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Where and how should we stimulate?
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What is a good theoretical framework to design neuromodulation?

* The network control theory approach

 Some issues with the network control approach

» Directions for alternatives: reduce dimensionality?
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Requirements for targeted neuromodulation {\,« nauroscence

@ /n vivo system

design perturbation measure system

implement it in the system model dynamics

@ /n silico model
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Measure: improved recording techniques are
becoming available

=

MUAs

0 200

Time (ms)

?

LFPs

SISSA June 2022

Michele Allegra Approaches to brain controllability



CENTER

&@ PADOVA
Implement: improved stimulation techniques w
are becoming available

tACS for distant cortical sites synchronization b TMS perturbation patterns propagation

{iii) Increased Local Power Spectra
and Metwork Synchronization
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Implement: improved stimulation techniques
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Camera

Dal Maschio, M., Donovan, J. C., Helmbrecht, T. O., & Baier, H. (2017). Linking neurons to network function and behavior by two-photon holographic optoge
and volumetric imaging. Neuron, 94(4), 774-789.
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Towards targeted modulations S

(i) measurement
(i) modeling
(iii) design

(iv) application

What is a good theoretical framework to design neuromodulation?
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Open Access | Published: 01 October 2015 Published: 18 October 2017

Controllability of structural brain networks Network control principles predict neuron functionin

Shi Gu, Fabio Pasqualetti, Matthew Cieslak, Qawi K. Telesford, Alfred B. Yu, Ari E. Kahn, John D. the Caenorhabditis elegans connectome
Medaglia, Jean M. Vettel, Michael B. Miller, Scott T. Grafton & Danielle S. Bassett ]

Gang Yan, Petra E. Vértes, Emma K. Towlson, Yee Lian Chew, Denise S. Walker, William R. Schafer &

Albert-Lasz|6 Barabasi &3

» model: linear model based on structural connectome

» design: use classical (linear) control theory

* implement: use neuromodulation (not even at proof-of-principle stage)
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Network control theory

X(t) - state vector for N “network nodes” at time t

Dynamics is given by Linear Time Invariant(LTl) system:

A - (N,N) connectivity matrix dt

dx(#)

= Ax(t) + Bu(t)

B - (N, r) input matrix with “r” being number of control nodes required to
control the system.

1 Desired final

/’ “ state
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coolb
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* The design problem has a complete solution (in principle)

* Graph-theoretical criterion
to select minimal B (control nodes):

unmatched nodes controlled
with independent inputs

* Algebraic criterion to select u (control signal)

u=Ble W e M x; —xp)

with Gramian W — /OO dre AT T A"
0

11
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Control energy

Network control theory

E=/ dr|[u(t) ||
0

Physical meaning: depends on experimental setting

Theoretical meaning: strength of stimulus-evoked vs intrinsic dynamics
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d’;(:) — Ax(t) + Bu(t)
Bl ~1

E.g. for fMRI, |A|~1, E~1 means stimulus-evoked and intrinsic dynamics are comparable

Control energy is related to Gramian eigenvalues

Michele Allegra
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Control of larae-scale brain activity

Open Access | Published: 01 October 2015
Controllability of structural brain networks

Shi Gu, Fabio Pasqualetti, Matthew Cieslak, Qawi K. Telesford, Alfred B. Yu, Ari E. Kahn, John D.
Medaglia, Jean M. Vettel, Michael B. Miller, Scott T. Grafton & Danielle S. Bassett &=

N=243 ‘nodes’ (regions of atlas)

Model: linear model with dynamics = structural connectome

dx(t)
T Ax(t) + Bu(t)
A structural connectivity matrix (from diffusion MRI)

B single-node input matrix
Repeat the procedure over each and every node

the brain is theoretically controllable from a single region
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Tu, C., Rocha, R. P,, Corbetta, M., Zampieri, S., Zorzi, M., & Suweis, S. (2018).
Warnings and caveats in brain controllability. Neurolmage, 176, 83-91.

« 1) W>O0 (controllability in principle), but control energy is unfeasibly large
« 2) Tohave E. 6 < 10 need to control >45% of nodes ...

