event [180, 181]. Instead
of a (time,projector) pairt, P , we can specify a timet and a positive operatorE. A
positive operator has an eigendecompositionE =

∑

λ qλPλ wherePλ are orthogonal
projectors andqλ > 0. As a weighted sum of orthogonal projectors, a positive operator
defines and “unsharp” event where Hilbert subspacesPλ are assigned weightsqλ. An
exhaustive set of events at timet can be defined as a setΣ of n ≤ d2 positive operators
Ej such that

∑n
j=1 Ej = I. An exhaustive set of events thus defines a generalized

measurement, or POVM at timet. Events in the set are not required to be exclusive,
i.e. we can haveEjEk > 0 for k 6= j.
Given an ordered sequence of timest1 < · · · < tN , a history is defined as a se-
quence of eventsh = E1, t1 . . . , E

N , tN . If we haveN exhaustive sets of events
{tℓ, Eℓ

jℓ
}, jℓ = 1, . . . , nℓ with,

∑

jℓ
Ejℓ = I, we can define an exhaustive set of (non-

exclusive) histories as

Σ = {hj} = {t1, E1
j1 , . . . , tN , E

N
jN }

where the multi-indexj = j1, . . . , jN labels different alternative histories. As already
done in the case of projective measurements, we will denote ahistory with the corre-
sponding multi-index,j instead of the “heavier” notationhj.
When a POVM is performed on a state̺, the post-measurement state corresponding
to Ei is given by 1

pj
Aj̺A

†
j , whereAi is a square-root ofEi, i.e., an operator such

thatAiA
†
i = Ei and wherepj = Tr[̺Ej ] = Tr[Aj̺A

†
j ]. In other terms, the ef-

fect of a POVM on a state is specified only if we specify a corresponding quantum
operation with Kraus operators given by theAj . Given a given a sequence of gener-
alized measurements, we we can predict the probability of each sequence of outcomes
j = j1 . . . jN , provided that i) we know the initial state and the unitary dynamics
governing the system. ii) for eachEℓ

jell
we specify a quantum operation with Kraus

operatorsAℓ
jℓ

such that thatEℓ
j = Aℓ†

j Aℓ
j .

If the initial state is pure, outcomesj = j1 . . . jN are obtained at timest1, . . . , tN with
probabilitypj = |||ψj〉||2, where

|ψj〉 ≡ AN
jNU(tN − tN−1)AN−1

jN−1
U(tN−1 − tN−2) . . .Aj1U(t1 − t0)|ψ0〉
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is an un-normalized path-projected vector (after outcomesj1 . . . jN are obtained, the
state of the system is1√pj

|ψ〉j).
If the initial state is mixed, outcomesj = j1 . . . jN are obtained at timest1, . . . , tN
with probabilitypj = Tr[̺j], where

̺jj = AN
jNU(tN − tN−1)AN−1

jN−1
U(tN−1 − tN−2) . . .Aj1U(t1 − t0)̺0×

U †(t1 − t0)Aj1 . . . U
†(tN−1 − tN−2)AN−1

jN−1
U(tN − tN−1)AN

jN

is an un-normalized path-projected density matrix (after outcomesj = j1 . . . jN are
obtained the system is left in the state1pj

̺j).

Upon adopting the Heisenberg representationAjℓ(t) = U †(t)AjℓU(t) and the history
operatorsCj ≡ AN

jN (tN ) . . .A1
j1(t1), we can rewrite formulas above as

pj = ||Cj|ψ0〉||2 (pure states) pj = Tr[Cj̺0C
†
j ] (mixed states) (4.14)

In the decoherent histories formulation for generalized measurements, formulas (4.14)
represent the probabilities of histories within an exhaustive set. Again, probabilities are
to be assigned only to sets of histories that satisfy the weakdecoherence (consistency)
condition

Re(Tr[Cj̺0C
†
k]) = 0, ∀j 6= k

or the medium decoherence condition

Tr[Cj̺0C
†
k] = 0, ∀j 6= k

The decoherence matrix is expressed as

Djk = Tr[Cj̺0C
†
k] = Tr[AN

jN (tN ) . . .A1
j1(t1)̺0A

1†
j1
(t1) . . .AN†

jN
(tN )]. (4.15)

4.2.8 criticisms to the histories interpretation

To close this section, we briefly mention some main criticisms that have been raised
against the decoherent histories interpretation (for a critical review, see [174]). The
first issue is that several consistency conditions have beenproposed in the literature:
in addition to weak decoherence and medium decoherence, other authors have pro-
posed different criteria called feasibility [178], linearconsistency [177], ordered con-
sistency [175]. There is disagreement over which conditionis the most appropriate.
Second, and more important, the weak decoherence condition(or for what matters, any
other consistency condition among those proposed) is in general insufficient to single
out a single set of histories. Thus the pictures of physics given by the many different
consistent sets have to be assigned equal fundamental status, even if they are gener-
ally incompatible with one another. Third, examples can be found where two contrary
propositions – statements corresponding to orthogonal projections – can be retrodicted
from the same data, each with probability one, in different sets [176]. Fourth, given a
propositionP that should be logically implied byQ, PQ = QP = P (or P ≤ Q),
if Q can be assigned a given probability within a decoherent set of histories, it is not
guaranteed that alsoP can. Thus strictly speakingP cannot be inferred fromQ. For
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instance, we cannot generally infer from the observation that a particle was in a given
region at a given time that the particle was in a larger regioncontaining the first [175].
While these points are of fundamental importance for interpretational concerns, and
affect the status of decoherent histories as a theory, we will not dwell longer in this
discussion since it is outside the scope of this thesis. As mentioned above, we take a
rather pragmatic view and regard decoherent histories mainly as a useful language to
discuss physics, independent of interpretational subtleties.

4.3 quantum histories and decoherence

In Hartle and Gell-Mann’s view, one of the central goals of the decoherent histories
approach is to explain the transition from the quantum worldto the classical world of
familiar experience. In the latter domain, one can give a consistent description of a sys-
tem where the values of all classical variables (such as position and momentum) can
be simultaneously specified, and, furthermore, show correlation patterns that are well
described by classical laws. Such a description can be formulated in terms of classical
histories, that are always decoherent no matter what variables they include. On the
contrary, in the quantum domain the consistency (decoherence) condition forces the
observer to choose between different alternative, incompatible descriptions of a system
that can include only some observables but not others.
To explain how the loss of coherence is achieved in the macroscopic domain, one
should, not surprisingly, invoke decoherence. But now by decoherence we intend what
is normally intended in the quantum physics paradigm, i.e, aloss of quantum features
due to the limited information that is available to the observer. In a word, decoher-
ence - in the sense of histories - can be related to decoherence - as a physical process.
This is indeed the ultimate justification behind Gell-Mann and Hartle’s choice of the
name “decoherent histories”. In standard decoherence theory, a variety of physical
mechanisms cause quantum information (usually encoded in quantum phases) to be
scattered in quantum correlations among a huge number of degrees of freedom, most
of which out of the observer’s control, so that coherent effects become locally inacces-
sible. Similarly, in the decoherent histories approach coherent features are washed out
by a coarse-graining procedure that conceals correlationsbetween the variables that are
distinguished by the coarse-graining and those that are ignored.

4.3.1 Decoherence and coarse-graining

When sets of histories satisfy the consistency condition (4.5) as a result of physical
decoherence and coarse-graining, they typically satisfy,in addition, medium decoher-
ence.
Among the types of coarse-graining that can lead to (medium)decoherence, the most
common is the type involving a factorization of the Hilbert space in a subsystem of
interest and the rest,H = HS ⊗HE . In general, given such a factorization, the events
of a history take the formP ℓ

jℓj′ℓ
= P̃ ℓ

jℓ
⊗ Πℓ

j′ℓ
whereP̃ ℓ

jℓ
andΠℓ

j′
ℓ

are projectors onto
Hilbert subspaces ofHS andHE . Histories forS alone can be obtained upon consid-
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ering appropriate coarse-grainings over the environment degrees of freedom, such that
the events arẽP ℓ

jℓ
⊗ IE whereIE is the identity overHE .

The crucial point is that when histories for the joint systemform a coherent set, coarse-
grained histories for the system alone can decohere. In several cases, depending on
the dynamics, the coarse-graining over the environment yields indeed a decoherent
set of histories for the system for an appropriate choice of the P̃ ℓ

jℓ
. In particular, in

many physical cases the resulting decoherent histories arecomposed by projectors in
some given,fixedbasis. In this case the standard rules of probability theoryapply for
histories in that basis. An important research effort has been devoted to the to show
that (at least approximate decoherence) arises for macroscopically coarse-grained his-
tories in the bases corresponding to the classical variables such as position, momentum,
energy[172, 171]. The relation between physical decoherence and history decoherence
will be explored more in detail in Chapter 7.

4.3.2 Example: decoherence for a particle coupled to a bath of os-
cillators

One can demonstrate how medium decoherence and quasiclassical trajectories follow
from physical decoherence and coarse-graining, by lookingat decoherent histories in a
model where a particle is linearly coupled to a bath of oscillators [166]. Here we will
briefly mention some main results (without a proof or discussion) for the purpose of il-
lustration. For an infinite-dimensional system, the maximally fine-grained decoherence
functional can be expressed in terms of the fundamental action as follows,

D[q(t), q′(t)] = δ(q(tf ), q
′(tf ))e

i(S[q(t)−S[q′(t)])̺(q(t0), q
′(t0)) (4.16)

A coarse graining is peformed where the coordinates are divided into those (x) of
the particles, that are distinguished by the coarse graining, and those (Q) of the bath
that are ignored. This division corresponds to a factorization of the total Hilbert space
H = Hx⊗HQ. The fine grained decoherence functional for the particles (upon coarse-
graining over the bath modes) reads

D[x(t), x′(t)] =
∫

DQDQ′δ(q(tf ), q
′(tf ))e

i(S[q(t)−S[q′(t)])̺(q(t0), q
′(t0)) (4.17)

The action for the system can be written asSfree[x(t)] + S0[Q(t) + Sint[x(t), Q(t)]].
The termSfree[x(t)] depends only onx(t) (it is free of interaction with theQ). We
can then expressD[x(t), x′(t)] as follows:

D[x(t), x′(t)] = δ(x(tf ), x
′(tf ))e

i(Sfree [x(t)−Sfree[x
′(t)]

∫

DQDQ′δ(Q(tf ), Q
′(tf ))×

ei(S0[Q(t)+Sint[x(t),Q(t)]−S0[Q
′(t)]−Sint[x

′(t),Q′(t)])̺(x(t0), Q(t0), x
′(t0), Q

′(t0))

The integral over theQs definesW , a functional of the pathsx(t) andx(t′) and their
endpointsx(t0) andx′(t0) as follows:

eiW[x(t),x′(t);x(t0),x
′(t0)] ˜̺(x(t), x′(t)) =

∫

DQDQ′δ(Q(tf ), Q
′(tf ))×

e−i(S0[Q(t)+Sint[x(t),Q(t)]−S0[Q
′(t)]−Sint[x

′(t),Q′(t)])̺(x(t0), Q(t0), x
′(t0), Q

′(t0))
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where ˜̺(x(t), x′(t)) = TrQ[̺(q(t), q′(t))] is the reduced density matrix associated
with the coarse-graining. The functionalW is calledinfluence phase. It depends on
the endpointsx(t0) andx′(t0) implicitly through the pathsx(t) andx(t′) and explicitly
̺(x(t0), Q(t0), x

′(t0), Q′(t0)). This double dependence is remarked through the nota-
tion W [x(t), x′(t);x(t0), x′(t0)]. Conventionally, it is assumed that the initial density
matrix of the system factorizes,

̺(q(t0), q
′(t0)) = ˜̺(x(t0), x

′(t0))× ̺B(Q(t0), Q
′(t0))

In this case,W contains no explicit dependence onx(t0) andx′(t0): W = W [x(t), x′(t)]
and thus the fine-grained decoherence functional per the particle reads

D[x(t), x′(t)] = δ(x(tf ), x
′(tf ))e

−i(Sfree [x(t)−Sfree[x
′(t)]+W[x(t),x′(t)]) ˜̺(x(t), x′(t))

The imaginary part ofW is causes an exponential suppression of the off-diagonal terms
x 6= x′. If the particle is a linear oscillator, since all terms in the action are quadratic,W
can be computed by performing Gaussian integrals (a strategy first suggested by a clas-
sical study of Feynman and Vernon). By looking at a linear oscillator with frequency
ωR interacting with an thermal bath of oscillators at temperatureT characterized by a
spectral density with cut-off at a frequencyΩ when the bath of oscillator is at a tem-
peraturekT ≫ ~Ω ≫ ~ωR one finds

ImW [x(t), x′(t)] =
i2MγkT

~

∫

dt(x′ − x)2 (4.18)

whereγ summarized the interaction strength with the bath of oscillators, andM is the
oscillator mass. ImW squeezes together the pathsx andx′, thus creating (approximate)
decoherence for pathsq andq′ differing byd will decohere after a time scale

t ≥ 1

γ

(

~√
2Mkt

1

d

)2

. (4.19)

Upon looking at the history probabilitiesp(x(t)) = D[x(t), x′(t)], one can verify the
the probability is peaked around the classical trajectory,and analyze non-classical de-
viations modeled as an effective Langevin force [166].

4.3.3 Decoherence, subsystems and Markovian dynamics

As was mentioned above, the most common type of coarse-graining involves the fac-
torization of the system into a subsystem of interestS and an environmentE . The
physical theory of decoherence devotes significant attention to the problem of find-
ing the reduced dynamics ofS when the environment is traced over. In the case of
decoherent histories, one asks under which conditions the decoherence matrix can be
written in terms of reduced quantities alone, i.e., in termsof the reduced density matrix
̺S(t0) = TrE [̺(t0)] and a reduced propagator forS. One encounters thus problem
whenever one wants to analyze deocoherent histories in openquantum systems, as we
will see for instance in Chapter 7.
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Given a factorizationH = HS ⊗HE , and considering a coarse graining over the envi-
ronment degrees of freedom, such that the events areP̃ ℓ

jℓ
⊗ IE , the decoherence matrix

for S reads:

Djk = Tr[P̃jNU(tN−tN−1) . . . P̃j1U(t1−t0)̺(t0)U(t1−t0)†P̃k1 . . . U(tN−tN−1)P̃kN
]

whereU is the joint evolution of system and environment. For convenience, let us first
introduce the propagatorKt t0 as

̺(t) = U(t− t0)̺(t0)U(t− t0)
† ≡ Kt t0 [̺(t0)] (4.20)

We can rewrite the above equation as:

Djk =Tr[P̃N
jNKtN tN−1[P̃jN−1KtN−1 tN−2 [. . .Kt1 t0 [̺0] . . . ]P̃kN−1 ]P̃

N
kN

] (4.21)

If the initial state is factorized̺ (t0) = ˜̺S(t0) ⊗ ̺E(t0), then the reduced density
matrix ̺S(t) = TrE [̺(t)] evolves according to̺S(t) = K̃t t0̺S(t0) whereK̃ is the
(non-unitary) reduced propagator defined by

Tr[U(t− t0)˜̺S(t0)⊗ ̺E(t0)U
†(t− t0)] = K̃t t0 ˜̺S(t0) (4.22)

We would like to write the decoherence matrix in terms of reduced quantities alone,
i.e., in the form:

Djk =Tr[P̃N
jN K̃tN tN−1[P̃jN−1K̃tN−1 tN−2 [. . . K̃t1 t0 [̺0] . . . ]P̃kN−1 ]P̃

N
kN

] (4.23)

This reformulation is possible only if the trace over the environmentTrE can “seep in”
inside expression (4.21) up to the initial density matrix, i.e. if we have

TrE [U(tN − tN−1)P̃jN−1U(tN−1 − tN−2) . . . P̃j1U [(t1 − t0)̺0×
U †[(t1 − t0)P̃k1 . . . U

†(tN−1 − tN−2)P̃kN−1U
†(tN − tN−1)] =

= K̃tN tN−1TrE [P̃jN−1U(tN−1 − tN−2) . . . P̃j1U [(t1 − t0)̺0×
U †[(t1 − t0)P̃k1 . . . U

†(tN−1 − tN−2)P̃kN−1 ]

This is true if the evolution of the system and environment isMarkovian. In this case,
the semigroup property holds̃Kt2 t0 = K̃t2 t1K̃t1 t0 and we can writẽKt t′ = K̃t−t′ .
The semigroup property implies

Tr[U(t− t′)̺(t′)U †(t− t′)] = K̃t−t′ [ ˜̺S(t
′)].

Obviously, the system evolution can be Markovian only over time intervals∆t ≫ τC
whereτC is the system-environment correlation time. Thus, Eq. (4.23) is valid only if
the time interval∆t between projections (the temporal coarse-graining) is much higher
thantC .



Chapter 5

Decoherent histories and
dynamical entropy

In this chapter, we will prove that quantum dynamical entropy (the quantum coun-
terpart of the classical Kolmogorov-Sinai entropy) can be naturally embedded in the
decoherent histories formulation of quantum mechanics, and will elucidate the conse-
quences for its interpretation. The link between historiesand dynamical entropy exists
because partitions of the identity (which enter the definition of dynamical entropy) are
equivalent to POVMs, and the latter can be used to define a set of quantum histories
with the same POVM repeated at regular times. As we will show,the most widespread
definition of dynamical entropy, the Alicki-Fannes (ALF) entropy, is determined the
von Neumann entropy of the decoherence matrix for a set of histories constructed in
this way (to be precise, ALF-entropy is obtained by maximizing over all POVMs, tak-
ing the limit of the von Neumann entropy per measurement stepas of the number of
measurements goes to infinity). As we will show, any decoherence matrix can be in-
tepreted as a density matrix over a set of registers, that subsequently interact with the
system, effectively performing the “measurements” that define the set of histories un-
der attention. Thus the von Neumann entropy of the decoherence matrix that defines
ALF entropy can be seen as the amount of quantum information stored in a set of reg-
isters. This will justify an interpretation of ALF entropy as the rate of production of
quantuminformation by the dynamics, in the same way as the classicalKolmogorov-
Sinai entropy can be interpreted as the rate at which classical information is produced
by the dynamics.
As a byproduct of our analysis, we will be able to define a general measure of coher-
ence between histories. Due to coherence, the von Neumann entropy of a decoherence
matrix is lower the Shannon entropy of its diagonal enties (history probabilities). Upon
taking the difference between the two, which can be also interpreted as the quantum
relative entropy between the decoherence matrix and a corresponding diagonal deco-
herence matrix, we will define a measure of coherence betweenhistories, calledrelative
entropy of decoherence.
This chapter is organized as follows. In§ 5.1 I will derive the interpretation of the
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decoherence matrix as a density matrix. In§ 5.2 I will review classical dynamical en-
tropy. In§ 5.3 I will discuss the quantum dynamical entropy. In§ 5.3.1 I will introduce
ALF entropy in a way that immediately show its connection with decoherent histories.
Since ALF entropy is defined for infinite-dimensional systems, in§ 5.3.2 I will briefly
discuss how it can be extended to finite-dimensional ones. Finally, in § 5.3.3 I will
introduce the relative entropy of decoherence.
To the best of my knowledge, the content of this chapter represents an original contri-
bution, as neither the connection between decoherent histories and dynamical entropy
nor the interpretation of the decoherence matrix as a density matrix over a set of regis-
ters have been presented in previous literature.

