#### Michele Allegra Brain Controllability: mirage or reality?





Michele Allegra

Brain controllability: mirage or reality?





Remote control of thoughts?





Design effective intervention paradigms using control theory

Michele Allegra

Brain controllability: mirage or reality?





Transcranial magnetic stimulation



Transcranial direct current stimulation

Brain controllability: mirage or reality?

# **Control theory in engineering**



- Design external perturbations to control a system
- **x**(t) state of the system at time t [vector]
- **u**(t) external *input* [vector]
- F: system *dynamics*, **x**(T) = F(**x**(0),T,**u**(t))
- Invert relation to find u(t) = G(x(0),x\*(T),T) to achieve target state x\*(t)
- Theory predicts when this can be done

By smartly harnessing the system's intrinsic dynamics, we may control the whole system by acting only on (small) subsystem

Michele Allegra

Brain controllability: mirage or reality?



- **x**(t) state vector for N "network nodes" at time t
- Dynamics is given by Linear Time Invariant(LTI) system:
- A (N,N) connectivity matrix
- B (N, r) input matrix with "r" being number of control nodes required to control the system.



Brain controllability: mirage or reality?

 $\frac{\mathbf{d}\mathbf{x}(t)}{\mathbf{d}\mathbf{x}(t)} = A\mathbf{x}(t) + B\mathbf{u}(t)$ 





# Linear Controllability



- Can we drive the system towards any desired final state with a suitable choice of input signal vector u(t)?
- *Given A,B,* **algebraic condition** on *controllability Gramian:* W>0

$$W = \int_0^\infty d\tau e^{A\tau} B B^T e^{A^T \tau}$$

• The minimum *control energy* to steer the system to target state is

$$E = \int_0^\infty d\tau ||u(t)||^2 = x^T W^{-1} x^T$$

• In the worst case, energy is the minimum inverse eigenvalue of W

$$E_{max} = 1/\lambda_{min}(W)$$

• On average

$$E = Tr[W^{-1}]$$

Michele Allegra

Brain controllability: mirage or reality?





• *Given A,* how should we select B (control nodes) such that the system is controllable?



Michele Allegra





• *Given A,* how should we select B (control nodes) such that the system is controllable?







• *Given A,* how should we select B (control nodes) such that the system is controllable?



Michele Allegra

#### Linear Controllability



- *Given A,* how should we select B (control nodes) such that the system is controllable?
- **Graph-theoretical criterion**: control *unmatched nodes*
- maximum matching: set of links with no common starting/ending points



#### Linear Controllability



- *Given A,* how should we select B (control nodes) such that the system is controllable?
- Graph-theoretical criterion: control unmatched nodes
- maximum matching: set of links with no common starting/ending points



PADOVA neuroscience CENTER

Open Access | Published: 01 October 2015

#### **Controllability of structural brain networks**

Shi Gu, Fabio Pasqualetti, Matthew Cieslak, Qawi K. Telesford, Alfred B. Yu, Ari E. Kahn, John D. Medaglia, Jean M. Vettel, Michael B. Miller, Scott T. Grafton & Danielle S. Bassett 🖂

- Resting-state fMRI recordings
- N=243 'nodes' (regions of Lausanne atlas)
- **x**(t) activity vector (region time series from fMRI)
- A structural connectivity matrix (from dTI)
- *B* single-node input matrix
- Repeat the procedure over each and every node

 $\frac{\mathbf{d}\mathbf{x}(t)}{\mathbf{d}t} = A\mathbf{x}(t) + B\mathbf{u}(t)$ 



- W>0: brain networks are 'theoretically controllable' from a single node
- they are **practically uncontrollable**: the control energy  $||u^2|| > 10^{22}$
- ...it is hard to drive the system towards an arbitrary desired target states
- Look at 'average controllability' inverse of average energy required for control (average over target states)  $a_i = Tr[W] \le \frac{1}{Tr[W^{-1}]} = E$
- Look at 'modal controllability' ease of controlling slow modes of A

$$m_i = \sum_j (1 - \mu_j)^2 V_{ij}$$
  $A = V \operatorname{diag}(\boldsymbol{\mu}) V^T$ 

Michele Allegra

Brain controllability: mirage or reality?



#### Average controllability is larger when controlling hubs





# Average controllability is larger when controlling peripheral nodes







Chengyi Tu <sup>a, f</sup>, Rodrigo P. Rocha <sup>a, f</sup>, Maurizio Corbetta <sup>b, c, f</sup>, Sandro Zampieri <sup>d, f</sup>, Marco Zorzi <sup>e, f, g</sup>, S. Suweis <sup>a, f</sup> 옷 쩓

- Limitation (1): choice of dynamic model
- A = S structural connectivity matrix
- This model is unstable and far from the actual dynamics!
- the proper model requires a diagonal decay term ...

$$A = -\frac{1}{\tau}\mathbb{I} + cS$$

• Other limitations: noiseless dynamics, linear dynamics

Brain controllability: mirage or reality?