[scale of control input signal >> scale of normal activity fluctuations]

Table 1. The minimum number of nodes (and fraction with respect the size of the
network) that are needed to control the system spending a minimum energy not

greater than ¢, = 10'.

Data BA W ER
Centrality = Low  High Low High Low High Low High
measure
Degree 51/0.46 49045 44.64/0.41 42/038  45/041 435040 44.64/041 42/03
centrality
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Control of large-scale brain activity g@

Stiso, J., Khambhati, A. N., Menara, T., Kahn, A. E., Stein, J. M., Das, S. R,, ... & Bassett, D. S. (2019).
White matter network architecture guides direct electrical stimulation through optimal state transitions. Cell reports, 28(10), 2554-2566.

Stimulation with tDCS, recording with EcoG, structure measurement by diffusion MRI

Target state associated to successful memory encoding
[subject-level power-based biomarkers of good memory encoding extracted with a multivariate
classifier from ECoG data collected during a verbal memory task ]

Maximum Carrelation

Il Enpirical
0.06 ’ i
) Il Topological Null

" 1 Spatial Nul

-0.03
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Control of large-scale brain activity g@

Stiso, J., Khambhati, A. N., Menara, T., Kahn, A. E., Stein, J. M., Das, S. R,, ... & Bassett, D. S. (2019).
White matter network architecture guides direct electrical stimulation through optimal state transitions. Cell reports, 28(10), 2554-2566.

Stimulation with tDCS, recording with EcoG, structure measurement by dWiI

Target state associated to successful memory encoding
[subject-level power-based biomarkers of good memory encoding extracted with a multivariate
classifier from ECoG data collected during a verbal memory task ]

Maximum Carrelation

Il Enpirical
0.06 ’ i
) Il Topological Null

" 1 Spatial Nul

-0.03
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Whole-brain controllability through EC

. Kabbur, ...,M. Corbetta, S. Suweis, A. Bertoldo, M. Allegra, in preparation.

Improve modeling:
Use effective connectivity (EC) instead of structural connectivity

EC is directed and gives more accurate representation of dynamics
(e.g. much better fit of functional connectivity)
Sparse Dynamic Causal Modelling (spDCM) [Prando et al., NIMG 2021]

SpDCM infers dynamics (A) from observed fMRI activity

Michele Allegra Approaches to brain controllability SISSA June 2022
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Controllability through EC
K. Kabbur, ..., S. Suweis, A. Bertoldo, M. Allegra, in prep.

The overall picture is qualitatively consistent with the one obtained by SC

There are no unmatched nodes and in principle the system can be
controlled by a single node (W>0)

In practice, control energy is very large, (>101°) unless at least 15% of
nodes are controlled

Full controllability

—— out_degree
11}

10 pq

~— ratio_degree

10° 1 —— random

107 |

105

Avg. min. energy

103+

101t

0 10 20 30 40 50 60 70
No. of control inputs
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Controllability through EC

K. Kabbur,

» target controllability: we only wish to control only a subset of nodes [Gao,
Jianxi, et al. "Target control of complex networks." Nat. Comm. 5.1 (2014): 1-8.]

* the control energy required is significantly lower but still large

Avg. min. energy

1011+

10% +

107 +

109 +

103 +

101 b

Full controllability

—— out_degree
pq

~— ratio_degree

—— random

10 20 30 a0 50 60 70
No. of control inputs
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A theoretical issue
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* Gao, Sun, J., & Motter, A. E. (2013). Controllability transition and nonlocality in network control.

Physical review letters, 110(20), 208701]

» Trajectories are long and energy is large unless a significant fraction of

nodes is controlled

T
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X

FIG. 1. (a) Illustration of a state that is SLC (left) and of a state
that is not (right). (b) Example system i1 = z1 + u1(t), £2 = x1,
where any state not on the line ;1 = 0 is not SLC; the curves in-
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A theoretical issue

« Gao, Sun, J., & Motter, A. E. (2013). Controllability transition and nonlocality in network control. Physical
review letters, 110(20), 208701]

 numerical error in final state is related to condition number = inverse of energy
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linear controllability in a simpler animal model

(measurement) the connectome can be completely measured
(~2000 connections)

(modeling) Due to exhaustive knowledge, the model is faithful
(implementation) we can perform well localized perturbations

However, controllability was used only to identify neurons that are
necessary for muscle control, not to induce state

Michele Allegra Approaches to brain controllability SISSA June 2022
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linear controllability in a simpler animal model

Yan, G., Vértes, P. E., Towlson, E. K., Chew, Y. L., Walker, D. S., Schafer, W. R., & Barabasi, A. L. (2017). Network
control principles predict neuron function in the Caenorhabditis elegans connectome. Nature, 550(7677), 519-523.