5.1 The decoherence matrix as a density matrix

In this section, we will prove that the decoherence matrix can be interpreted as the
density matrix of an ensemble of registers that subsequently interact with the system,
effectively performing the measurements that define the setof histories under atten-
tion. This feature will be crucial for our interpretation ofthe dynamical entropy in the
following section.
Consider a projective measurementPj , j = 1 . . . , n at timet on a system with Hilbert
spaceHS . Assume that there is a register with Hilbert spaceHR, dimHR = n. If
Pj =

∑

aj
|aj〉S〈αj |, the measurement can be realized by a unitary operatorW acting

jointly on the system and register as follows

W |aj〉S〈aj | ⊗ |0〉R〈0| = |aj〉S〈aj | ⊗ |j〉R〈j| (5.1)

The operatorW leaves the state ofS invariant and shiftsR according toj. We assume
thatW has a durationτ and that the register does not change with time (its internal
dynamics is given byUR = I).
If the initial system-register state is|ψ0〉S ⊗ |0〉R, and assuming thatW acts on a
timescale much smaller than the system’s evolution timescales, the jointSR evolution
up to timetf > t can be approximated by

|Ψ(tf )〉SR ≃ (U(tf − t+ τ/2)⊗ I)W (U(t− t0 − τ/2)⊗ I)|ψ0〉S ⊗ |0〉R (5.2)

If W acts quasi-instantaneously, within a timeτ → 0, the approximation becomes
exact,

|Ψ(tf )〉SR = (U(tf − t)⊗ I)W (U(t− t0)⊗ I)|ψ0〉 ⊗ |0〉 (5.3)

If U(t− t0)|ψ0〉 =
∑

j

∑

aj
caj

|aj〉, we find

|Ψ(tf )〉SR =
∑

j

∑

aj

caj
(U(tf−t)⊗I)|aj〉⊗|j〉 =

∑

j

U(tf−t)PjU(t−t0)|ψ0〉⊗|j〉

By using the Heisenberg representation,Pj(t) = U †(t− t0)PjU(t− t0)

|Ψ(tf )〉SR = U(tf − t0)
∑

j

Pj(t)|ψ0〉S ⊗ |j〉R
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A sequence ofN measurementsP ℓ
jℓ

at timestℓ, ℓ = 1, . . . , N can be realized by
interaction withN registersR1, . . . , RN with Hilbert space spacesHRℓ

, dimHRℓ
=

nℓ, ℓ = 1, . . . , N . If P ℓ
jℓ

=
∑

αℓ
jℓ

|αℓ
jℓ
〉〈αℓ

jℓ
|, the interaction at timetℓ is given by

unitary operatorW ℓ acting jointly on the system and registerℓ as follows

W ℓ|αℓ
jℓ〉S〈αℓ

jℓ | ⊗ |k〉Rℓ
〈k| = |αℓ

jℓ〉S〈αℓ
jℓ | ⊗ |(jℓ + k)modnℓ〉Rℓ

〈(jℓ + k)modnℓ|

For all Rℓ, we assume thatW ℓ acts on a vanishing timescaleτ → 0 and that the
registers are static, i.e., their internal dynamics isURℓ

= I. If the initial system-
registers state is|ψ0〉S ⊗ |0〉R1 ⊗ . . . |0〉RN

, the joint evolution up to timetf > tN can
be easily computed as:

|Ψ(tf )〉SR1...RN
=
∑

j1...jN

U(tf − tN )PN
jNU(tN − tN−1)P

N−1
jN−1

. . . P 1
j1U(t1 − t0)×

×|ψ0〉 ⊗ |j1〉R1 ⊗ · · · ⊗ |jN 〉RN
(5.4)

By using the Heisenberg representation, the history operatorsCj = PjN (tN ) . . . Pj1 (t1)
and the path-projected vectors|ψj〉 = U(tf − t0)Cj|ψ0〉 (see§ 4.2.3), we can write

|Ψ(tf )〉SR1...RN
= U(tf − t0)

∑

j

Cj|ψ0〉S ⊗ |j〉R1...RN
=

=
∑

j

|ψj〉S ⊗ |j〉R1...RN

Taking the trace over the registers, we obtain

̺S =
∑

j

|ψj〉S〈ψj| =
∑

j

pj

( 1
√
pj
|ψj〉S〈ψj|

1
√
pj

)

(5.5)

which is a weighted sum of all post-measurement states corresponding to successive
outcomesj. If instead we take the trace over the system, the registers are left in the
state

̺R1...RN
=
∑

jk

TrS [Cj|ψ0〉〈ψ0|C†
j ] |j〉〈k|R1...RN

=
∑

jk

Djk|j〉〈k|R1...RN
(5.6)

whereDjk is the decoherence matrix defined in Eq. (4.9). If the initialsystem state is
mixed (̺ 0), by repeating essentially the same calculations we immediately arrive at a
formula analogous to (5.4),

̺SR1...RN
=
∑

jk

U(tf − t0)Cj̺0C
†
kU

†(tf − t0)⊗ |j〉〈k|R1...RN

Taking the trace over the registers, we obtain

̺S =
∑

j

̺j =
∑

j

pj

( 1

pj
̺j

)

(5.7)
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which is a weighted sum of all post-measurement states corresponding to successive
outcomesj. If we take the trace over the system, the registers are left in the state

̺R1...RN
=
∑

jk

TrS [Cj̺0C
†
j ] |j〉〈k|R1...RN

=
∑

jk

Djk|j〉〈k|R1...RN
(5.8)

Therefore,we can identify the decoherence matrix with the density matrix ofN register
that, interacting subsequently with the system at timest1 . . . tN effectively produce on
the latter the projective measurementsP 1

j1
. . . PN

jN
.

The same picture emerges also in the case of generalized histories with unsharp
events. Indeed, an unsharp measurement (POVM) given by operatorsEj = A†

jAj can
be realized by a unitary dilationW over an extended space comprising the system and
a registerR with dimR = n ≤ d2, initialized in some reference state|0〉R [227]:

∑

j

A†
j̺Aj = TrR[W̺⊗ |0〉R〈0|W †]

whereAj = R〈j|W |0〉R. We have indeed:

W̺⊗ |0〉R〈0|W † =
∑

jk

|j〉R〈j|W̺|0〉R〈0|W †|k〉R〈k| = (5.9)

=
∑

jk

(

R〈j|W |0〉R
)

̺
(

R〈0|W †|k〉R
)

⊗ |j〉R〈k| =
∑

jk

Aj̺A†
k ⊗ |j〉R〈k|

and upon tracingR we obtain
∑

j Aj̺A†
j .

Let us consider an unsharp measurement at timet. We assume, in the same way as
above, thatW has a quasi-instantaneous durationτ → 0 and that the register is static
(its internal dynamics is given byUR = I). If the initial system-register state is|ψ0〉 ⊗
|0〉, the joint evolution up to timetf > t is

|Ψ(tf )〉SR =(U(tf − t)⊗ I)W (U(t − t0)⊗ I)|ψ0〉S ⊗ |0〉R =

=
∑

j

U(tf − t)AjU(t− t0)|ψ0〉 ⊗ |j〉

A sequence ofN unsharp measurementsEℓ
jℓ

at timestℓ, ℓ = 1, . . . , N can be realized
by interaction withN registersR1, . . . , RN with Hilbert spacesHRℓ

, dimHRℓ
= nℓ,

ℓ = 1, . . . , N . The interaction at timetℓ is given by unitary operatorW ℓ acting jointly
on the system and registerℓ as

∑

jℓ

A†
jℓ
̺Ajℓ = TrRℓ

[W ℓ̺⊗ |0〉R〈0|W ℓ†]

whereAjℓ = Rℓ
〈jℓ|W ℓ|0〉Rℓ

. For allRℓ, we assume thatW ℓ has a vanishing duration
τ and that the register does not change with time. If the initial system-registers state is
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|ψ0〉 ⊗ |0〉R1 ⊗ . . . |0〉RN
, the joint evolution up to timetf > tN can be computed in

the same ways as Eq. (5.4), getting:

|Ψ(tf )〉SR1...RN
=
∑

j1...jN

U(tf − tN )AN
jNU(tN − tN−1)AN−1

jN−1
. . .A1

j1U(t1 − t0)×

×|ψ0〉 ⊗ |j1〉R1 ⊗ · · · ⊗ |jN 〉RN
(5.10)

By using the Heisenberg representation, the history operatorsCj = AjN (tN ) . . .Aj1 (t1)
and the path-projected vectors|ψj〉 = U(tf − t0)Cj|ψ0〉 we can write

|Ψ(tf )〉SR1...RN
= U(tf − t0)

∑

j

Cj|ψ0〉S ⊗ |j〉R1...RN
=
∑

j

|ψj〉S ⊗ |j〉R1...RN

Taking the trace over the system, the registers are left in the state

̺R1...RN
=
∑

jk

TrS [Cj|ψ0〉〈ψ0|C†
j ] |j〉〈k|R1...RN

=
∑

jk

Djk|j〉〈k|R1...RN
(5.11)

whereDjk is the decoherence matrix for generalized measurements defined in Eq.
(4.15). If the initial system state is mixed (̺0) we obtain

̺R1...RN
=
∑

jk

TrS [Cj̺0C
†
j ] |j〉〈k|R1...RN

=
∑

jk

Djk|j〉〈k|R1...RN
(5.12)

Therefore, we can identify the decoherence matrix with the density matrix ofN regis-
ters that, interacting subsequently with the system at timest1 . . . tN effectively produce
on the latter the unsharp measurementsE1

j1 . . . E
N
jN .

5.2 Classical dynamical entropy

The concept of dynamical entropy made its appearance in attempts to discriminate
between regular and chaotic classical dynamics. Classicalchaos is often defined in
terms of sensitive dependence to initial conditions. Consider two initially neighboring
points in phase space,x(0) andx′(0) such that∆x(0) = |x − x′| = ǫ ≪ 1. Af-
ter timet, their distance usually diverges exponentially as∆x(t) = eλt∆x(0). This
happens because the chaotic evolution “stretches” phase space along some directions
as eλ+t, λ+ > 0 and “squeezes” it along other directions aseλ−t, λ− < 0 so that
distances in the “stretched” directions are exponentiallyamplified. Theλ’s are called
Lyapunov exponents. This behavior is possible only if the classical equations of motion
are nonlinear, since a linear evolution corresponds to vanishing Lyapunov exponents.
The essential consequence of sensitivity to initial conditions is a significant loss in pre-
dictability, i.e., the possibility of using current information about a system to predict
its future evolution. Measurements of a chaotic system, however precise they may be,
can never dispel uncertainty about its future state. This intuition can be classically for-
malized by means of a concept introduced by Kolmogorov and his school: dynamical



CHAPTER 5. DECOHERENT HISTORIES AND DYNAMICAL ENTROPY 93

entropy.

Dynamical entropy measures how much information we gain when we repeatedly
measure the system in time. Given a partitionΩ of phase spaceΦS into cells,ΦS =
∑

j Ωj , we can assess the information gained in a single measurement of j via the
Shannon entropy

h(Ω) = −
∑

j

p(Ωj) log p(Ωj)

The weightspj are obtained aspj =
∫

Ωj
dµ whereµ is a suitable integration measure

on the phase space (if we take the uniform measure thenpj is simply the phase-space
volume of cellΩj).
A time evolution mapT t maps each cellΩj into T t(Ωj) at time t, and conversely
T −tΩj into Ωj . Consequently, if we measure the system in cellj at timet and in cell
k at time2t we can infer that the system was in

Ω
(2)
jk ≡ Ωj ∩ T −tΩk

at time t. Thus the pair of measurements defines a refined phase space partition
Ω(2). Extending toN measurements at times1, . . . , N we define the increasingly
fine grained partition

Ω
(N)
j1...jN

≡ Ωj1 ∩ T −tΩj2 . . . T −NtΩjN

In general, to measure the information of a sequence of measurements we can consider
the Shannon entropy of the fine-grained partition,

hN (Ω) ≡ h(Ω(N)) = −
∑

j1...jN

p(Ω
(N)
j1...jN

) log
(

p(Ω
(N)
j1...jN

)
)

(5.13)

This represents the amount of information gained in theN measurements. In general,
of course,hN (Ω) < N h(Ω). Because of correlations, usually new measurements
bring about less information then the preceding ones. This can be well understood in
terms of conditional entropy:

h(Ω(N)) = h(Ω(N−1)) + h(ΩjN |Ω(N−1))

where the conditional entropy can be expressed as

h(ΩjN |Ω(N−1)) =
∑

j1...jN−1

p(Ωj1...jN−1)
∑

jN

h(ΩjN |Ω(N−1)
j1...jN−1

) =

= −
∑

j1...jN−1

p(Ωj1...jN−1)
∑

jN

p(ΩjN |Ω(N−1)
j1...jN−1

) log
(

p(ΩjN |Ω(N−1)
j1...jN−1

)
)

In the (extreme) case where the firstN − 1 measurementsj1, . . . jN−1 are sufficient to
predict with certaintyjN , then

h(ΩjN |Ω(N−1)
j1...jN−1

) = 0
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and hence
h(ΩjN |Ω(N−1)) = 0 ⇒ h(Ω(N)) = h(Ω(N−1))

This means that then no further information is gained in the measurementjN . The
Kolmogorov-Sinai entropy is defined as the max (over partitions) of the (asymptotic)
information gain rate:

hKS = lim
N→∞

max
Ω

1

N
hN (Ω) (5.14)

This is equivalent to the maximum of the asymptotic information gain per step

hKS = lim
N→∞

max
Ω

(hN (Ω)− hN−1(Ω)) = lim
N→∞

max
Ω

(h(ΩjN |Ω(N−1)) (5.15)

For integrable systems, the more measurements we make (the morej’s we collect) the
more effectively we can predict the future, i.e., laterj’s. Thereforeh(ΩjN |Ω(N−1))
rapidly decreases withN and eventuallyhKS vanishes when the limitN → ∞ is
taken. Instead, a chaotic system has a positivehKS , implying that we can never col-
lect enough information to definitively constrain the future evolution of the system.
According to the theorems of Ruelle and Pesin we have

hKS =
∑

k

λ+,k (5.16)

where the sum is over all positive Lyapunov exponents of the system. Thus KS entropy
is intimately connected with classical chaos.

5.3 Quantum dynamical entropy

A quest for quantum generalizations of the KS entropy has ledto several nonequiva-
lent proposals [188, 191, 189], among wich the most important are the Connes-Thirring
(CNT) [188] and Alicki-Fannes (ALF) [191] dynamical entropies. Both were devel-
oped as non-commutative extensions of the KS-entropy. The latter is based on the idea
that repeated measurements at different times can provide information about the sys-
tem. Its noncommutative extensions differ in that ALF explicitly takes into account
measurements (and the corresponding disturbances), whileCNT does not. By virtue
of semiclassical approximations with generalized coherent states, it has been rigor-
ously shown that both ALF and CNT entropies tend to the KS entropy in the classical
limit [192, 187].

5.3.1 ALF entropy and decoherent histories

In the following I will focus on ALF entropy, since it is the proper conceptual device
needed to discuss issues related to predictability and chaos. I will derive the ALF en-
tropy following a route that slightly differs from the one taken in original papers. I will
stress physical aspects like measurements and informationrather than strictly mathe-
matical concerns that were a central motivation for the ALF entropy proposal (for the
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same reason, we prefer not to frame our discussion into the originalC∗-algebraic lan-
guage, but in Hilbert space language).
The construction of ALF entropy can be regarded as a paraphrase of the KS entropy
construction into the quantum language, where measurements and phase space par-
titions are to be replaced by POVMs and identity decompositions. A generic mea-
surement process can be described by a POVM defined by operators Ej = A†

jAj .
Since

∑n
j=1 Ej = I, any POVM defines a partition of unity, which is the quantum

analogue of a phase space partition. Similar to the commutative case, given an initial
partitionE, the dynamics (that is assumed to be a unitaryU(t)) naturally leads to a
sequence of refined partitions. Upon adopting the Heisenberg representation, we can
defineAj(t) = U †(t− t0)AjU(t− t0). If we consider the evolution of the partition at

timest, . . . , Nt, a sequence of refined partitionsE(N)
j is thus obtained:

E
(N)
j = C

(N)†
j C

(N)
j , C

(N)
j = AjN (Nt) . . .Aj1(t) (5.17)

Given a density matrix̺ and a partitionE(N)
j , the probability of each partition element

is given as:

pj = Tr[̺Ej] = Tr[C(N)
j ̺C

(N)†

j ] (5.18)

As we immediately notice, the definition ofCj in Eq. (5.17) and the partition proba-
bility pj in Eq. (5.18) are the same as in Eq. (4.14) defining histories and their prob-
abilities for unsharp measurements. This is not surprisingsince refined partitions are
in fact defined through a set of historiesΣ where we take the same projections at each
times and equal time intervals between projections.
As we know, thepj’s are not true probabilities (they do not obey the sum rule) unless
Σ obeys the consistency condition. Correspondingly, a definition of dynamical entropy
as

h
(c)
N (E) = −

∑

j

pj log pj (5.19)

is meaningful only if histories decohere. In this case, as westress with the apex(c), h(c)

represents the amount ofclassicalinformation generated by the decoherent dynamics
of the system. If histories do not decohere, then coherent correlations between different
histories have to be taken into account. Correspondingly, we can define a dynamical
entropy as the von Neumann entropy of the decoherence matrix,

hN (E) = −Tr[D(N) logD(N)] (5.20)

whereDjk = Tr[C(N)
j ̺C

(N)†

k ]. In § 5.1 we proved that the decoherence matrix can be
interpreted as the density matrix of an ensemble of registers that subsequently interact
with the system. This allows to give a different interpretation tohN (E). SincehN(E)
is the von Neumann entropy of the state of the registers,it represents the amount of
quantum information stored therein. Therefore, we can look athN as the the amount
of quantum informationproduced by the dynamics.
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Mirroring the KS construction, a dynamical entropy is defined as the max (over POVMs)
of the (asymptotic) information production rate:

hALF = lim
N→∞

max
E

1

N
hN (E) (5.21)

This is exactly the ALF-entropy defined in [192], even if the original derivation was
never referring to the decoherent histories formalism.By casting ALF entropy in the
decoherent histories language, we can endow it with a physical interpretation as the
(maximal) amount of quantum information produced by the dynamics per time step.