## ... Limitations with the framework



#### Limitation (2): the energy is extremely large

To have  $E_{min} < 10^{10}$  you need to control >45% of nodes ...

Table 1. The minimum number of nodes (and fraction with respect the size of the network) that are needed to control the system spending a minimum energy not greater than  $\varepsilon_{min} = 10^{10}$ .

|                       | Data    |         | BA         |         | SW      |           | ER         |        |
|-----------------------|---------|---------|------------|---------|---------|-----------|------------|--------|
| Centrality<br>measure | Low     | High    | Low        | High    | Low     | High      | Low        | High   |
| Degree<br>centrality  | 51/0.46 | 49/0.45 | 44.64/0.41 | 42/0.38 | 45/0.41 | 43.5/0.40 | 44.64/0.41 | 42/0.3 |

### ... Limitations with the framework



#### Limitation (3): the controllability/topology relation is not specific of brain networks



Brain controllability: mirage or reality?

# Using a 'good' dynamics



K. Kabbur, ..., S. Suweis, A. Bertoldo, M. Allegra, in prep.

- Use the best (linear) model of the data
- *A* = *EC Effective connectivity matrix*
- Sparse Dynamic Causal Modelling (spDCM) [Prando et al., NIMG 2021]
- Multivariate Ornstein Uhlenbeck(MOU) model [Gilson et al., PLOS CB 2017]
- EC is computed by best fit on data of each individual subject
- Both models allow for asymmetric connections -> *directed graph*
- More accurate description of dynamics and possibility to define unmatched nodes

# Single-node controllability (in theory)



K. Kabbur, ..., S. Suweis, A. Bertoldo, M. Allegra, in prep.

- All nodes are matched: the system is 'theoretically controllable' with a single node
- EC networks are dense (40% sparsity)
- All nodes are matched unless sparsity is very high



## Many nodes are needed (in practice)



K. Kabbur, ..., S. Suweis, A. Bertoldo, M. Allegra, in prep.

 Full controllability requires to control at least 20% of nodes



## Many nodes are needed (in practice)



K. Kabbur, ..., S. Suweis, A. Bertoldo, M. Allegra, in prep.

#### Unless 20% of nodes are controlled, control is numerically unstable

Gie Sun and Adilson E. Motter, Phys. Rev. Lett. **110**, 208701



Michele Allegra

Brain controllability: mirage or reality?

# **Restricting the target**

K. Kabbur, ..., S. Suweis, A. Bertoldo, M. Allegra, in prep.



# If we aim to control a small subset of nodes, control energy significantly decreases

[Gao, Jianxi, et al. "Target control of complex networks." Nat. Comm. 5.1 (2014): 1-8.]



# **Restricting the target**

K. Kabbur, ..., S. Suweis, A. Bertoldo, M. Allegra, in prep.



# If we aim to control a small subset of nodes, control energy significantly decreases

[Gao, Jianxi, et al. "Target control of complex networks." Nat. Comm. 5.1 (2014): 1-8.]



Brain controllability: mirage or reality?

# **Restricting the target**

K. Kabbur, ..., S. Suweis, A. Bertoldo, M. Allegra, in prep.



# If we aim to control a small subset of nodes, control energy significantly decreases

[Gao, Jianxi, et al. "Target control of complex networks." Nat. Comm. 5.1 (2014): 1-8.]



# (pro-tempore) Conclusions



- look for a paradigm to design controlled interventions on brain dynamics
- *"control theory"* offers an interesting conceptual framework
- Applying control theory requires appropriate modeling of dynamics (EC)
- Qualitatively, results are robust w.r.t. choice of EC model
- Controllability properties mainly depend on connection sparsity rather than other topological features.
- Controlling brain's activity globally by stimulating one or a few nodes appears practically unfeasible
- Controlling a subsystem may be more affordable but still significantly hard

#### the target is not a "microstate" (activity state x\*), but a "macrostate" (an activity regime with specific features)

- E.g., try to control balance between dynamic connectivity patterns [Deco et al. PNAS 116.36 (2019): 18088-18097.]
- The probabilities of different states determine "macrostate"

#### Michele Allegra

Brain controllability: mirage or reality?

#### February 2021

Phase Coherence (t=50)

# An alternative approach to control?

B

Can we exploit dimensionality reduction to define an easier control objective?



All BOLD Phases (t=50)



# An alternative approach to control?



Can we exploit dimensionality reduction to define an easier control objective?



Michele Allegra

Brain controllability: mirage or reality?

# **Acknowledgements**





Samir Suweis





Karan Kabbur Hanumanthappa Manjunatha

Alessandra Bertoldo

Giorgia Baron



Dipartimento di Fisica e Astronomia Galileo Galilei







Università degli Studi di Padova

**Michele Allegra** 

Brain controllability: mirage or reality?

# Acknowledgements





### Thank you for your attention!!

# michele.allegra@unipd.it

Michele Allegra

Brain controllability: mirage or reality?