Linear controllability of C. Elegans (279 neurons)

Target controllability: try to identify neurons that directly
control specific muscles

Linear control theory with SC predict which neurons are
necessary for moving specific muscles

However, controllability with SC was used only to identify
neurons that are necessary for muscle control

not used to induce specific movements via
neuromodulation

Michele Allegra Approaches to brain controllability
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An alternative approach to control? B et
'

Can we exploit dimensionality reduction to address the controllability problem?

B Phase Cohamanca (l=50)
« the target is not a “microstate” (activity state x*), i
but a “macrostate” (activity regime) g
g
* try to control balance between dynamic e £ B
connectivity patterns : 5 m_m; a0
[Deco et al. PNAS 116.36 (2019): 18088-18097 ] C Leading Eigenvecior Vi1=50)
* The probabilities of different states determine LM
umacrostateu D Brain Auraas

Clustar probability doud Brain stabe deascriplion
ol rmelasiabie substabes Probabiistic Melasiable Subsiales

150
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An alternative approach to control? B hrsass
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Can we exploit dimensionality reduction to define an easier control objective?

A Fit whole-brain model to Probabilistic Metastable Substates (PMS) for a brain state

Connectivity
[dMRI) S
0.5 e 05
—> : Ny —>r
i ey Functional brain
[ i .
B C

0 — 114 dynamics (IMRI)
A 8 c A
Empirical data Fit whole-brain model Whole-brain model fit
B Force whole-brain model from brain state X to another brain state Y

0.5 ,.,?"_ﬁ':_ 05
—> e T —> ——
ey ;_' — E\_
I " sumiaton B
0 0
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An alternative approach to control?

dynamics (approximately) unfolds on low-dimensional manifolds

can we try to control the key “directions” in neural space?

a Linear dynamical system b Recordings & neural state ¢ Neural dynamics
Spike : W - y(t) = Cx(t) +d 42 x(t+ 1) = Ax(t) + Bu(t)
Record recordings UL LJIL 30 I 3 -
' y() ¥2 [t frngii -‘{r
5 I II i
*
E Naural pcrp Ty[tj = Cxl[e’} + dT z?

w03 HoH:H-g

x(1) x(’]]x(ﬂ x(d) _2

xrl
x(t+1) = Ax({) + Bult)
d Manipulating neural population state e Manipulating neural dynamics
4 Within-manifold lesioning a?
Stimulate Y perturbation through e-stim  pharmacology
| F
g &
xl

[Shenoy & Kao. Nat. Comm. 12.1 (2021): 1-5]
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An alternative approach to control? ,
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M Beiran, A Dubreuil, A Valente, F Mastrogiuseppe, S Ostojic

Neural Computation 33 (6) 1572-1615

dx;
oxt ,
1'_ =%t E Jij® (xi) + L™ (¢), high D

1 R
i (ry_.(r)
Jij = = E m;n;

"
R
low D
x(f)—Z:{rm —|—Z:q[“ - ﬂ
r=1

_____

problem: control signal are applied locally (x), not on hidden degrees of freedom ()
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An alternative approach to control?

dynamics (approximately) unfolds on low-dimensional manifolds

can we try to control the key “directions” in neural space?

lyer, K. K., Hwang, K., Hearne, L. J., Muller, E., D’'Esposito, M., Shine, J. M., & Cocchi, L. (2022). Focal neural perturbations
reshape low-dimensional trajectories of brain activity supporting cognitive performance. Nature communications, 13(1), 1-8.