5.3.2 Finite systems

From definition (5.21), ALF entropy can be nonzero only for infinite-dimensional sys-
tems. This follows from the general bound [191, 192]

hN ≤ log d+ log(rank(̺)) (5.22)

that can be simply derived from the discussion in§ 5.1. If the initial state is not pure,
let us purify the initial̺ by adding an externalrank(̺)-dimensional ancillaA, ̺ =
TrA[|ψ0〉SA〈ψ0|]. Then after the interaction with theN registers, the pure system +
ancilla + registers state is

∑

jk

|ψj〉SA〈ψk| ⊗ |j〉R1...RN
〈k|

whereU †(tf − t0)|ψj〉SA = Cj|ψ〉SA andCj̺C
†
k = TrA[|ψj〉SA〈ψk|SA]. The von

Neumann entropy of the registers must be equal to the entropyof the system + ancilla
state. Since the system - ancilla state has dimensiond + rank(̺), the entropy of the
registers latter is bounded bylog d+ log(rank(̺)). But the entropy of the registers is
exactlyhN . QED. If the initial state is pure, thenhN ≤ log d.

From the bound 5.22 we conclude that

lim
N→∞

max
E

1

N
hN (E) ≤ lim

N→∞
2 log d

N
= 0 (5.23)

When considering finite-dimensional systems, one can observe a growth ofhN up to a
finiteNsat, after which a saturation effect must happen. In this case, anon-vanishing
dynamical entropy reflects into alinear growthof hN up to theNsat. A dynamical
entropy for a finite-dimensional system of dimensiond can be defined as

hdALF =
hNsat(d)

Nsat(d)
(5.24)

which correspond to the slope of the initial growth ofhN . The saturation timeNsat(d)
is d-dependent withNsat(d) → ∞ asd→ ∞. In particular, if the entropy is evaluated
for coarse-grained partitions with∆-dimensional projectors, then the maximum possi-
ble entropyhN is given byN log f wheref = d/∆. Thus, we can expect maximal
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entropy production up to timeNsat <
log d
log f , after which a saturation effect must hap-

pen.
Often, one consider quantum systems that are quantizationsof classical systems de-
fined on a compact phase space. In this case, the quantized system has a finite dimen-
siond that plays the role of a Planck constant,~ = 1/d. The classical limit corresponds
to takingd → ∞. To address the classical limit of the dynamical entropy, one needs
to evaluatehdALF for eachd and then taked → ∞. This is equivalent to firstd → ∞,
and thenN → ∞ (the limits do not commute).
The saturation effect of dynamical entropy is known aslogarithmic breaking timein
the literature on quantum chaotic systems. Such systems canfollow semiclassical tra-
jectories up to the timescale log d

λ+ log d/∆ . This can be intuitively explained as follows.
After N steps on the dynamics an initial uncertainty∆x = ∆/d in the direction that
is exponentially according toλ− = −λ+ is reduced as(∆/d)−Nλ+ . At the loga-
rithmic breaking time, this quantity reaches the value1/d, that minimal phase-space
coarse-graining due to the finite dimension. After this time-quantum effects become
dominant.

5.3.3 The relative entropy of decoherence

The two quantitieshN (E) andh(c)N (E) defined in§ 5.3.1 differ the wider, the more
the set of histories is coherent. In fact, we have:

CN ≡ h
(c)
N − hN = S(D(N)||D̃(N)) ≥ 0 (5.25)

whereS(A||B) is the quantum relative entropy, and we have defined a matrixD̃(N)
jk =

δjkD(N)
jk where the off-diagonal entries are set to zero. To prove (5.25), notice that

Tr[D(N) log D̃(N)] =
∑

jD
(N)
j,j logD

(N)
j,j = Tr[D̃(N) log D̃(N)], hence:

h
(c)
N − hN = −Tr[D̃(N) log D̃(N)] +D(N) logD(N) =

= −Tr[D̃(N)(log D̃(N) − logD(N))] = S(D(N)||D̃(N))

Sinceh(c)N neglects coherences between different histories, it givesa higher estimate of
information production thanhN . The two quantities coincide in the case of medium
decoherence. In this case, the state of the registers is classical (there are no quantum
correlations between the registers) and they effectively store classical information.
The quantityCN define is suited to be used as a general measure of coherence within
a set of histories. We will call itrelative entropy of decoherence. Recently, Baumgratz
et al. [132] have introduced a similar quantity to assess the amount of coherence of a
density matrix in a given basis and emphasized that it has theproperties of abona fide
measure of coherence.



Chapter 6

Randomness, decoherence, and
dynamical entropy

6.1 Introduction

In classical physics, the major source of unpredictabilityis chaos. If the dynamics is
chaotic, data collected on the system in time are never sufficient to predict its future
behavior because any finite uncertainty is exponentially amplified. A good measure
of the ensuing unpredictability is given by the Kolmogorov-Sinai entropy, that mea-
sures the amount of information “produced” by the dynamics per unit of time, i.e., the
amount of information that cannot be predicted on the basis of previous data on the
system. Chaotic systems keep producing information indefinitely as the dynamics un-
folds, whereas integrable ones do so only for a short transient.
In the quantum domain, it is less trivial to identify sourcesof unpredictability. Due to
the intrinsic linearity of the theory, sensitive dependence to initial conditions in Hilbert
space is strictly forbidden, and Lyapunov exponents cannotbe defined. What are com-
monly referred to as “quantum chaotic systems” in the literature are just quantum sys-
tems whose classical limit is chaotic. Such systems are characterized by some relevant
properties, as their Hamiltonians exhibit some universal features of the random matrix
ensembles (level spacing distribution, spectral rigidity, two-point correlations [186]),
but it is not immediately clear how these properties reflect into unpredictability and
dynamical entropy production. Conversely, quantum mechanics allows for sources of
unpredictability that have no classical analogue, as they essentially stem from noncom-
mutativity. Since almost all observables do not commute with the dynamics, measure-
ment outcomes are generally probabilistic and create an effective source of randomness
that impairs predictability reflecting into a positive value of dynamical entropy. This
feature is apparent in Ref. [192], where Alickiet al. show that ALF entropy (5.21) can
achieve a maximum for random POVMs (random partitions) independent of the uni-
tary evolution between measurements and the degree of “chaoticity” the evolution has
in the classical limit. The distinction between systems that are chaotic or integrable in
the classical limit can be retrieved only by bringing to the surface the classical phase-
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space structure underlying the quantum model. Upon restricting to measurements and
initial states with a well defined phase-space limit, ALF entropy necessarily tends to
the classical KS entropy [187] and hence gleaming differences between the “chaotic”
and the “integrable” case appear, as shown, for instance, inRef. [190].
In this chapter we consider dynamical entropy production for closed quantum systems
within the framework of decoherent histories (where ALF entropy can be naturally for-
mulated as we discussed in§ 5.3), and address its behavior in presence of two sources
of randomness:

• (R1) randomness in the dynamics

• (R2) randomness in the measurements

Our choice of formalism allows us to address for the first timean aspect that was so
far neglected, or given only marginal attention in relationto quantum dynamical en-
tropy: history decoherence and the role of coarse-graining. Some previous numerical
works [190] have considered coarse-grained partitions, but they did not explicitly ex-
amine the role of coarse-graining. In Ref. [193], a set of coarse-grained histories for a
quantum chaotic system (the quantum baker’s map) was studied, and it was shown that
it decoheres. However, the generality of this result was notdiscussed.
The relevance of history decoherence in relation to entropyproduction is that it allows
to see quantum dynamical entropy as a measure of predictability. From the point of
view of an observer who wishes to make classical predictions, the relevant sets of his-
tories are only the decoherent ones, that yield alternativedescriptions of the system in
time with well-defined probabilities. For such sets of histories we have, in the notation
introduced in§ 5.3.1,hN(E) ≃ h

(c)
N (E), i.e., the system effectively produces classical

information at a rate given byhN (E)/N . In order to achieve decoherence, a (large)
degree of coarse-graining is in general necessary, as the literature on decoherent histo-
ries has extensively shown.
The general picture that we aim to draw is that ford→ ∞ both (R1) and (R2) can lead
to the same results: Sufficiently coarse-grained historiesdecohere and yield maximal
dynamical entropy production compatible with the coarse-graining size. This picture
is supported by a general argument. Unfortunately, the latter is not conclusive, as it is
based on an unproven statistical hypothesis, and hence it mandates a search for a more
rigorous proof. By using random matrix techniques, we will be able to fully justify the
results in the case of dynamical randomness (R1). We still lack a proof for case (R2).
Our general picture will be illustrated upon studying decoherent histories and quantum
dynamical entropy in the quantum standard map (QSM) [195, 196, 197, 198, 199, 200],
a paradigmatic toy model to study quantum chaos, that has an integrable/chaotic tran-
sition. Our numerical data strongly support our general theoretical understanding.
This chapter is organized as follows. First, in§ 6.2 we address decoherent histories
in presence of randomness of type (R1) and (R2). We provide a heuristic argument
showing that sufficiently coarse-grained histories decohere and lead to non-vanishing
entropy production. The consequences of this result in chaotic vs. integrable systems
are briefly discussed. Then, in§ 6.3 we will present a rigorous argument, based on
random matrix techniques, that confirms the results of§ 6.2 for the case of (R1). For
the sake of conciseness, we only report the main results, postponing their derivation to
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§ 6.6. In § 6.4 we analyze DH and dynamical entropy in the quantum standard map
(QSM) that undergoes an integrable/chaotic transition. Westudy histories in the in-
tegrable and chaotic regime, considering different kinds of partitions, and show how
results conform to the analysis in§ 6.2,6.3. Finally,§ 6.5 summarizes the main conclu-
sions of this chapter.
To the best of my knowledge, the entire content of this chapter is original and has never
appeared in any previous publication.

6.2 Randomness and decoherence

In this section we show how randomness of type (R1) and type (R2) can cause
decoherence between sufficiently coarse-grained histories and lead to a non-vanishing
production of dynamical entropy. Our heuristic argument will be corroborated by the
rigorous random-matrix argument provided in§ 6.3 (which, however, only holds for
randomness of type (R1)), and justified by our numerical findings for the QSM.

The general setting we consider is the following. We consider

1. aclosedquantum system with dimensiond≫ 1.

2. pure initial states, ̺0 = |ψ0〉〈ψ0|.
3. a dynamics given by adiscrete-time unitary mapU .

4. a set of histories defined byfixed orthogonal projectorsPj for all times, and a
single iteration of the mapU between projections.

The decoherence matrix for such a set of histories can be written as

D(N)
jk = Tr[PjNU . . . Pj1U̺U

†Pk1 . . . U
†PkN

] (6.1)

Let us now precisely define the sources of randomness (R1) and(R2) mentioned in the
introduction.
In case (R1), randomness is provided by the dynamics (R1). WeextractU from the cir-
cular random matrix ensemble CUE, which corresponds to the unitary group equipped
with Haar measure. Such aU has well-defined spectral properties, represented by a
Wigner distribution of the level spacingP (s) ∝ se−s2 . Its eigenvectors also have
well-defined statistical properties [205]: they form a basis of Haar-distributed orthog-
onal vectors.
A second source of randomness (R2) may come from measurements, i.e., from the
projectors defining the history. We take random projections, meaning thatPin =
WP̃inW

† where theP̃in are fixed projectorsW is a unitary selected from CUE, i.e.,
from the unitary group with Haar measure. For the purpose of evaluating decoher-
ence matrix elements, the randomness in the measurement canbe reinterpreted as a
randomness on the dynamics. Indeed, introduce

Ũ =W †UW (6.2)
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If we write histories in terms of̃Pj andŨ , thenD(N)
jk reads:

D(N)
jk = Tr[P̃jN Ũ . . . P̃j1 Ũ ˜̺Ũ †P̃k1 . . . Ũ

†P̃kN
] (6.3)

where˜̺ = W †̺W . In (6.3), all the randomness has been transferred from the projec-
tors to the evolution operator. Thus the case (R2) looks verysimilar to the previous case
(R1), except for one relevant particular:Ũ has the same spectrum asU , that in general
does not conform to the predictions of random matrix theory sinceU is assumed to be
completely generic. Thus, the statistical properties ofŨ are not the same as those of a
matrix extracted from CUE. Nevertheless, due to the “randomization” afforded byW ,
the eigenvectors of̃U will have the same statistical properties of the eigenvectors of
anU taken from CUE, i.e., they will also form a basis of Haar-distributed, randomly
selected orthogonal vectors.

We aim to show thatin presence of randomness of type (R1) and (R2), coarse-grained
histories approximately decohere and lead to non-vanishing entropy production.
This is what emerges from our numerical results in§ 6.4, and it is also suggested by
results in Ref. [190]. At present, we cannot rigorously prove this fact, and we will only
present an admittedly heuristic argument that is based on a plausible, yet unproven sta-
tistical hypothesis.

Let us consider a pure initial state̺= |ψ0〉〈ψ0| and a pair of non-coincident histories
j ≡ j1, . . . , jN andk ≡ k1, . . . , kN . If we select an intermediate timetℓ, 1 < ℓ < N ,
the decoherence matrix elementD(N)

jk reads

D(N)
jk = Tr[P̄jN Ū . . . P̄jℓ Ū P̄jℓ−1

Ū . . . P̄j1 Ū |ψ̄0〉〈ψ̄0|× (6.4)

Ū †P̄k1 . . . Ū
†P̄kℓ−1

Ū †P̄kℓ
. . . P̄ †P̄kN

] (6.5)

whereP̄ = {P, P̃}, Ū = {U, Ũ}, |ψ̄0〉 = {|ψ0〉,W †|ψ0〉} for (R1) and (R2) respec-
tively. By introducing the notation

Cmn = P̄jm Ū . . . P̄jnŪ C′
mn = P̄km

Ū . . . P̄kn
Ū (6.6)

for anym,n ∈ 1, . . . , N , and the path-projected states|χ〉,|χ′〉
|χ〉 = C1ℓ−1|ψ̄0〉, |χ′〉 = C′

1ℓ−1|ψ̄0〉 (6.7)

we can express (6.4) as
D(N)

jk = Tr[CℓN |χ〉〈χ′|C′†
ℓN ] (6.8)

We chooseℓ such thatjℓ−1 6= kℓ−1, so|χ〉 and|χ′〉 are orthogonal vectors. There must
be at least one suchℓ since we are assumingj 6= k. Actually, for most pairs of histories
{j,k} we will havejℓ 6= kℓ, for all ℓ = 1, . . . , N (see Lemma 2 in§ 6.6.3).
The degree of coherence between historiesj andk can be assessed by thecoherence
ratio, i.e., the ratio between the off-diagonal and the diagonal elements of the decoher-
ence matrix

δ2 =
DjkD∗

jk

DjjDkk

=
〈χ′|C′†

ℓnCℓn|χ〉〈χ|C†
ℓnC

′
ℓn|χ′〉

〈χ|C†
ℓnCℓn|χ〉〈χ′|C′†

ℓnC
′
ℓn|χ′〉

(6.9)
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Recall that from (4.10) we have|Djk|2 ≤ DjjDkk, henceδ2 ≤ 1. History decoherence
is equivalent toδ2 ≪ 1.
For (R1) and (R2), the operator̄U in Eq. (6.4) is selected at random from a matrix
ensemble. In the case of (R1),Ū = U is selected at random from the circular ensemble
CUE. In the case of (R2),̄U is selected from a matrix ensemble obtained by the adjoint
action of matricesW from the CUE ensemble on a fixed unitary,Ū =W †UW .
The key assumption that will enable us to estimateδ2 for (R1) and (R2) is that the
statistical distribution of|χ〉 and |χ′〉 induced by the statistical distribution of̄U can
be approximated by the uniform distribution over the Hilbert space. Our statistical
hypothesis thus reads:

• (H0) For randomness of type (R1) or (R2), i.e, of the evolution operator between
projections is given by anU taken from CUE or aŨ = W †UW whereW
is taken from CUE, the path-projected vectors|χ〉 and |χ′〉 can be assumed to
be orthogonal vectors randomly selected according to the uniform measure in
Hilbert space.

The statistical hypothesis (H0) essentially amounts at assuming that for a “random dy-
namics” the path-projected vectors|χ〉, |χ′〉 are sufficiently randomized that they can
be approximated by random vectors selected according to theuniform measure in the
Hilbert spaceH (note that at between time-stepℓ− 1 andℓ,U takes the path-projected
vectorPjℓ−1U . . . UPj1 |ψ0〉 into an effectively random vector).

Assuming the validity of H0, we can find an estimate ofδ2 by averaging the numerator
and the denominator in (6.9) separately over|χ〉, |χ′〉, finding:

δ2 .
1

Tr(C†
ℓNCℓN )

=
1

d〈pjℓ...jN |χ〉H
(6.10)

where 〈pjℓ...jN |χ〉H is the conditional probability ofjℓ . . . jN , given that the path-
projected state at stepℓ is |χ〉, averaged over|χ〉 ∈ H.

Proof of (6.10). If (H0) holds,|χ〉 and|χ′〉 are random orthogonal vectors selected with
uniform measure in Hilbert space. Therefore we can write|χ〉 = V |0〉, |χ′〉 = V |1〉,
whereV is a unitary matrix selected fromU(d) according to the Haar measure (one
should add a normalization factor for|χ〉, |χ′〉, but we neglect those terms because they
drop from Eq. (6.9) ). The average over|χ〉, |χ′〉 ∈ H can be replaced by an average
overV ∈ U(d). For d ≫ 1, averages over the Haar measure can be computed by
means of formulas

〈Vl1m1V
∗
l2m2

〉U(d) =
1

d2
δl1l2δm1m2 (6.11)

〈Vl1m1V
∗
l2m2

Vl3m3V
∗
l4m4

〉U(d) =
1

d2
(δl1l2δm1m2δl3l4δm3m4 + δl1l4δm1m4δl2l3δm2m3)

where〈l|V |m〉 ≡ Vmn. These formulas stem from a “Wick calculus” for the unitary
group that be explained in detail in§ 6.3 (for details see Eq. (6.29) below). From
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(6.11), we get for any two operatorsO1, O2:
〈

〈1|V †O1V |0〉〈0|V †O2V |1〉
〉

U(d)
= 〈
∑

ijkl

V ∗
i1(O1)ijVj0V

∗
k0(O2)klVl1〉U(d) (6.12)

=
∑

ijkl

(O1)ij(O2)kl〈V ∗
i1V l1Vj0V

∗
k0〉U(d) =

1

d2

∑

ijkl

(O1)ij(O2)klδilδjk =

=
1

d2

∑

ij

(O1)ij(O2)ji =
1

d2
Tr[O1O2]

By repeating the same method, we find

〈

〈0|V †O1V |0〉〈1|V †O2V |1〉
〉

U(d)
=

1

d2
Tr[O1]Tr[O2] (6.13)

An estimate ofδ2 can be obtained by averaging the numerator and the denominator
separately overV :

δ2 ∼
〈

〈χ′|C′†
ℓnCℓn|χ〉〈χ|C†

ℓnC
′
ℓn|χ′〉

〉

H
〈

〈χ|C†
ℓnCℓn|χ〉〈χ′|C′†

ℓnC
′
ℓn|χ′〉

〉

H
= (6.14)

=

〈

〈1|V †C′†
ℓnCℓnV |0〉〈0|V †C†

ℓnC
′
ℓnV |1〉

〉

U(d)
〈

〈0|V †C†
ℓnCℓnV |0〉〈1|V †C′†

ℓnC
′
ℓnV |1〉

〉

U(d)

Upon performing the average of (6.14) overV with (6.12) and (6.13) we obtain:

δ2 ≈
Tr[C′†

ℓNCℓNC
†
ℓNC

′
ℓN ]

(Tr[C†
ℓNCℓN ]Tr[C′†

ℓNC
′
ℓN ])

Since||C†
ℓN ||∞ ≤ 1, for any vector|φ〉, we have||C†

ℓNC
′
ℓN |φ〉||2 ≤ ||C′

ℓN |φ〉||2,
therefore Tr[C′†

ℓNCℓNC
†
ℓNC

′
ℓN ] ≤ Tr[C′†

ℓNC
′
ℓN ]. Hence,

δ2 . 1/Tr(C†
ℓNCℓN )

Now, the quantity in the denominator in the r.h.s. is

Tr(C†
ℓNCℓN ) = d

〈

〈χ|C†
ℓNCℓN |χ〉

〉

H = d
〈

Tr[CℓN |χ〉〈χ|C†
ℓN ]
〉

H

where averages are over|χ〉 in H. The expression Tr[CℓN |χ〉〈χ|C†
ℓN ] can be seen as

the diagonal elementjℓ . . . jN of a decoherence matrix where the “initial state” at step
ℓ is |χ〉, and thus it represents the conditional probability ofjℓ . . . jN , given that the
path-projected state at stepℓ is |χ〉: pjℓ...jN |χ. Therefore, we can finally write

Tr(C†
ℓNCℓN ) =

1

d〈pjℓ...jN |χ〉H
QED.

The condition under which histories decohere is

d≫ 1/〈pjℓ...jN |χ〉H (6.15)
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A high degree of coarse-graining is sufficient to ensure thatthis condition holds. In-
deed let∆ = d/f be the rank of thePjℓ , i.e, the coarse-graining dimension. Assuming
that the probabilities〈pjℓ...jN |χ〉 are all of the same order of magnitude for all choices
of jℓ, . . . , jN , then〈pjℓ...jN |χ〉 should be of the order off−|N−ℓ|. Approximate de-
coherence occurs ford ≫ f |N−ℓ| which can be achieved for sufficiently smallf , i.e.,
sufficiently gross coarse-graining.
If all 〈pjℓ...jN 〉 are approximately equal (which is likely for very high coarse-graining),
then classical information is produced at a rate given by the(un-maximized) dynamical
entropy

hN (P )

N
=
h
(c)
N (P )

N
= log f (6.16)

For d < ∞, finite-size effects become eventually dominant, as discussed at length in
§ 5.3.2. Indeed the boundhN ≤ log d holds [191, 192]. For coarse-grained histories,
the maximum entropyhN is N log f and thus entropy production must saturate after
Nsat ∼ log d

log f .
Thus, under the assumption that (H0) is valid, we have shown that both (R1) and (R2)
can lead to history decoherence and non-vanishing entropy production.

Comment: chaotic and integrable systems.Let us now briefly discuss what the pic-
ture obtained in the previous paragraph entails for the behavior of decoherent histories
and dynamical entropy for quantum chaotic and integrable systems respectively.
Let us first address chaotic systems. Discrete-time quantumchaotic maps are repre-
sented by unitaryFloquet operatorsthat exhibit some universal features of the unitary
random matrix ensembles [186]). Therefore a chaotic Floquet operatorU can be usu-
ally approximated by a typical element of the circular ensembles (CUE, COE or CSE).
Depending on the type of ensemble,U will have different spectral properties, repre-
sented by different Wigner distributions of the level spacing P (s) ∝ sαe−s2 where
α = 1, 2, 4 for CUE, COE and CSE respectively. Also the eigenvectors will present
different statistics [205]. Our argument was derived underthe hypothesis thatU can
be taken from CUE, but its generality suggests that if it holds for CUE it may also
hold for COE and CSE (essentially, we only require that the dynamics sufficiently ran-
domizes path-projected vectors). If this is true, we conclude that chaotic maps lead to
decoherence between coarse-grained histories, and production of classical entropy at a
non-vanishing rate.
As for integrable systems, classically their entropy production vanishes because the
high degree of symmetry severely constrains the evolution of the system – the latter can
only describe a linear motion onto the phase space surface identified by the constants
of motion. Quantum mechanically, the constants of the motion imply that the evolu-
tion operatorU is block diagonal, each block being identified with a set of conserved
quantum numbers (if the constants of the motion form a complete set of observables,
then they suffice to fully diagonalizeU ). The dynamics creates no coherence between
Hilbert space sectors corresponding to different quantum numbers. Consequently, if we
take measurements with projectionsP̃j that commute with the constants of the motion,
we expect no entropy production in the quantum case as well. However, let us consider
a random measurement, that can be written asPin =W P̃inW

† whereW is a random
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unitary. The entropy production associated toP andU is equivalent to that associated
to P̃ andŨ =W †UW . The latter is a “randomized” dynamics that coherently couples
all Hilbert space sectors corresponding to different values of the quantum numbers. In
other words, a generic measurement clamorously breaks the symmetry of the system.
Consequently, even an integrable system can keep producing(classical) information at
a rate given by the (nonzero) dynamical entropy.

6.3 Decoherence and dynamical entropy for a random
chaotic dynamics

For a discrete time dynamics given by a random Floquet operator U we can do
much more than simply providing an estimate of the coherenceratioδ2. We are able to
derive estimates of the decoherence matrix elements, and achieve much more precise
and detailed results. By using Weingarten calculus [201], we can take averages of arbi-
trary products of matrix elements of the evolution operatorU over the suitable circular
ensemble (CUE, COE or CSE). Therefore, we can take averages in the decoherence
matrix elements and obtain estimates of the diagonal and off-diagonal entries in the
limit d≫ 1.
In the following, we shall restrict for simplicity to aU belonging to the CUE ensemble,
wich coincides with the Haar measure over the unitary group.This is of relevance for
the model studied in§ 6.4. Indeed, the evolution operator of the QSM in the strongly
chaotic regime can be assumed to be a typical element of the CUE ensemble [186].
The calculations of this section only hold for randomness oftype (R1), because we
assume thatU is taken from the CUE ensemble and it has both the spectrum andthe
eigenvectors of a random matrix from CUE. As we already discussed, this is not true
of Ũ in Eq. (6.2) that defines (R2), as̃U only has a random eigenbasis. Therefore,
generalizing the results presented in this section to the case of random measurements
would require different techniques than those used here.

In order not to divert the reader’s attention from the main line of discussion, here we
will only report results. Their derivation is postponed to§ 6.6.
We first consider fine-grained histories, i.e., the projectors are one-dimensional. As-
suming for simplicity that that the initial state is a pure state |j0〉 belonging to the
“measurement basis” defined by the projectors, the fine-grained decoherence matrix
element can be expressed as:

Djk =δjNkN
UjN jN−1 . . . Uj2j1Uj1j0U

∗
k1j0U

∗
k2k1

. . . U∗
kNkN−1

(6.17)

where matrix elements〈l|U |m〉 are taken in the same basis of the projectors.Djk can
be averaged overU by using Weingarten’s formula [202] (for more details, see§ 6.6),
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that allows to compute the average of products of arbitrary matrix elements ofU :

〈Ul1m1 . . . UlNmN
U∗
l′1m

′
1
U∗
l′
N
m′

N
〉U(d) = (6.18)

∑

σ,τ

δl
1
l′
σ(1)

. . . δl
N
l′
σ(N)

δm
1
m′

τ(1)
. . . δm

N
m′

τ(N)
Wg(d, στ−1)

whereWg is the so-called Weingarten function [202]. Note that the matrix elements
in (6.18) are completely general, i.e. the indicesl1 . . . lN andm1 . . .mN are totally
arbitrary. Instead, matrix elements in (6.17) have many indices in common, and a few
passages are required to apply the general formula (6.18) to(6.17) (for details, see
§ 6.6).

Fine-grained decoherence matrix elements.For the fine-grained elements of the
decoherence matrix, we obtain:

〈Djj〉U(d) =
NP(j)
dN

+O
( 1

dN+1

)

, (6.19)

〈DjjD∗
jj〉U(d) − 〈Djj〉2U(d) =

N ′
P(j)
dN

+O
( 1

d2N+1

)

,

〈Djk〉U(d) = δjNkN

(FP(j,k)
dN

+ ΓP(j,k)O
( 1

dN+1

)

)

〈DjkD∗
jk〉U(d) = δjNkN

F ′
P(j,k)
d2N

(1 +O(
1

d
))

whereNP ,N ′
P ,FP ,F ′

P ,ΓP aresymmetry factors. The derivation of Eq. (6.20) is
presented in§ 6.6.1. While the evaluation of symmetry factors is in principle hard, in
§ 6.6.3 we prove two statistical lemmas showing that for the overwhelming majority of
pairs{j,k} we simply have

NP = 1, N ′
P = 2N − 1, FP = 0, F ′

P = 1, ΓP = 0

By “overwhelming majority” we mean all pairsj,k except a fraction that vanishes in
the limit N/d → 0. The proofs in§ 6.6.3 are based on statistical arguments inspired
by statistical mechanics and graph theory.
Therefore, for almost all cases Eqs. (6.19) simply reduce to:

〈Djj〉U(d) =
1

dN
(1 +O(

1

d
)), (6.20)

〈DjjD∗
jj〉U(d) − 〈Djj〉2U(d) =

2N − 1

d2N
+O(

1

d2N+1
),

〈Djk〉U(d) = 0

〈DjkD∗
jk〉U(d) = δjNkN

1

d2N
(1 +O(

1

d
))

Coarse-grained decoherence matrix elements. Upon evaluating the fine-grained deco-
herence matrix elements, we can look at a general coarse-graining where we sum over
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∆ fine-grained projectors for each time. Then any coarse-grained decoherence matrix
elementDJK is obtained by summing over∆2N histories,

DJK =
∑

j∈J

∑

k∈K

Djk. (6.21)

IndicesJ = J1 . . . JN ,K = K1 . . .KN indentify a∆N ×∆N submatrix of the fine-
grained decoherence matrix. In§ 6.6.2 we evaluate the mean and the variance of both
diagonal elementsDJJ and off-diagonal onesDJK. For almost allJ,K, up to correc-
tions of orderO( 1d ) we get:

〈DJJ〉U(d) = f−N , 〈DJJD∗
JJ〉U(d) − 〈DJJ〉2U(d) =

1

∆
f−2N (6.22)

〈DJK〉U(d) = 0 , 〈DJKD∗
JK〉U(d) = δJNKN

1

∆
f−2N

wheref = d/∆.

Decoherence and entropy production.The results (6.22) can be used to estimate the
coherence ratio between histories. We obtain

δ2 =
〈DJKD∗

JK〉U(d)

〈DJJ〉U(d)〈DKK〉U(d)
≃ 1

∆
(6.23)

This means tha fine-grained histories (∆ = 1) have a significant degree of coherence.
On the contrary, for a high coarse-graining∆ ≫ 1 the off-diagonal elements are sup-
pressed with respect to diagonal ones asδ ∼ 1/

√
∆. Furthermore, the fluctuations of

the diagonal elementsDJJ are suppressed with respect to their mean, and thus coarse-
grained histories tend to acquire equal probabilities1/fN .
The degree of coherence between histories can be evaluated by the relative entropy of
decoherence ( 5.25) introduced in§ 5.3.3:

CN = S(D̃(N))− S(D(N)) = S(D(N)||D̃(N)) ≥ 0

whereS(A||B) is the quantum relative entropy and̃D(N)
jk = δjkD(N)

jk . An upper bound
to the latter can be found by Fannes inequality

|S(̺)− S(σ)| ≤ T1 log d/T1

whereT1 = 1
2 ||̺ − σ||1. By applying Fannes inequality toD(N) andD̃(N), we can

computeCN . To obtain an etimate ofT1, consider thatD(N) − D̃(N) hasf blocks
of sizefN−1 × fN−1. In each block, diagonal elements vanish, while off-diagonal
ones are bounded above byf−N/

√
∆. Assuming that for each block all-off diagonal

elements are equal tof−N/
√
∆, we get a bound for||D(N) − D̃(N)||1:

T1 ≤ f(f−N/
√
∆) · (fN−1 − 1) < 1/

√
∆

since if a matrixA of sizel has constant off-diagonal entries equal toa, it has||A||1 =
2(l− 1)a. ThusCN is upper-bounded by

CN <
1√
∆

log(d
√
∆)) (6.24)
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that tends to0 for ∆ ≫ 1. Thus we obtainhN ≃ h
(c)
N ≃ N log f . The chaotic sys-

tem produces classical information at a rate given by the (un-maximized) dynamical
entropyhN/N ∼ log f .

6.4 Decoherent histories in the quantum standard map

In this section, we will numerically address decoherent histories in the quantum stan-
dard map [195, 196, 197, 198, 199, 200] and test the predictions of preceding sections.
From§ 6.2 and§ 6.3 we expect to see approximate decoherence among coarse-grained
histories, as well as maximal entropy production for the following cases: (R1) random
chaotic dynamics (R2) random projections.

The quantum standard map.Starting from the quantum kicked rotor

H =
p2

2
+ k/T cos q δ(t/T ) (6.25)

wherep andq are the rotor’s position and momentum variable respectively, andδ(t/T ) =
∑∞

j=−∞ δ(t − jT ), the quantum standard map is defined by integrating the dynamics
over a periodT . One obtains the Floquet operator:

U = e−ip2T e−k cos q (6.26)

For k = 0 the system is integrable and it becomes chaotic fork > kc ∼ 1. For
k ≫ 1 the system is strongly chaotic. In our model, following Ref.[215], the phase
space is discretized on a torus, i.e., both position and momentum variables are subject
to periodic boundary conditions. Thus the Hilbert space hasa finite dimensiond and
T = 2π

d where 1
d plays the role of an effective Planck constant for the system(the

classical limit isd→ ∞). In our numerics, we taked = 1024 = 210.
Since the phase space is compact, the “angle” observableq has eigenstates

|n〉, n = 0, 1, . . . , d− 1, q|n〉 = π

N
(2n+ 1)|n〉

The momentum eigenstates are obtained via discrete Fouriertransform:

|k〉 = 1√
N

N−1
∑

n=0

eik
2π
N

n|n〉 p|k〉 = π

N
(2k + 1)|k〉

Decoherent histories in the QSM.We consider coarse-grained histories with projectors
of dimension∆ = d/f . Without loss of generality, we takef to be a power of2,
f = 2n. Thusn is the effective “number of qubits” that are “measured”. Thecoarse-
grained history projectors are obtained asPJ =

∑J·∆
j=(J−1)·∆ |ej〉〈ej | where|{ej〉} is

an orthogonal basis in the Hilbert space.
From the discussion in§ 5.3.2, we know that since the system is finite-dimensional,
we can observe a growth ofhN (5.20) up to a finiteNsat, after which a saturation
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(d) n = 3, |ψ0〉 = |0〉

Figure 6.1: (top) average coherence〈δ〉 for histories with projections in theX eigen-

basis. (bottom)h(c)N (dashed curves) andhN (full curves) for histories with projections
in theX eigenbasis. History projectors are of dimensiond/2n. Entropies are evaluated
in bits.

effect must happen. In this case, a non-vanishing dynamicalentropy reflects into a
linear growthof hN up toNsat and the entropy production rate is defined as the slope
of the initial growth ofhN . If the entropy is evaluated for coarse-grained partitions
with ∆-dimensional projectors, then the maximum possible entropy hN is given by
N log f wheref = d/∆ and we can expect maximal entropy production up to time
Nsat <

log d
log f . After this time, histories can no longer decohere and the relative entropy

of decoherenceCN > 0 due to coherent effects. That histories must show coherent ef-
fects after a give time is also confirmed by refs. [184, 185], that prove that the maximum
number of exactly decoherent histories isnd ≤ d. Following other numeric studies,
e.g. Ref. [192], we will focus on the initial transientN . log d, which represents an
upper bound toNsat achieved for maximal coarse-graining. We have performed nu-
merical computations for different bases, different pure initial states, different degrees
of coarse-graining and different values of the chaos parameterk in the range[0, 100].
In Figs. 6.1 and 6.2 we present a selection of results that best illustrate the conclusions
reached in§ 6.2 and§ 6.3. We show the average over all histories of the coherence ratio

δ2 =
Dj,kD∗

j,k

Dj,jDk,k
, as well as the dynamical entropiesh(c)N andhN (Eqs. (5.19) and (5.20))

in different regimes:k = 0 (integrable regime),k = 10 (weakly chaotic regime),
k = 100 (strongly chaotic regime).
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(b) n = 1, |ψ0〉 = |ψr〉
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Figure 6.2: (top) average coherence〈δ〉 for histories with projections in a random

eigenbasis. (bottom)h(c)N (dashed curves) andhN (full curves) for histories with pro-
jections in a random eigenbasis. History projectors are of dimensiond/2n. Entropies
are evaluated in bits

In Fig. 6.1 (a) and (c) we consider histories in theX basis forf = 2, i.e., the par-
tition is composed by two projections for each time (maximalcoarse-graining). The
initial state |0〉 is an eigenstate ofX . With this choice of partition and initial state
(that both have a well-defined phase space limit) we expect significant differences be-
tween the chaotic and integrable regime according to the analysis above and the results
of Ref. [190, 187]. We can see that histories approximately decohere in the chaotic
regime, where randomness of type (R1) is present. We findδ2 < 10−3, consistent with
the value1/∆ ≃ 2·10−3 expected from Eq. (6.23). Instead, histories have a significant
amount of coherence in the integrable regime, where no (R1) randomness is present.
In the chaotic regime we have a vanishing relative entropy ofdecoherence,

CN = h
(c)
N − hN ≃ 0

The system is producing classical entropy at a rate∼ 1 = log 2 (recall that we are
taking logs in base 2), which is the maximum allowed by the partition size. In the inte-
grable regime the entropy production is significantly lower. In Fig. 6.1 (b) and (d) we
give the same figures for a different coarse-grainingn = 3 (i.e.,8 projections for each
time). We observe the same qualitative features of the previousn = 1 case. However,
while the system in the chaotic regime starts producing classical entropy at a rate given
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by hN ∼ h
(c)
N = 3, forN & 3 we can observe finite size effects in the deviation ofhN

from h
(c)
N for N & 3 due to the finite-size boundhN ≤ 10.

In Fig. 6.2, we show that in presence randomness of type (R2) decoherence and en-
tropy production are the same in the chaotic and in the integrable regime. In Fig. 6.2
(a) and (c), we consider histories in a random basis forn = 1 and initial state|0〉 that
is an eigenstate ofX . In both regimes, histories decohere and there is production of
classical entropy at a rate∼ 1, i.e, the same behavior of the strongly chaotic regime. In
Fig. 6.2 (b) and (d), we consider histories in theX basis forn = 1 and initial state|ψr〉
that is a randomly generated state. In both regimes, histories decohere and there is pro-
duction of classical information, even if the rate of entropy production is higher in the
chaotic regime. This data suggest that also randomization of the initial state can lead
to history: at present we don’t have a proof of this feature, and further investigations
are needed to establish whether it may hold in general.

6.5 Conclusions

In this chapter, we have addressed the problem of dynamical entropy production by
quantum systems in presence of two sources of randomness: (R1) randomness in the
dynamics, i.e. in the evolution operator (R2) randomness inthe choice of of measure-
ments. Our analysis of entropy production has been carried over in the decoherent
histories formalism, with a focus on decoherence and coarse-graining. We have shown
that (R1) and (R2) can lead to i) decoherence between coarse-grained histories ii) max-
imal entropy production compatible with coarse-graining size. As a consequence, both
chaotic and integrable quantum systems can produce classical information at a rate
given by the (un-maximized) dynamical entropyh(c)N /N ≃ hN/N .
To conclude this chapter, we mention a link between our analysis and a well-known
paper [165] where Gell-Mann addressed the general problem of unpredictability in
physics. Gell-Mann identified fourfundamental sources of unpredictability: (a) the
coarse-graining required to make predictions (b) the probabilistic nature of future events
(c) limited information about past and present events coupled with unpredictability
amplification mechanisms such as chaos (d) limits to computational power. Compu-
tational power (d) depends on the nature of the observer - in the terminology of Gell-
Mann, the information gathering and utilizing system [229]. Casting aside (d), one can
focus on (a)-(c) that are are intrinsic to the system under observation. In this chapter
we have analyzed the behavior of dynamical entropy by takinginto account (a),(b) and
(c) together. In fact, (c) includes dynamical randomness related to chaos (R1), while
(b) includes unpredictability caused from measurements (R2). The analysis of (a), i.e.,
coarse-graining and decoherence, is essential for a physical interpretation of the ALF
entropy in terms of predictability, and it is what distinguishes the present work by pre-
vious ones in the literature. We have demonstrated that (a),(b) and (c) together lead to
the production of classical information at a non-vanishingrate given by the dynamical
entropy.
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6.6 Proofs of random-matrix results

6.6.1 Estimation of fine-grained decoherence matrix elements

The decoherence matrix element for a pair of histories reads:

Djk = Tr
[

|jN 〉〈jN |U |jN−1〉〈jN−1|U . . . U |j1〉〈j1|U |j0〉×

〈j0|U †|k1〉〈k1|U † . . . U †|kN−1〉〈kN |U †|kN 〉〈kN |
]

=

=δjNkN
UjN jN−1 . . . Uj2j1Uj1j0U

∗
k1j0U

∗
k2k1

. . . U∗
kN−1kN

where we use the notation〈l|U |m〉 ≡ Ulm and we assume that the initial state is a pure
state|j0〉 belonging to the measurement basis. We assume that the unitaryU is selected
at random with the Haar measure onU(d) whered≫ 1. For almost allU the value of

UjN jN−1 . . . Uj2j1Uj1j0U
∗
k1j0U

∗
k2k1

. . . U∗
kN−1kN

will be close to its Haar-average. The latter can be evaluated by Weingarten’s calcu-
lus [201], which is a generalization of Wick’s calculus to unitary group. Weingarten’s
formula reads [202]:

〈Ul1m1 . . . UlNmN
U∗
l′1m

′
1
U∗
l′
N
m′

N
〉U(d) = (6.27)

∑

σ,τ

δl
1
l′
σ(1)

. . . δl
N
l′
σ(N)

δm
1
m′

τ(1)
. . . δm

N
m′

τ(N)
Wg(d, στ−1)

whereσ andτ are permutations of{1, . . . , N} andWg(d, στ−1) is the so-called Wein-
garten function, that depends on the dimensiond and on the permutationστ−1. Theδ
functions imply that the multi-indexl′ must be a permutation of the multi-indexl, and
at the same time the multi-indexm′ must be a permutation of the multi-indexm. The
Weingarten function can be further evaluated as:

Wg(d, σ) = d−(N+|σ|)(Mob(σ) +O(d−2)) (6.28)

where|σ| is the length ofσ, i.e., the minimum number of permutations that multiply
to σ andMob(σ) is the so called Möbius function. ThereforeWg(d, στ−1) is sup-
pressed by a factord|στ

−1| that grows larger the moreσ andτ differ. If σ = τ , then
Wg(d, στ−1) = Wg(d, e) = 1

dN (1 + O(d−2)) wheree is the identical permutation.
To first order, we thus find:

〈Ul1m1 . . . UlNmN
U∗
l′1m

′
1
U∗
l′Nm′

N
〉U(d) = (6.29)

1

dN

∑

σ

δl
1
l′
σ(1)

. . . δl
N
l′
σ(N)

δm
1
m′

σ(1)
. . . δm

N
m′

σ(N)
+O

( 1

dN+1

)

that is essentially a Wick’s theorem for the unitary group, asymptotically asd → ∞.
TheUlm must be coupled with the corresponding complex conjugatesU∗

lm. The essen-
tial reason behind the effectiveness of Weingarten calculus is that ford → ∞, given a
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random (Haar-distributed) unitary, the matrix elements ofany finitek × k matrix con-
verge (in distribution) to independent complex Gaussians with mean0 and variance1,
renormalized by

√
d[203]:

P [Ulm] = P [|Ulm|e−iφlm ] → 1

2π
√
d
e−1/2|Ulm|2

As a consequence, unitary matrix elements become Gaussian variables and we can ap-
ply the original Wick’s theorem: the average vanishes unless eachUlm is matched by
the correspondingU∗

lm.

In order to apply formula (6.27) to the decoherence matrix

〈Djk〉U(d) ≡ 〈Dj1...jNk1...kN
〉U(d) =

= δjNkN
δj0k0〈UjN jN−1 . . . Uj2j1Uj1j0U

∗
k1k0

U∗
k2k1

. . . U∗
kNkN−1

〉U(d)

we must implement the following substitutions:

lℓ → jℓ, l′ℓ → kℓ, mℓ → jℓ−1, m′
ℓ → kℓ−1

for all 1 ≤ ℓ ≤ N . We have to satisfy the following constraints

• k1 . . . kN is a permutation ofj1 . . . jN , kσ(ℓ) = jℓ

• k0 . . . kN−1 is a permutation ofj0 . . . jN−1, kτ(ℓ)−1 = jℓ−1

• kN = jN andk0 = j0.

By plugging the third condition into the first two, ge get:

• k1 . . . kN is a permutation ofj1 . . . jN , kσ(ℓ) = jℓ satisfyingkσ(N) = kN

• k0 . . . kN−1 is a permutation ofj0 . . . jN−1, kτ(ℓ)−1 = jℓ−1 satisfying
kτ(1)−1 = k0

So, we obtaina fortiori the followingproposition 1: unlessj is a permutation ofk we
have〈Djk〉U(d) = 0.

By virtue of (6.28), to first order only the permutationsτ = σ contribute. We must
then have up to corrections ofO(1/d):

kσ(ℓ) = jℓ, kσ(ℓ)−1 = jℓ−1

the transition pairs{k0k1}, . . . , {kN−1kN} must be a permutation of the transition
pairs{j0j1}, . . . , {jN−1jN} into transition pairs{kσ(ℓ)−1kσ(ℓ)}. Notice that this is a
much stronger condition than saying thatk is a permutation ofj.

Thus we obtain the followingproposition 2: Up to corrections ofO(1/d), 〈Djk〉U(d) =
0 unless the list of pairs{j0j1}, . . . , {jN−1jN} is a permutation of the list pairs
{k0k1}, . . . , {kN−1kN}.
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We denote byP(j,k) the set of permutations onj1, . . . , jN such that the pairs
{j0j1}, . . . , {jN−1jN} are a permutation of the pairs{k0k1}, . . . , {kN−1kN}. Under
this notation, for the matrix elementDjk we obtain:

〈Dj1...jNk1...kN
〉U(d) =

δkN jN

dN

∑

σ∈P(j,k)

δj
1
kσ(1)

. . . δj
N
kσ(N)

+O
( 1

dN+1

)

(6.30)

Note that this formula could have been obtained directly from (6.29) - we choose not
to follow this route as we wanted to derive proposition 1 first.

Diagonal elements.Let us use Eq. (6.30) to evaluate

〈Djj〉U(d) ≡ 〈Dj1...jN j1...jN 〉U(d)

If all transition pairs{j0j1}, . . . , {jN−1jN} are different from one another we must
haveσ = e and we get:

〈Djj〉U(d) =
1

dN
+O

( 1

dN+1

)

(6.31)

If some of the transition pairs{j0j1}, . . . , {jN−1jN} coincide, let us partition them
into r < N equivalence classes, each class comprisingmi elements with

∑r
i=1mi =

N . Then we have to add a symmetry factor

NP(j) = m1! . . .mr!

that properly accounts for the number of possible permutations among equal transition
pairs. As a result,

〈Djj〉U(d) =
NP(j)
dN

+O
( 1

dN+1

)

(6.32)

In the in § 6.6.3, we shall prove thatNP(j) = 1 for the overwhelming majority of
histories (Lemma 2).
In order to evaluate fluctuations, we compute the variance:

〈DjjD∗
jj〉U(d) − 〈Djj〉2U(d)

Assuming that all pairs{j1j2}, . . . , {jN−1jN} differ, since now each pair{jℓ−1jℓ}
appears twice we get a symmetry factor2 for each pair, hence a global factor2N .
Thus, we obtain:

〈DjjD∗
jj〉U(d) − 〈Djj〉2U(d) =

2N − 1

d2N
+O

( 1

d2N+1

)

(6.33)

If some of the pairs{j1j2}, . . . , {jN−1jN} coincide, we have a symmetry factor

N ′
P(j) = (2m1)! . . . (2mr)!

Again, because of Lemma 2,N ′
P(j) = 1 for the overwhelming majority of histories.

Equation (6.33) implies that fluctuations of the diagonal elements (as measured by the
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standard deviation) will remain of orderO(d−N ).

Off-diagonal elements.Let us use Eq. (6.30) to evaluate

〈Djk〉U(d) ≡ 〈Dj1...jNk1...kN
〉U(d)

with j 6= k. If jN 6= kN , we haveDjk = 0 (exactly). From (6.30) we get

〈Djk〉U(d) = δjNkN

(FP(j,k)
dN

+ ΓP(j,k)O
( 1

dN+1

)

)

(6.34)

In (6.34),FP(j,k) represents the number of permutations such that bring the list of
pairs{j0j1}, . . . , {jN−1jN} into the list pairs{k0k1}, . . . , {kN−1kN} (from proposi-
tion 2, unless such a permutation exists, the lowest order term in 1/d vanishes). It is an
immediate consequence of Lemma 2 that for the overwhelming majority of pairsj,k
transition pairs cannot be matched (Corollary 1). Thus, foralmost all historiesFP = 0.
As for ΓP(j,k), it includes permutations that bringj into k. From proposition 1 we
have thatΓP = 0 unlessk is a permutation ofj. We shall prove below thatk is not
a permutation ofj for the overwhelming majority of histories (Lemma 1), so formost
pairsj,k, both the factorsFP ,ΓP vanish and〈Djk〉U(d) = 0.
In order to estimate the deviation from the mean, we can evaluate the variance. For
pairs of histories withkN 6= jN the variance of course vanishes, sinceDjk = 0 ex-
actly. For all other pairs,

〈DjkD∗
jk〉U(d) ≡ 〈Dj1...jNk1...kN

D∗
j1...jNk1...kN

〉U(d) = (6.35)

〈UjN jN−1 . . . Uj2j1Uj1j0U
∗
k1j0U

∗
k2k1

. . . U∗
kN−1kN

×
U∗
jN jN−1

U∗
j2j1U

∗
j1j0Uk1j0Uk2k1 . . . UkN−1kN

〉U(d)

Since now all pairs of indices can be matched, we get

〈DjkD∗
jk〉U(d) =

F ′
P

d2N
+O(

1

d2N+1
) (6.36)

where the symmetry factorFP accounts for permutations that bring the list
{j1j2}, . . . , {jN−1jN} into the list{k1k2}, . . . , {kN−1kN}. From Corollary 1 we can
assume that transition pairs{j1j2}, . . . , {jN−1jN} and{k1k2}, . . . , {kN−1kN} in the
two sets differ, obtaining

〈DjkD∗
jk〉U(d) =

1

d2N
+O(

1

d2N+1
) (6.37)

Thus, we can predict a standard deviation scaling as1
dN . This means that off-diagonal

elements have a size ofO( 1
dN ). The estimation of diagonal and off-diagonal elements

of the decoherence matrix is summarized in Table 6.6.1.
Putting together Eqs. (6.31) and (6.37), we obtain an estimate of coherences, that are
of O(1):

〈DjkD∗
jk〉U(d)

〈Djj〉U(d)〈Dkk〉U(d)
∼ O(1)

Thus, fine-grained histories have a significant degree of coherence. The situation will
change when we consider coarse-grained histories.
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Case Element Average Stardard deviation

1 Djj
1
dN

2N

dN

2 Djk, jN = kN 0 1
dN

3 Djk, jN 6= kN 0 0

Table 6.1: Estimation of fine grained elements of the decoherence matrix. Summary.

6.6.2 Coarse-graining

In the following paragraph, we start from the above Eqs. (6.31),(6.34), (6.37),(6.33)
and consider coarse-grained histories for a random basis (or equivalently for a random
evolution). We will show that coarse-graining leads to stronger decoherence between
histories and also enforces approximately equal weights for histories.
We consider a coarse-graining where we sum over∆ projectors for each time. Then
any coarse-grained decoherence matrix elementDJK is obtained by summing over
over∆2N histories:

DJK =
∑

j∈J

∑

k∈K

Djk (6.38)

The values ofJ = J1 . . . JN ,K = K1 . . .KN identify a∆N ×∆N submatrix of the
fine-grained decoherence matrix. We take1 ≪ ∆ < d.

Off-diagonal elements. Consider firstJ 6= K. ThenDJK is obtained by summing
∆2N off-diagonal elements of the fine-grained decoherence matrix Djk and we get

〈DJK〉 =
∑

j∈J

∑

k∈K

〈Djk〉

If JN 6= KN , then for all terms in the sum (6.6.2)jN 6= kN , thus from Table 6.6.1,
case 2, we haveDjk = 0. Therefore also〈DJK〉 vanishes exactly.
Let us assumeJN = KN . Only pairs of histories withjN = kN contribute to the sum
(6.6.2), that is then over∆2N−1 terms:

〈DJK〉 =
∑

j∈J

∑

k∈K

δjNkN
〈Djk〉

From Lemma 2, we can assume that for nearly all terms in the sum, 〈Djk〉 = 0. We
thus get〈DJK〉 = 0. The fluctuations around this value can be evaluated as:

〈DJKD∗
JK〉 =

∑

j∈J

∑

k∈K

∑

j′∈J

∑

k′∈K

δjNkN
δj′

N
k′
N
〈DjkD∗

j′k′〉

To this sum only termsj = j′, k = k′, contribute:

〈DJKD∗
JK〉 =

∑

j∈J

∑

k∈K

δjNkN
〈DjkD∗

jk〉
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and from the previous analysis we finally obtain

〈DJKD∗
JK〉 = 1

∆

∆2N

d2N
=

1

∆
f−2N (6.39)

wheref = d/∆.

Diagonal elements. NowJ = K. ThenDJK is obtained by summing∆N (∆N−1)
off-diagonal and∆N diagonal elements of the fine-grained decoherence matrixDjk,

〈DJJ〉 =
∑

j∈J

∑

k∈J

δjNkN
〈Djk〉

where again only pairs of histories withjN = kN contribute to the sum, that effectively
includes only∆N (∆N−1−1) off-diagonal terms. From Lemma 2, we can assume that
for nearly all off-diagonal terms in the sum,〈Djk〉 = 0. We thus get the estimate:

〈DJJ〉 =
∆N

dN
= f−N (6.40)

The fluctuations around this value can be evaluated as〈DJJD∗
JJ〉 − 〈DJJ〉2. We have:

〈DJJD∗
JJ〉 =

∑

j∈J

∑

k∈J

∑

j′∈J

∑

k′∈J

δjNkN
δj′

N
k′
N
〈DjkD∗

j′k′〉

To this sum contribute i)∆N terms suchj = k = j′ = k′ ii) ∆N (∆N − 1) terms such
j = k 6= j′ = k′ iii) ∆N (∆N−1 − 1) terms suchj = j′ 6= k′ = k′

〈DJJD∗
JJ〉 =

∑

j∈J

〈DjjD∗
jj〉+

∑

j∈J

∑

j′∈J

〈DjjD∗
j′j′〉

+
∑

j∈J

∑

k∈J

δjNkN
〈DjkD∗

jk〉

From the previous analysis we know the magnitudes of each contributions. Summing
up all contributions, we obtain

〈DJKD∗
JK〉 = ∆N 2N − 1

d2N
+∆N (∆N − 1)

1

d2N
+

∆N (∆N−1 − 1)
1

d2N
=

1

d2N
(∆N (2N − 3) + ∆2N +∆2N−1)

Upon subtracting〈DJJ〉2, the variance is:

〈DJJD∗
JJ〉 − 〈DJJ〉2 =

1

d2N
(∆N (2N − 3) + ∆2N−1) =

=
1

∆

∆2N

d2N
(1 + ∆ · O(

∆N

dN
)) =

1

∆
f−2N (1 + ∆ · O(f−N ) (6.41)
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6.6.3 Proofs of statistical lemmas

In this section we prove some lemmas anticipated above. The proofs require simple
heuristic arguments based on statistical-mechanical analogies and graph theory.

Lemma 1

Consider the set of pairs{j,k}. if d≫ N , the overwhelming majority of them, except
a fraction that vanishes in the limitN/d → 0, are such thatj is not related tok by a
permutation.
Proof. The total number of histories isdN . The problem of choosing the multi-indexj
is equivalent to the problem in statistical mechanics of placingN particles intod phase-
space cells. By adopting a statistical-mechanical language, we can say consider each
choice ofj as a microstate. Then if the microstatesj andk are related by a permutation
they belong to the same macrostateM(n), defined by the occupation numbersn =
n1 . . . nd of each cell. Its volume is given by the multinomial factor:

V (n) =
N !

n1! . . . nd!

and the corresponding probability is then:

p(n) =
1

dN
N !

n1! . . . nd!

The total number of macrostates equivalent to the number of ways one can distribute
N objects tod parties, which is known in combinatorics as number of combinations of
N objects of classd and is given by:

(

d− 1 +N

N

)

=
(d+N − 1)!

N !(d− 1)!

The probability thatj andk are related by a permutation is thus equivalent to the
probability that two microstates belong to the same macrostate. This is simply given
by

P =
∑

n

p(n)2 =
∑

n

V (n)2

d2N

In the “thermodynamic limit”N ≫ d, most microstates will be absorbed in the
Maxwell-Boltzmann macrostate where thenk are equal and we will haveP → 1: very
long histories “equilibrate” in the sense that most of them have the same number of pro-
jections on each partition member. However, in the oppositelimit N ≪ d,N ≤ log d
that is relevant for our calculations we can easily find a bound to this quantity. Since
V (n) ≤ N ! we get

P ≤ (d+N − 1)!

N !(d− 1)!

N !2

d2N
(6.42)
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Upon explanding in series of1/d, we get:

P ≤ 1

dN+3
N !(1 +O(1/d)) ≤ 1

dN+3
(log d)log d(1 +O(1/d))

whence we conclude thatP ≪ 1 whend≫ 1.

Lemma 2

Consider the set of historiesj. The overwhelming majority of them, except a fraction
that vanishes in the limitN/d→ 0, is such that all transition pairs{j1j2}, . . . , {jN−1jN}
differ, hence the the combinatorial factorNP in (6.32) is1.
Proof. Our argument will be based on graph theory. There aredN possible choices
of the indicesj1 . . . jN . We ask how many choices are such that the transition pairs
{j1j2}, . . . , {jN−1jN} all differ. We look atj1 . . . jN as describing possible paths on
a directed graphG whose vertices are1, . . . , N . The graph is totally connected, i.e.,
there is an edge between all ordered pairs of nodes (including loopsj → j). Therefore
the graph’s adjacency matrix isAjk = 1, ∀j, k. The total number of edges isN2. Each
edge corresponds to a transition pair{j, k} with j, k ∈ {1, . . . , N}. The transition
pairs can be seen as the vertices of another graph, which is the dual graph̃G of G. We
can label theN2 vertices ofG̃ as follows: transition{i, j} is labeled with the number
N · (j − 1)+ k. Under this labeling, we can easily compute the adjacency matrix of G̃.
The upperN ×N2 block comprising the firstN rows looks as follows:

A =











1 . . . 1 0 . . . 0 . . . 0 . . . 0
0 . . . 0 1 . . . 1 . . . 0 . . . 0

...
...

0 . . . 0 0 . . . 0 . . . 1 . . . 1











and allN × N2 blocks comprising rowsm · N . . . (m + 1) · N , m = 1 . . .N − 1
have the same form. This structure simply reflects the fact that each pair{j1, j2} is
linked only to pairs of the form{j2, j3} (the second element in the first pair is the
same as the first element in the second pair). The powers ofÃ are easily calculated as
(Ãl)jk = dk−2, ∀j, k.
Now, each of thedN admissible pathsj1 . . . jN of lengthN onG induces an admissible
“dual” path j1j2, . . . , jN−1jN of lengthN − 2 on G̃. It is known that the number of
paths of lengthl betweenj andk is given by(Ãl)jk. From above we can easily cal-
culate the total number of dual paths of lengthN − 2 as

∑

jk(Ã
N−2)jk = dN which

corresponds (correctly) to the number of paths onG.

Now, let us turn back to our original problem. If there are recurring transition pairs
{j, k} in the path onG (i.e. if some pairs of consecutive indices coincide) then the dual
path onG̃ must contain some loops. Thus, the total number of paths of lengthN on
G without recurrent transition pairs is equal to the number ofloop-free paths of length
N − 2 on G̃. This number can be estimated as follows. OnG, each of thed2 vertices
just has outgoing edges to a subset ofd vertices. Hence there there is a probability
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Figure 6.3: Fraction of histories for which all transition pairs{j1, j2}, . . . , {jN−1, jN}
differ. Exact calculation (dots) and approximate formulaf(N) = (d2−2)!

(d2+1−N)!d
−2N+6

(dashed line). The space dimension isd = 3.

p = 1/d for the existence of a direct link between a specific pair of vertices. As all
links of a path have to exist if the path should exist, the probability for the existence of
a specific path of lengthl is ppath = pl . Taking this into account, an estimate for the
number of loop-free paths between two vertices can be expressed as:

#(l) =
(d2 − 2)!

(d2 − 1− l)!
pl =

(d2 − 2)!

(d2 − 1− l)!
d−l

Thus, the total fraction of loop-free paths of lengthN − 2 is give as

d4 · (d2 − 2)!

(d2 + 1−N)!
d−N+2 =

(d2 − 2)!

(d2 + 1−N)!
d−N+6

and the total fraction of loop-free paths of lengthN − 2 is finally:

f(N) =
(d2 − 2)!

(d2 + 1−N)!
d−2N+6

In Fig. 6.3 we plot the exact fraction of loop-free paths, numerically evaluated, and our
approximation ford = 3. It can be seen that there is a very good agreement (note that
the approximation is expected to be increasingly accurate asd grows). Upon taking the
limit d→ ∞, and expanding in powers of1/d, we get

f(N) = 1− (1− N

2
− N2

2
)(1/d2) +O(1/d3) (6.43)

which proves that in the limitd → ∞, the decoherence matrix is dominated by ele-
ments of the form (6.31) that haveNP = 1.

Corollary 1 . Consider the set of pairs{j,k} such thatk is a permutation ofj. if
d≫ N , the overwhelming majority of them, except a fraction that vanishes in the limit
N/d→ 0, are such that transition pairs{j1j2}, . . . , {jN−1jN} {k1k2}, . . . , {kN−1kN}
differ, hence the factorFP in (6.34) can be assumed to be is0 and the factorF ′

P in
(6.36) can be assumed to be is1.



Chapter 7

Einselection and decoherent
histories

7.1 Introduction

Since its modern incipit, physics has been in conflict with intuition. According to New-
ton’s mechanics, an object in motion tends to stay in motion with the same speed and in
the same direction unless acted upon by an external force. Inthe light of our ordinary
experiences this assertion looks paradoxical, namely, at odds with common sense. In
fact, what we usually observe is rather the opposite: bodiesdo not stay in motion unless
acted upon by a constant force. Accordingly, before Newton people used to split the
whole into two domains, the celestial one, where bodies would naturally retain perpet-
ual motions, and the terrestrial one, where bodies would rest in their natural positions
and move only when “violently” acted upon by some force. Newton overcame this
dichotomy, postulating that the same laws hold everywhere in the universe. What im-
pairs direct observation of the first law in the terrestrial domain we live in is the fact
that bodiesare never really isolated, which results in friction leading to momentum
and energy dissipation.
With quantum mechanics, bigger paradoxes came out. One of the main conundrums
of quantum theory is that everyday experience seems to contradict one of its corner-
stones [206, 207]: the superposition principle. The linearity of the Schrödinger equa-
tion entails that the manifold of allowed kinematic states is a linear space. Conse-
quently, for any two orthogonal states corresponding to different values of some ob-
servable (say, position), there should exist states where those different values are co-
herently superposed. Furthermore, most initial conditions are likely to evolve into such
a superposition. Yet, we never happen to observe such coexistence of alternatives. In
particular, familiar macroscopic systems tend to be well localized with respect to the
usual phase-space observables such as position and momentum. The traditional inter-
pretation elaborated by Bohr[225] coped with this issue by splitting the universe into
two domains, the quantum one and the classical one. The interaction of a quantum
object with the ultimate macroscopic “classical apparatus” would automatically reduce

121
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the plurality of alternatives to a single one. Thus, the paradox was solved at the price
of denying the universal validity of quantum mechanics.
The dissatisfaction with this interpretation has motivated a huge effort aimed at restor-
ing the universality of quantum mechanics, while giving at the same time a satisfactory
account of the disappearance of coherent effects in macroscopic reality. Contrary to
proposals that require a significant modification of quantumtheory (such as nonlinear
stochastic models[226]), the two most successful approaches to the problem do not
involve a change in the fundamental equations. These approaches are environment-
induced superselection (EIS) and decoherent histories (DH). Both strive to consistently
apply quantum mechanics toclosedsystems, including the universe as a whole. Yet,
both recognize that a consistent description must acknowledge that the objects we ob-
serve, especially in the macroscopic realm,are never isolated, hence never closed.
They do not interact with an elusive “classical domain”, butwith their (quantum) sur-
roundings, and must be consequently treated asopen quantum systems.
Openness is identified as the root of the problem: like friction prevents observation of
the uniform rectilinear motion predicted by Newton’s law, so interaction with the envi-
ronment prevents observation of superposition and interference phenomena predicted
by Schrödinger’s equation. Indeed the theory of open quantum systems shows that
open systems evolution generally results in a dynamical suppression of superpositions.
In the EIS approach, this suppression reflects into the emergence of preferredpointer
basesin Hilbert space such that coherent superpositions in thosebases are dynamically
ruled out. The off-diagonal entries of thedensity matrixof the in the preferred bases
tend to vanish. In the DH approach, we observe history decoherence within preferred
sets of coarse-grained histories. The off-diagonal entries of thedecoherence matrixfor
these sets tend to vanish.
Thus the aim to understand the quantum/classical transition from a fundamental stand-
point fueled interest in the problem of the suppression of coherence, or, simply,deco-
herence. Driven by this goal, research in decoherence initially focused on simple, solv-
able models devised to realize a well-defined classical macroscopic limit, like a particle
interacting linearly with a set of oscillators. In these “semiclassical” models coherence
is simultaneously suppressed in several bases, corresponding to phase-space observ-
ables (position, momentum, etc.), which is in agreement with the emergence of classi-
cality. From the EIS viewpoint, semiclassical models not not exhibit a single pointer
basis, but several ones: Superpositions of eigenstates of phase-space observables with
macroscopically different eigenvalues are simultaneously suppressed [211]. Analo-
gously, from the DH viewpoint, coarse-grained histories with projections over macro-
scopically different values of several phase-space observables decohere [165, 171]. A
comparison between EIS and DH for a bosonic mode subject to a Markovian noise
including dissipation and thermal hopping from the environment has been done by
Twamley [221]. He showed that off-diagonal elements of the density matrix in the po-
sition, momentum and coherent-state bases are suppressed,while histories defined by
Gaussian quasiprojections in the same bases approximatelydecohere.
As Zurek stressed, these results cannot be regarded as a complete phenomenological
characterization of decoherence in any possible regime [212]. In particular, the behav-
ior of decoherence for microscopic systems with a low numberof degrees of freedom
and undergoing different interactions with the environment can be richer, more various
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and more complicated than the initial results on semiclassical systems might suggest.
Thus decoherence becomes an interesting phenomenon in its own right, and not just as
a mechanism for achieving classical behavior. Studies of decoherence in microscopic
systems have been carried in the EIS picture, and have shown that the emergence of
pointer bases crucially depends on the magnitude of the coupling between the system of
interest and the environmental degrees of freedom. It has been established that pointer
bases emerge in the opposite limits of strong and weak coupling: for weak coupling, a
pointer basis is given by the system’s energy eigenbasis, while for strong coupling the
pointer basis is the eigenbasis of the interaction Hamiltonian. In a recent paper [217],
some evidence has been presented that for intermediate values of the coupling there ex-
ist pointer bases that interpolate between those two extremes in a continuous fashion.
In Refs. [219, 220] a comparison of the EIS and DH pictures forthe decoherence of a
microscopic system was presented. It was concluded that therelation between pointer
bases and sets of decoherent histories is not one-to-one: the existence of a pointer basis
is sufficient, but not necessary to construct a set of decoherent histories.
In the present chapter, I analyze decoherence in a microscopic system comparing the
EIS and the DH approach in a wide range of system-environmentcoupling regimes.
My aim is twofold. One one side, I will better clarify the relation between the two
approaches (EIS and DH) in characterizing a decoherence process. On the other side,
I will shed more light onto the intermediate coupling regime. I will cast doubt on pre-
vious results in [217], arguing that nostablepointer bases arise in this regime, a result
that will be confirmed by the the analysis of DH. A crucial toolto compare DH and
EIS will be the relative entropy of decoherence (5.25) defined in § 5.3.3, that will hold
as a quantifier of coherence within a set of histories. The system under attention is a
two-level system interacting with a non-Markovian environment composed by another
two level system (near environment) interacting in a Markovian way with a bath (far
environment). The choice of this model is motivated by several considerations. First,
this is the simplest non-trivial model of small system subject to decoherence. While the
the choice of a Markovian bath may be unduly restrictive for such a system, studying a
non-Markovian bath is non-trivial from the DH viewpoint, asthe decoherence matrix
cannot be simply expressed in terms of reduced quantities alone (see§ 4.3.3). Second,
this is essentially the same model studied in Ref. [217], except that the far environment
is a Markovian bath instead of a chaotic system (this replacement is convenient if not
mandatory for numerically analyzing DH, and should not affect results, at least quali-
tatively, as discussed below). Therefore, this will allow for immediate comparison with
results in [217].
This chapter is organized as follows. In§ 7.2 I will review EIS and discuss previous
results comparing EIS and DH.§ 7.3 contains the core of the chapter, presenting nu-
meric results for the model under study.§ 7.4 will close the chapter summarizing the
main conclusions.
To the best of my knowledge, the entire content of this chapter is original and has never
appeared in any previous publication.
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7.2 Environment-induced superselection

7.2.1 EIS in a nutshell

Environment-inducedsuperselection [209, 210, 207, 206, 208] oreinselectionis grounded
on the idea that most kinematically admissible superpositions are dynamically ruled out
from observation due to the effect of the unavoidable interaction with external degrees
of freedom collectively denoted as environment. Interaction of the systemS with the
environmentE leads to an entangledSE state. As a result, under general conditions
E “monitors” an observableA =

∑

i αi|ai〉S〈ai| of the system, in the sense that the
|ai〉S become correlated, and remain stably correlated, with quasi-orthogonal states of
the environment|φi〉E :

∑

i

αi|ai〉S ⊗ |φ〉E →
∑

i

αi|ai〉S ⊗ |φi〉E

where〈φi|φj〉E ≪ 1 for i 6= j. In other words,|ai〉S |φi〉E is an approximate Schmidt
basis of the entangledSE state, irrespective of the initial state ofS.
If the environment is sufficiently big, irreversibility appears. We have〈φi|φj〉E ≃ δij
and the reduced density matrix of the system becomes approximately diagonal in the
preferred basisor pointer basis|ai〉. The time required for entanglement to be created
betweenS andE is usually much shorter that the time required forS andE to thermally
equilibrate. Therefore decoherence ofS in the pointer basis usually occurs within a
decoherence timetime τD that is much shorter than the relaxation timeτR.
The original goal of EIS theory was to depict a measurement process, whence the
name “pointer basis” stems. Consider a measurement situation where that the system
S interacts with a measuring apparatusA so as to produce the entangled state

|ψ〉SA =
∑

i

αi|si〉S |ai〉A

where|si〉 and|ai〉 are orthogonal bases ofS andA respectively. A mentioned above
in § 1.2, correlations in|ψSA〉 show a basis ambiguity problem: they can be expressed
in several different bases. Nevertheless, if the apparatusA is subject to interaction with
the environment, that “monitors”A, one ends up with the entangledSAE state

∑

i

αi|si〉S ⊗ |ai〉A ⊗ |φi〉E (7.1)

where states|ai〉A of the apparatus become correlated with quasi-orthogonal states of
the environment|φi〉E . The reducedSA state is now

∑

i

|αi|2|si〉〈si| ⊗ |ai〉〈ai| (7.2)

displaying only classical correlations betweenS andA. In particular, correlations are
between states|si〉S of S and states|ai〉A of A. The latter are calledpointer statesbe-
cause they can be seen as states of the measuring apparatus allowing to discriminate un-
ambiguously the states|si〉S of S. Whenever such a pointer basis exists, superpositions
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in that basis cannot be registered by observers: the environment imposes effectivesu-
perselection rulesin the Hilbert space. The only system-observer correlations that are
stable under environmental noise are classical correlations in the preferred basis[207].
The environment thus creates well-defined, classical outcomes for any (macroscopic)
observation. Correlations that are spoiled by noise are useless: the observer cannot use
his records to make inferences on the future behavior of the system.

7.2.2 Pointer bases

Pointer bases depend on a subtle balance between the system’s self-Hamiltonian and
the interaction Hamiltonian. Let

H = HS +HE + λHint (7.3)

be the Hamiltonian that generates the joint system-environment evolution, whereλ is
the system-environment coupling strength and

HS =
∑

i

ES,i|Ei〉S〈Ei|, HE =
∑

j

EE,j|Ej〉E〈Ej |

Strong coupling

If the system-environment coupling is large, the pointer basis is dictated byHint [209].
In this limit, we can neglectHS andHE and just focus onHint. Exact pointer states
emerge if there is apointer observable, i.e., a local observableA =

∑

i ai|ai〉〈ai| of
the system that commutes with the interaction Hamiltonian,

[A, Hint] = 0 (7.4)

This implies that the interaction Hamiltonian has a form of the type

Hint =
∑

ijk

λijk |ai〉S〈ai| ⊗ |bj〉E〈bk|+H.c.

In this case eigenstates ofA are perfectly stable under interaction with the environment.
Furthermore, they become correlated with states of the environment in such a way as
to suppress off-diagonal terms in the density matrix. We canillustrate this process for
the simplified case whereHint is approximately diagonal in a product basis:

Hint =
∑

ij

γij |ai〉S〈ai| ⊗ |bj〉E〈bj |

Starting from the initial state:

|ψ〉S ⊗ |φ〉E =
∑

i

αi|ai〉S ⊗
∑

j

βj |bj〉E

the time evolution yields:
∑

ij

αiβje
−iγijt|ai〉S ⊗ |bj〉E =

∑

i

αi|ai〉S ⊗ |φi(t)〉E
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where|φi(t)〉E =
∑

j βje
−iγijt|bj〉E The reduced density matrix forS is given by:

̺S(t) =
∑

ij

αiα
∗
j |ai〉S〈aj | 〈φj(t)|φi(t)〉E =

=
∑

i

|αi|2|ai〉S〈ai|+
∑

i6=j

αiα
∗
j |ai〉S〈aj | 〈φj(t)|φi(t)〉E

If the environment states|φi(t)〉E become orthogonal, the state becomes diagonal in
the|ai〉S basis. This can occur, for instance, if the environment is large. Consider

zij(t) ≡ 〈φj(t)|φi(t)〉E =
∑

k

|βk|2e−i(γik−γjk)t =
∑

k

pke
−iωk

ijt

That zij(t) give a decay can be easily seen. Indeed compute the long-timeaverage
(t→ ∞)

〈|zij |2〉T =
1

T

∫ T

0

|zij(t)|2dt =
∑

k

pkpk′

(

δ(ωk
ij − ωk′

ij ) +
1− e−i(ωk

ij−ωk′

ij )T

iT (ωk
ij − ωk′

ij )
)
)

−→t→∞
∑

k

pkδ(ω
k
ij − ωk′

ij )

If all ωk
ij are distinct, we get

∆2
z = 〈|zij |2〉T − 〈zij〉2T =

N
∑

k=1

p2k

If the dimensionN of the environment is large, assuming that allpk ∼ 1/N then
∆z ∼ 1/

√
N .

Weak coupling

In the opposite limit of small system-environment couplingλ, several nontrivial and di-
verse arguments based on adiabaticity [214], echo dynamics[215] and ergodicity [216]
lead to the conclusion that the pointer basis is the energy eigenbasis of the system, i.e.,
the eigenbasis ofHS . We briefly sketch the “adiabatic” argument. Assume that the
frequencies (i.e., the energies) of the environment are much lower than those of the
system. Consider an initial state|Ψ(0)〉SE =

∑

k ck|Ek〉S ⊗ |φk(0)〉E . Since the
environment is “slow”, from the adiabatic theorem, we have

|Ψ(0)〉SE =
∑

k

cke
−iES,kt|Ek〉S ⊗ |φk(t)〉E

where|φk(t)〉E = e−itHint,k |φ(0)〉E with Hint,k = 〈Ek|Hint|Ek〉S . As discussed
in [214], oftenHint,k acts as a “displacement operator” for the environment, thenthe
states|φk(t)〉E of the environment tend to become orthogonal as

〈φk(t)〉|φl(t)〉E ∼ e−γklt
2
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Therefore, for the off-diagonal elements of the reduced density matrix in the energy
eigenbasis of the system we get

〈Ek|̺S |El〉 ∼ ckc
∗
l e

−i(Ek−El)te−γklt
2

More general cases

For intermediate coupling, it has been argued that approximate pointer bases exist and
interpolate between the pointer basis and the energy eigenbasis[217]. This case will be
discussed in detail below (§ 7.3).
In general, it is nontrivial to identify the set of pointer states for a given system/environment
dynamics. In the simplest models, such pointer states are eigenstates of the pointer
observable which commutes with the system-environment interaction. In more general
cases, one may resort to several criteria aimed at identifying the set of states that is least
affected by the interaction. One such criterion is the so-calledpredictability sieve[207].
The evolution of a pure state|ψ〉S is considered predictable if it is deterministic, i.e.,
if the state maintains its purity. The loss of predictability, in this sense, is measured
by the von Neumann entropy of the evolved stateS(̺(t)) where̺(0) = |ψ〉S〈ψ|. If
states are ranked according to their predictability, the environment is seen as a sieve
that selects the states that “survive” best to the interaction with the environment. The
set of states that minimizeS(̺(t)) is a good candidate to represent the set of pointer
states. In fact, when a true pointer observable exists its eigenstates can be retrieved
with this predictability sieve criterion.

7.2.3 EIS and consistent histories

EIS and DH yield two possible descriptions of a decoherence process. The goal of
understanding the relation between the two pictures has prompted several studies [218,
219, 220]. These works have shown that there is an asymmetricrelation between
pointer bases and decoherent sets of histories, that may be summarized as follows.
One one side, the mere existence of a set of decoherent histories may not be related
to a physical process of einselection. The vanishing ofinterferencebetween histories
may or may not be caused bydecoherence. In fact, it can occur even in closed systems,
as we saw in Chap. 6. On the other side, the existence of a pointer basis implies that a
decoherent set of histories can be obtained by fixing projectors in the pointer basis for
all times, since histories in the pointer basis will have vanishing interference.

history decoherence6⇒ EIS

Systematic procedures to find a decoherent set of histories exist irrespective of whether
einselection is acting or not. Let us consider generic histories defined by projectors
P ℓ
jℓ

, whereℓ = 1, . . . , N . The superscriptℓ indicates that projectors for eachtℓ may be
different, while the subscriptjℓ labels the alternative at timetℓ (notations are the same
introduced in§ 4.2.1).
For a closed system we can simply takeP ℓ

jℓ
= |ejℓ(tℓ)〉〈ejℓ(tℓ)| where the|ek(t)〉 form
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the instantaneous eigenbasis of the density matrix,

̺(tℓ)|ek(tℓ)〉 = ek(tℓ)|ek(tℓ)〉 where ̺(tℓ) = U(tℓ)̺(t0)U
†(tℓ)

Indeed the decoherence matrix reads

Djk = Tr[. . . P 2
j2U(t2 − t1)P

1
j1U(t1 − t0)̺(t0)U

†(t1 − t0)P
1
k1
U †(t2 − t1)P

2
k2
. . . ] =

= Tr[. . . P 2
j2U(t2 − t1)P

1
j1̺(t1)P

1
k1
U †(t2 − t1)U

†P 2
k2
. . . ]

In order to get decoherence in the first index, one simply choosesP 1
j1 = |ej1(t1)〉〈ej1(t1)|,

getting

Djk = δj1k1Tr[. . . P 2
j2U(t2 − t1)|ej1(t1)〉〈ej1 (t1)|U †(t2 − t1)P

2
k2
. . . ] =

= δj1k1Tr[. . . P 2
j2 |ej1(t2)〉〈ej1 (t2)|P 2

k2
. . . ] =

TakingP 2
j2

= |ej2(t2)〉〈ej2 (t2)| one gets decoherence in the second index, etc. This
choice requires to adjust the measurement attℓ align the projectors to the instantaneous
eigenbasis of̺ . However, there is another way to get a decoherent set. It suffices to
take histories in the energy eigenbasis of for all times,P ℓ

jℓ
= |Ejℓ〉〈Ejℓ |. Now the

Projectors commute with the dynamics, hence we have

Djk = Tr[U(tN − t0)P
N
jN . . . P

1
j1̺(t0)P

1
k1
. . . PN

kN
U †(tN − t0)] =

= δjkδi1i2δi2i3 . . . δiN−1iN Tr[P 1
j1̺(t0)P

1
j1)]

Again, we can have no interference and we achieve a decoherent set of histories.
For an open system a set of exactly decoherent histories can be automatically con-
structed in the Markovian limit (i.e., for time intervals∆t > τM ) where the evolution
of S is described by a reduced propagatorK̃t′ t. From Eq. (4.23) we see that the deco-
herence matrixDij will be diagonal in the first indexj1 if the projectorsP 1

j1
are taken

in the eigenbasis of̺(t1) = K̃t1 t0 [̺(t0)], referred to asSchmidt basisin the literature
(obviously,K̃ does not coherently couple the eigenbases of̺(t0) and̺(t1)). Next,Dij

will be diagonal in the second indexj2 if projectorsP 2
j2

are taken in the eigenbasis of
the path-projected reduced density matrix

̺j1(t2) = K̃t2 t1 [P
1
j1̺0P

1
j1 ]

for eachj1. As thoroughly discussed by Zurek [218], in general the eigenbasis of
̺j1(t2) conditionally depend onj1. In fact, non-unitary evolution does not preserve
commutators (environment-induced noncommutativity). So, the states̺j1(t2) obtained
for differentj1 may not commute, even ifPj1̺0Pj1 did. In order to achieve full de-
coherence, projectors at eachtℓ must be taken in the eigenbasis of the path-projected
density matrix

̺jℓ−1...j1(tℓ) = K̃tℓ tℓ−1
[P ℓ−1

jℓ−1
̺jℓ−2...j1(tℓ−1)P

ℓ−1
jℓ−1

] (7.5)

Due to environment-inducednoncommutativity, in general the eigenbasis of̺jℓ−1...j1(tℓ)
conditionally depends on previous projectors at timest1 . . . tℓ−1:

P ℓ
jℓ

= P j
jℓ|jℓ−1...1



CHAPTER 7. EINSELECTION AND DECOHERENT HISTORIES 129

This entails that the resulting histories are “unstable”. The choice of projectorsP ℓ
jℓ

de-
pends on the choice of previous timest1, . . . tℓ−1. Moreover, if one effects a temporal
coarse-graining over timetℓ, projectors at later times are substantially modified. Thus
in general we cannot obtain a decoherent set by taking projector in a fixed basis, as was
the case for closed systems (where one could take projectorsin the energy eigenba-
sis). This can be done only if the system-environment interaction creates a true pointer
basis.

EIS ⇒ history decoherence

An einselection process, leading to well-defined pointer basis |aj〉, guarantees the ex-
istence of a preferred set of decoherent histories. If the environment is ignored and
we take for all times coarse-grained projections in the pointer basis,P ℓ

jℓ
= |ajℓ〉〈ajℓ |,

we observe history decoherence as soon as the time interval∆t between projections is
∆t ≥ τD. In this case, the Schmidt basis becomes stable (i.e. it doesnot depend on
previous results) and coincides with the pointer basis for all ℓ for all ∆t > τD.
In particular, if a true pointer observable exists, and we are in the strong coupling
regime (so thatHS andHE can be neglected), it is immediate that histories in the
pointer basis decohere however the timestℓ are chosen.

P ℓ
jℓK̃tℓ tℓ−1

[P ℓ−1
jℓ−1

]P ℓ
jℓ = |ajℓ〉〈ajℓ |

(

K̃tℓ tℓ−1
[|ajℓ−1

〉〈ajℓ−1
|]
)

|ajℓ〉〈ajℓ | =
= |ajℓ〉〈ajℓ |

(

|ajℓ−1
〉〈ajℓ−1

|
)

|ajℓ〉〈ajℓ | = 0 ∀jℓ 6= jℓ−1

This case is analogous to the case of the energy eigenbasis for closed systems. In fact,
the states|aj〉 are stationary states, as the|Ej〉 in the closed system case.

To sum up, the DH approach yields a necessary, but not sufficient condition for the
existence of a stable pointer basis. If|ai〉 is a stable pointer basis, then histories with
fixed projections in this basis must decohere, at least for sufficiently large∆t. Con-
versely, if histories in a given, fixed basis|ai〉 decohere, this does not imply that eins-
election in a stable pointer basis is acting. It only impliesthat transitions between the
basis elements have vanishing interference. This condition that can be realized both
by a coherent (unitary) dynamics that does not couple different basis elements, and by
a decoherent (non-unitary) dynamics under which the basis elements are stable. For
instance, the DH approach cannot distinguish the situationwhere the system is weakly
coupled to the environment - and hence einselection in the system’s eigenbasis occurs
- from the situation where the system is closed - and hence, noeinselection occurs. In
both cases, histories in the system energy eigenbasis will decohere.

7.3 EIS and DH in a simple model

The model

In the following, we shall investigate the relation EIS and DH in a simple model: a
qubit coupled to a non-Markovian environment. The systemS is a qubit coupled to a
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second qubitE that plays the role of the near environment. The two-qubit Hamiltonian
is:

H = HS +HE +Hint = (sinασx + cosασz)⊗ I+ I⊗ σz + λσx ⊗ σx (7.6)

with α = π
6 (we have chosen to rotateHS away fromσz in the x-z plane for reasons

that will become apparent later). The near environmentE is further coupled to an
external reservoir (far environment) whose effect is to cause decoherence onE . We
will analyze two kinds of Markovian decoherence.

• dephasing in theσx basis ofE . The jointSE evolves under the Lindblad equa-
tion :

˙̺SE = −i[H, ̺SE ] + γL[I⊗ σx](̺SE) (7.7)

whereL[a](̺) = 2a̺a† − a†a̺− ̺a†a andγ is the dephasing constant.

• thermal relaxation in the energy eigenbasis ofE . The jointSE system evolves
under the Lindblad equation:

˙̺SE = −i[H, ̺SE ] +
Γ

2
(nT +1)L[I⊗ σ−](̺SE) +

Γ

2
nTL[I⊗ σ+](̺SE) (7.8)

whereσ+ = 1
2 (σx + iσy), Γ is the thermal relaxation constant, andnT is the

thermal number.

In both cases, the reduced dynamics ofS is non-Markovian. A similar model was
studied in [217], with the major difference that the role of the far environment was
played there by a quantum kicked rotorR with Hamiltonian

HR =
p2

2
+ v cos q δ(t/T ) (7.9)

whereδ(t/T ) =
∑∞

j=−∞ δ(t− jT ), coupled toE through an interaction Hamiltonian

HRE = κσx cos q δ(t/T ) (7.10)

Although this model appears to be much more complicated thanours due to chaotic
dynamics induced by the kicked rotor, in the limitT → 0 the sole effect of the coupling
with the rotor is to induce a Markovian dephasing onE [204]. In [217], a relatively
short kick periodT = 2π

4096 ∼ 1.5 · 10−3 was used. Therefore, we do not expect strong
qualitative differences between our model and that model asfor the general features of
decoherence onS.

Methods to predict and find pointer bases

In [217] it was argued that the systemS admits approximate pointer bases for interme-
diate values of the system-near environment couplingλ, a feature that was explained
by the following heuristic argument. Given an orthogonal basisB = {|b0〉, |b1〉} of S,
theSE state can be expanded as

|ψ(t)〉 = |b0〉|φ0(t)〉+ |b1〉|φ1(t)〉 (7.11)



CHAPTER 7. EINSELECTION AND DECOHERENT HISTORIES 131

so that the off-diagonal elements of̺S(t) are〈φ0(t)|φ1(t)〉. Approximate decoher-
ence in theB basis corresponds to approximate orthogonality of the “expansion states”
|φ0(t)〉 and|φ1(t)〉. If we neglect the effect of the far environment, the expansion states
|φα〉 (α = 0, 1) evolve according to

i
d

dt
|φα〉 = Hαα|φα〉+ i|ξα〉 (7.12)

whereHαα = 〈bα|H |bα〉 and |ξα〉 = −iHαβ |φ〉β with α 6= β. The |ξα〉 evolve
according to

i
d

dt
|ξα〉 = Zα|ξ〉α − iJα|φα〉 (7.13)

whereZα = HαβHββH
−1
βα , Jα = HαβHβα. Thus, the expansion states|φ0(t)〉 and

|φ1(t)〉 undergo two distinct evolutions. The discrepancy is due to the difference be-
tweenH00, |ξ0〉, andH11, |ξ1〉. It can be estimated by considering the operator differ-
ences∆H = H00 −H11, ∆Z = Z0 − Z1, ∆J = J0 − J1. Actually, one can easily
verify that∆J = 0 in the model and it can be further shown that∆Z ≃ −∆H , so that
the discrepancy can be assessed by the single quantifier||∆H ||. The crucial hypothesis
in [217] is that the basisB maximizing||∆H || should correspond to an approximate
pointer basis for the system. In my point of view, this argument must be taken with a
grain of salt for at least reasons: i) the argument totally neglects the effect of the far
environment ii) a high∆H entails that the two expansion states undergo divergent evo-
lutions, but this does not necessarily and immediately imply their quasiorthogonality,
〈φ0(t)|φ1(t)〉 ≃ 0.
Whether an approximate pointer basis actually exists can beverified with the following
procedure, that was also described in [217] (including boththe method to find a pointer
basis candidate, Eq. (7.16) and the method to verify its stability, Eq. (7.19)). Ideally,
if a stable pointer basis exists all initial states should approximately decohere into the
same basis after a decoherence timeτD. The existence of an approximate pointer ba-
sis should mirror in the temporal stability of the Schmidt basis, (i.e., the eigenbasis of
̺S(t)) for all timest > τD as well as in the stability with respect to the choice of initial
states. Notice that it is possible that each initial state decoheres into some basis (i.e.,
shows astable Schmidt basisfor all timest > τD ) but this basis differs depending on
the initial state. We will talk about the existence of apointer basisonly if the stable
Schmidt basis is the same for all initial states.
A stable Schmidt basis can be identified through the following procedure. Consider the
Schmidt states|ek(t)〉, k = 0, 1 with

̺S(t)|ek(t)〉 = ek(t)|ek(t)〉 (7.14)

with 0 ≤ ek(t) ≤ 1, e0(t) + e1(t) = 1. If a stable Schmidt basis exists, the|ek(t)〉
should be approximately time independent after an initial transientτD, so that

̺S(t) =
∑

ek(t)|ek(t)〉〈ek(t)| ≃
∑

k

ek(t)|ek〉〈ek| t≫ τD (7.15)
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Upon integrating̺ S(t) in time, ¯̺S = 1
ta−ta

∫ tb
ta
̺S(t)dt (for sufficiently largeta, tb,ta−

tb & τD) we thus get

¯̺S =
1

tb − ta

∑

k

∫ tb

ta

ek(t)|ek〉〈ek|dt = (7.16)

=
1

tb − ta

∑

k

|ek〉〈ek|
∫ tb

ta

ek(t)dt =
∑

k

ēk|ek〉〈ek|

So the stable Schmidt basis can be identified with the eigenbasis of ¯̺S : ¯̺S |ēk〉 =
ēk|ēk〉. This basis is well-defined only if the eigenvalue difference∆ = ē1− ē0 is non-
vanishing. If∆ ≪ 1 no unique eigenbasis can be well defined. For the Schmidt basis
to be stable, the instantaneous eigenbasis of̺S(t) must be close to the basis identified
by the|ēk〉, and we must have

|ek(t)〉 ≃ |ēk〉, ∀t≫ τD (7.17)

The “distance” between the two bases can be evaluated as

D(t) = 1− |〈ek(t)|ēk〉|2 (7.18)

(we can choose bothk = 0 or k = 1). Hence, the average quantity

δs =
1

ta − ta

∫ tb

ta

D(t)dt (7.19)

is a measure of the stability of the Schmidt basis. If all initial states decohere into the
same (approximately) stable Schmidt basis, then the latteris an (approximate) pointer
basis. In [217], a specific initial state was considered ant it was shown that a stable
Schimidt basis exists forλ ≪ 1 andλ ≫ 1 and it coincides respectively with theHS

eigenbasis and with the eigenbasis ofHint (henceforth we will follow a commonplace
abuse of notation and call “eigenbasis ofHint” the eigenbasis of TrE [Hint]), as ex-
pected from previous studies. In case of intermediate coupling, a stable Schmidt basis
was found to lay in between these two extremes, interpolating in a continous fashion
between the two. The interpolation was shown upon evaluating the anglesθ1(λ), θ2(λ)
needed to rotate the stable Schmidt basis for a given value ofλ into the eigenbasis of
HS and that ofHint.

Environment-induced superselection

We now follow the procedures described in [217] and sketchedin the previous para-
graph. We first give a prediction about the pointer bases, following the heuristic ar-
gument based on||∆H ||. Next, we check whether pointer bases actually emerge in a
wide range of values ofλ.
Any basis can be parametrized by an angle−π

2 ≤ θ ≤ π
2 and a phase−π

2 ≤ χ ≤ π
2 ,

|b0〉 = cos θ|0〉+ eiχ sin θ|1〉, |b1〉 = − sin θ|0〉+ eiχ cos θ|1〉 (7.20)
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Figure 7.1: Expected pointer basis as a function ofλ for α = π
6 (red) andα = 0 (black,

dashed)

where|0〉 and|1〉 represent theσz eigenstates. We can evaluate||∆H || as a function
of θ, χ:

||∆H ||2
8

= (cosα cos θ + sinα sin θ cosχ)2 + λ2 sin2 θ cos2 χ (7.21)

||∆H || is maximised byχ = 0 and:

θ = θmin =
1

4
arctan

( sin 2α

cos 2α− λ2

)

for λ <
√
cos 2α (7.22)

θ = θmin =
π

4
− 1

4
arctan

( sin 2α

λ2 − cos 2α

)

for λ >
√
cos 2α

Thus the basis maximizing||∆H || lies in the x-z plane. Forλ→ 0 we getθ = α/2,
that corresponds to the eigenbasis ofHS . Forλ→ ∞we getθ = π/4, that corresponds
to the eigenbasis ofHint. For intermediate values ofλ, we get a basis interpolating
between the two. In Fig. 7.1 we plotθmin as a function ofλ. It can be seen that
if α = 0 the change betweenθ = α

2 andθ = π
4 is expected to be abrupt, so that

no smooth interpolation is actually expected. This motivates us to chooseα > 0 in
order to look for possible interpolating pointer bases. Forα = π

6 we expect to find
θ = π

12 = 0.26 for λ ≪ 1, corresponding to the eigenbasis ofHS , andθ = π
4 =

0.78 for λ ≫ 1, corresponding to the eigenbasis ofHint and smooth interpolation for
intermediate values ofλ.

Next, we numerically calculate the eigenbasis of¯̺S for different initial states. We
consider an ensemble ofM = 100 pureSE states, generated randomly according to
the uniform measure onHSE ≃ C4. We first let the ensemble evolve under the de-
phasing noise. The dephasing constant isγ = 10−3. We find that all initial states
approximately decohere in some basis beforeτD ≪ τγ = 1/γ. In conformity with
expectation, we find such stable Schmidt bases to lie in the x-z plane (we always find
Im(〈0| ¯̺S |1〉) < 10−3). Therefore, we can characterize any basis with the single pa-
rameterθ.
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Figure 7.2: Schmidt bases for state evolving under dephasing noise withγ = 0.001
(a) Schmidt basis angleθ as a function ofλ for some random initial states (b) average
distance from theσz basis〈|θ|〉, average inter-basis angle〈β〉 and average stability
parameter〈δs〉 as a function ofλ; the average is overM = 100 random initial states.
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Figure 7.3: Schmidt bases for state evolving under thermal noise withΓ = 0.001 and
nT = 0.5 (a) Schmidt basis angleθ as a function ofλ for some random initial states
(b) average distance from theσz basis〈|θ|〉, average inter-basis angle〈β〉 and average
stability parameter〈δs〉 as a function ofλ; the average is overM = 100 random initial
states.

Forλ≪ 1 all initial states yieldθ ∼ π
12 as expected. Forλ≫ 1, we haveθ → ±π

4
(notice that the values±π

4 correspond to the same basis), again in conformity with
expectation. For intermediate values, we would expect to observe a smooth transition
with values ofθ in the rangeπ

12 ≤ θ ≤ π
4 . However, contrary to this expectation, we

find two kinds of interpolating behavior: i)θ increases fromπ
12 to π

4 ii) θ decreases
from π

12 to −π
4 passing through negative values. This is shown in Fig.7.2(a) where

θ is plotted for four different initial states. In Fig. 7.2(b), we plot〈|θ|〉 (that simply
measures the average distance of the dephasing basis from theσz basis) as a function
of λ, and observe a steady increase from〈|θ|〉 ∼ π

12 to 〈|θ|〉 ∼ π
4 . The behavior of〈|θ|〉

obscures the fact that the values±π
4 are reached through different pathways. To further

highlight this feature, we also consider all pairs of initial states and evaluate the angle
β between their respective stable Schmidt bases. The averagevalue〈β〉 is plotted as
a function ofλ for all initial states. We notice that a pointer basis emerges only in the
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Figure 7.4: Schmidt bases for state evolving under couplingwith a kicked rotor with
with v = 90/T , k = 0.1, T = 2π

N andN = 64. (a) Schmidt basis angleθ as a function
of λ for some random initial states (b) average distance from theσz basis〈|θ|〉, average
inter-basis angle〈β〉 and average stability parameter〈δs〉 as a function ofλ; the average
is overM = 100 random initial states.

opposite limitsλ → 0 andλ → ∞, where〈β〉 is small. For intermediate values ofλ,
〈β〉 reaches values up to0.4 and we cannot really identify a fixed pointer basis. Along
with 〈|θ|〉 and〈β〉, in Fig.7.2(b) we also plot the corresponding average values of the
stability parameter〈δs〉 introduced in Eq. (7.19) to characterize the stability of the
Schmidt bases. We observe that the bases found are approximately stable,〈δs〉 ∼ 0.2
in the whole range ofλ. In Fig.7.3, we report the same figures for the thermal noise
with Γ = 0.01 andnT = 0.01. The main qualitative features are unchanged. The main
peculiarity of the thermal noise, compared to the dephasingnoise, is that it leads to a
much stronger stability of the Schmidt bases, i.e., much lower values of〈δs〉.

The main message of these plots is that true pointer bases arise only in the limits
of small and strong coupling, but not for intermediate coupling. These results seem
to be at odds with the main claim made in [217], that a stable pointer basis arises for
intermediate values ofλ. We therefore investigate in detail whether there is a significant
discrepancy between our model and the kicked-rotor model. We turn to the kicked rotor
model studied in [217]. The Hamiltonian is:

H = HS +HE +Hint = (ωxσx + ωzσz)⊗ I+ I⊗ ωAσx + λσz ⊗ σz (7.23)

with ωx = 500, ωz = 1000, ωA = 500. The eigenbasis of the system Hamiltonian
corresponds toθ = 0.23. The far environment is a kicked rotor represented by a self-
HamiltonianHR and coupling HamiltonianHRE :

HR =
p2

2
+ v cos q δ(t/T ), HRE = κσz cos q δ(t/T ) (7.24)

with v = 90/T andκ = 0.1. The kicking period isT = 2π
N andN = 64. We simulate

the model forM = 100 random initial states. In Fig. 5a we plotθ as a function ofλ
for some initial states. We see that for smallλ there is a pointer basis corresponding
to the system’s energy eigenbasis, while for largeλ there is one corresponding to the
eigenbasis ofHint. However, also in this case for intermediate values ofλ there is no
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Figure 7.5: Relative entropy of decoherenceC4 for dephasing noise withγ = 0.001
as a function of the time interval∆t between projections for different values of the
coupling strengthλ. In all panels, we showC4 for three different bases in the x-z plane
identified by different values ofθ: θ = π/12 (eigenbasis ofHS), θ = π/4 (eigenbasis
of Hint), θ = θmin (Eq. (7.22))

universal Schmidt basis. This can be seen again by plottingβ as a function ofλ (Fig.
5b). Notice that in ref. [217] the behavior ofθ for only one initial state is plotted.
This is sufficient to verify the existence of a stable Schmidtbasis, but not to infer the
existence of a true pointer basis that must coincide for all initial states.

Decoherent histories

We now consider decoherent histories of the system. As stated in § 7.2.3, the existence
of a pointer basis should reflect into the decoherence of histories with fixed projectors in
the pointer basis and∆t & τD. Accordingly, we consider histories with projectors in a
fixed basis for all times. We take the time interval∆ti = ti− ti−1 between projections
to be the same for all projections,∆ti = ∆t, and considerN = 4 projections. We
focus on projections in the x-z plane,P0 = |ψ0〉〈ψ0|, P1 = |ψ1〉〈ψ1| with

|ψ0〉 = cos θ|0〉+ sin θ(|1〉, |ψ1〉 = − sin θ|0〉+ cos θ(|1〉 (7.25)
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Figure 7.6: Relative entropy of decoherenceC4 for thermal noise withΓ = 0.001 and
nT = 0.5 as a function of the time interval∆t between projections for different values
of the coupling strengthλ. In all panels, we showC4 for three different bases in the
x-z plane identified by different values ofθ: θ = π/12 (eigenbasis ofHS), θ = π/4
(eigenbasis ofHint), θ = θmin (Eq. (7.22))

since we expect to find a pointer basis in the x-z plane. For anychoice of basis, we can
assess the degree of history coherence by means of the relative entropy of decoherence
CN ≡ h

(c)
N −hN = S(D(N)||D̃(N)) defined in§ 5.3.3.CN measures how farD is from

its diagonal part, and hence measures the amount of coherence between histories.
We first consider dephasing noise withΓ = 0.001. In Fig.7.5, we plotC4 as a function
of ∆t for different values ofλ and different bases in the x-z plane, corresponding to
θ = π/12 (eigenbasis ofHS), θ = π/4 (eigenbasis ofHint), θ = θmin (the basis that
should yield a pointer basis according to (Eq. (7.22)). The initial state is|ψ0〉 = |0〉
(we sampled data for several initial states, not shown sincethe results do not exhibit
significant differences). Forλ = 0.01, histories in the eigenbasis ofHS(θ = π

12 ≃
θmin) are clearly more decoherent than histories in the eigenbasis ofHint. In particular,
for ∆t & 200 they approximately decohere. In the opposite limit of strong coupling,
λ = 20 we observe the converse: histories in the eigenbasis ofHint (θ = π

4 ≃ θmin)
are clearly more decoherent than histories in the eigenbasis ofHS . Again, for∆t &
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Figure 7.7: Time-averaged relative entropy of decoherence, 〈C4〉∆t as a function of the
coupling strengthλ and the basis angleθ for (a) dephasing noise withΓ = 0.001 (b)
thermal noise withΓ = 0.001 andnT = 0.5. Darker values indicate that coherence in
the basis is lower. Dark “stripes” that appear in the opposite limits of strong and weak
coupling clearly identify the emergence of pointer bases

200 they approximately decohere. For intermediate values ofλ, though, the degree of
coherence between histories, as assessed byC4, tends to be comparable for all bases.
This feature corroborates our view that no true pointer bases exist in the intermediate
coupling regime. In Fig.7.6, we plot the equivalent figures for the case of thermal
noise. Qualitatively, the behavior matches that of dephasing noise. The main difference
can be observed in the strong coupling regime. The disparitybetween histories in
the eigenbasis ofHS and histories in the eigenbasis ofHint is less pronounced: for
∆t & 200 both sets show low values of coherence. This feature is probably due to the
higher decohering effect of the thermal noise with respect to dephasing noise. As we
noted above, this effect is responsible for the higher stability of the pointer basis in the
case of thermal noise and strong coupling.

The discrepancy in the amount of coherence for histories in different bases can be
further synthetically illustrated, as follows. For any value of θ (i.e., for all bases in
the x-z plane) we averageC4 over∆t over the period where decoherence is acting,
for 1

10Γ ≤ ∆t ≤ 1
Γ . The result is shown in Fig.7.7. We plot〈C4〉∆t as a function

of λ andθ for both dephasing and thermal noise with different values of Γ = 0.001.
The two pointer bases are clearly recognizable in the limit of small λ and largeλ:
they correspond to much lower values of〈C4〉∆t, compared to the other bases. In the
intermediateλ regime, it is not possible to single out a clear pointer basis. As we
discussed in§ 7.2.3, the existence of a pointer basis would imply that histories in the
same basis decohere. Indeed, the absence of a clear pointer basis in the regime of
intermediateλ reflects into all bases having comparable values of〈C4〉∆t.
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7.4 Conclusions

While the action of decoherence in the macroscopic limit is well understood, deco-
herence for microscopic systems with a few degrees of freedom is still a open field of
research. A recent work [217] has analyzed decoherence in a simple model, arguing
that pointer bases arise for all values of the system-environment coupling.
In this chapter, we have addressed the emergence of pointer bases in a simple model by
comparing the standard einselection picture (based on the vanishing of coherence in the
density matrix) with the decoherent histories picture based on vanishing interference
between histories in a set. On the basis of general considerations, we expect to observe
decoherence between histories defined by fixed projections in the pointer basis, if the
latter exists and it is stable.
The model we analyze is a qubit coupled to a non-Markovian environment composed
by a second qubit (near environment) coupled to a Markovian bath. All together, near
and far environment make up a non-Markovian environment. The model is essentially
the same as in ref. [217], except that the far environment is aMarkovian reservoir in-
stead of a chaotic system (according to Ref. [204]), resultsshould be qualitatively the
same.
We have analyzed the emergence of pointer bases for different values of the system-
environment coupling, according to the method developed in[217]. In the opposite
limits of strong and weak system-environment coupling, we observe stable pointer
bases in the system energy eigenbasis and in the interactionHamiltonian eigenbasis,
confirming standard results in the literature [209, 214]. For intermediate values of the
coupling, we observe that any initial state decoheres, becoming approximately diag-
onal in astable Schmidt basis. This basis, however, is state-dependent, while a true
pointer basis should coincide for all initial states. Thus,contrary to the opposite claim
in [217], our data suggest that no true pointer basis arises for intermediate coupling.
The analysis of decoherent histories in the model corroborates this conclusion. Under
general arguments, when a stable pointer basis exists we expect to observe decoherence
between histories with projections in the pointer basis. Wehave analyzed decoherent
sets of histories with projections in different bases and for different values of the cou-
pling. For any set, we are able to assess the degree of coherence between histories
by means of a single quantifier, the relative entropy of decoherenceCN introduced in
Chap. 5. For strong and weak coupling,CN can clearly identify pointer bases, that
yield sets of histories that are much less coherent comparedto other bases. For in-
termediate values of the coupling, all sets of histories show a comparable degree of
coherence, further indicating the absence of a true pointerbasis.



Chapter 8

Conclusions and outlook

As we wrote in the introduction, classical records of quantum phenomena can be ac-
quired only at the price of discarding some “coherent” information. Decoherence pro-
cesses, like those exerted by measurements or interaction with a noisy environment,
have two specular consequences: They destroy the excess quantum coherence and sta-
bilize classical information. Throughout this thesis, we have looked at several decoher-
ence processes from an informational viewpoint, using different information-theoretic
quantifiers to analyze the effects of decoherence in physically relevant scenarios.
On one side, decoherence processes allow for the definition of suitable measures of
“quantumness” in terms of the amount of information that is lost under their action.
On the other side, decoherence processes allow to “extract”classical information from
quantum systems.
On the first side (measures of quantumness), we have been concerned with a deco-
herence - related measure of quantumness for correlations between two parties. Local
measurements allow to definequantum discord(chapter 1), that singles out “coherent”
correlations that are unavoidably lost when a subsystem is measured. This measure
of quantum correlations is different from the traditional notion of entanglement and
may capture quantum effects to which the latter is insensitive, but which can be rel-
evant for the behavior of physical systems. In chapter 2 we have analyzed at length
quantum discord in a condensed matter model, the extended Hubbard model, and we
have shown a connection between this measure of bipartite correlations and an impor-
tant physical property of the model (off-diagonal long-range order, ODLRO) that also
marks phenomena like superfluidity and superconductivity.Moreover, the splitting of
correlations into a quantum and a classical part offered by discord allowed us to dis-
criminate between phase transitions that are physically different. Another measure of
quantumness is therelative entropy of decoherence, defined in chapter 5. The relative
entropy of decoherence can assess coherence in the time evolution of a system, as seen
from the interference between different paths orhistoriesof the system (chapter 4). Its
definition is based on a comparison between the coherent evolution of the system, as
represented by the decoherence matrix, and and a fully “decoherent” one represented
by a decoherence matrix without interference terms. In chapter 7, we have used the
relative entropy of decoherence to characterize einselection, i.e., the emergence of pre-
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ferred pointer bases in Hilbert space as a result of interaction with the environment.
The consequence of einselection is that coherence in the pointer basis fades and the
system becomes “classical” in that basis. By comparing the standard picture based on
the density matrix with a decoherent histories picture based on the decoherence matrix,
we have analyzed the behavior of an open system subjected to non-Markovian noise
and investigated the emergence of pointer bases for different values of the system-
environment coupling strength. In the opposite limits of strong and weak coupling
clear pointer bases emerge, which is signaled by vanishing off-diagonal elements of a
time-averaged density matrix in the pointer basis, and correspondingly by a vanishing
relative entropy of decoherence for histories in the same basis. Contrary to previous
statements in the literature, we showed that in the intermediate coupling regime no sta-
ble pointer basis arises, which is apparent from high valuesof the relative entropy of
decoherence.
On the other side (extraction of classical information), wehave seen how decoherence
allows to defineclassical correlations, i.e., the part of correlations that are stable under
the action of local measurements and are then locally accessible. A key issue is finding
the optimal local measurement that allows to maximize the classical correlations. The
whole of chapter 3 was essentially devoted to solving this problem in the physically
important case of two optical modes in Gaussian states. In particular, we compared
Gaussian measurements (such homodyne detection) with non-Gaussian ones (such as
photon counting) in order to see whether non-Gaussian measurements can allow for
a better extraction of information. We found robust evidence that Gaussian measure-
ments are in fact optimal. Another question related to classical information arising
from quantum systems is thedynamical production of classical informationby quan-
tum dynamics. Decoherent histories provide a natural framework to define a quantum
version of dynamical entropy, that measures the maximal rate at which information is
produced by the dynamics in time. When histories decohere, the system effectively
produces classical information at a maximal rate given by the dynamical entropy. In
chapter 6, we have applied quantum dynamical entropy to study how the interplay of
coarse-graining, history decoherence and the presence of different sources of unpre-
dictability leads to classical information production by quantum systems. While in
classical systems all unpredictability stems from dynamical chaos, in the quantum do-
main a major source of unpredictability (the probabilisticnature of measurements) ap-
pears. Consequently, both chaotic and integrable systems exhibit entropy production.
By focusing on decoherence and coarse-graining, we have argued that randomness
provided by either the dynamics or measurements can lead to the decoherence of suf-
ficiently coarse-grained histories, as well as maximal entropy production compatible
with coarse-graining size. This picture was suggested by a general, heuristic argument
and could be rigorously proven in the case of dynamical randomness by means of ran-
dom matrix techniques. We presented a numerical analysis ofdecoherent histories in
the quantum standard map that agrees with our theoretical predictions.
The results presented in this thesis confirm the importance of decoherence for an un-
derstanding of quantum physics at large. Furthermore, theyshow the power of the
information-theoretical approach to the study of physicalsystems – a power that is
now recognized is several fields, from quantum physics to statistical mechanics and
complex systems science.
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