Baseline
Correct

iPS
Correct

PHATE1

Baseling
Correct

iPs
Correct
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“Controllability” of neural activity requires the ability to model the activity and to
design external interventions

We need an appropriate theoretical paradigm to address the design problem

The simplest approach (linear modeling + classical linear controllability) is poorly
effective for large networks

Possibly, improvements may be obtained by leveraging dimensionality reduction

In particular, we should try to manipulate global, hidden degrees of freedom
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| neuroni non hanno piu segreti grazie alle ricerche di Eugenio Piasini

Obiettivo dare nuova vita ai paralizzati e malati agli occhi

< Ad by CRITEO

Report this ad

‘ Ad choices > ‘

Eugenio Piasini (Orlandi)
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Prando, G., Zorzi, M., Bertoldo, A., Corbetta, M., Zorzi, M., & Chiuso, A. (2020).
Sparse DCM for whole-brain effective connectivity from resting-state fMRI data. Neuroimage, 208, 116367.

Linear model + hemodynamics
x(t) = Ax(t) +v(t)

y(t) = h(x(t);6p) + e(t)

ODE - finite difference equation (discretization)

Nonlinear hemodynamic response - linear response (linearization)

Bayesian inference with EM algorithm

Sparsity-inducing prior on connectivity
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1) the brain is theoretically controllable from a single region

(W=>0)

2) when controlling one node “average energy” is proportional to node
degree (# structural connections)

250
200
150
100

50

Average controllability T

0 mmm am 234 0
Average controllability 0 50 100 150 200 250
Rank of weighted degree
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Control of large-scale brain activity

Kenett, Y. N., Medaglia, J. D., Beaty, R. E., Chen, Q., Betzel, R. F., Thompson-Schill, S. L., & Qiu, J. (2018). Driving the brain
towards creativity and intelligence: A network control theory analysis. Neuropsychologia, 118

study on relation between controllability and intelligence (Raven test)

Intelligence Creativity

Average . A éi_(\\e. : J/} é&;‘

“We find that intelligence is related to the ability to “drive” the brain system into
easy to reach neural states by the right inferior parietal lobe and lower
integration abilities in the left retrosplenial cortex.”

... a hode’s “ average controllability” is correlated with structural topological
properties (degree) of the node, which may be the actual relevant feature

Michele Allegra Approaches to brain controllability SISSA June 2022
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Target controllability through EC &g? PaDOVA
K. Kabbur, ..., S. Suweis, A. Bertoldo, M. Allegra, in prep. WAl CEATER

» target controllability: we only wish to control the state of a subset of nodes
[Gao, Jianxi, et al. "Target control of complex networks." Nat. Comm. 5.1 (2014): 1-8.]

(ii) Desired Target Region
(e.g. hippocampus) (iii) Model Optimization (iv) Identification of TMS target

(goal: lowest energy, highest target providing highest chance of
control) controlling network dynamics

Michele Allegra Approaches to brain controllability SISSA June 2022
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Target controllability through EC & ranors,
K. Kabbur, ..., S. Suweis, A. Bertoldo, M. Allegra, in prep. WY CenTer

» target controllability: we only wish to control the state of a subset of nodes
[Gao, Jianxi, et al. "Target control of complex networks." Nat. Comm. 5.1 (2014): 1-8.]

* the control energy required is significantly lower but still large

Full controllability DorsAttn target controllability, target nodes = 9

' ; 109}
—— out_degree —— out_degree
1nf i
10 pq Pq
— ratio_degree 107 L | —— ratio_degree |

z 10°r —— random & I —— random
2 2
2 2
@ 1071 @ 1p5}
£ =
E 105} E
o o
= > 10° |
<< 103} <T

101 101

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

No. of control inputs No. of control inputs
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Modeling:
[Tu, C., Rocha, R. P, Corbetta, M., Zampieri, S., Zorzi, M., & Suweis, S. (2018). Warnings
and caveats in brain controllability. Neurolmage, 176, 83-91.]

* 1) No dynamical information, only structural

» 2) the proper model requires a diagonal decay term ...
1
A=—-1+c¢cS
T

« 3) structural connectivity from dTl is symmetric. Cannot exploit directionality
(in particular, cannot define unmatched inout nodes)

* 4) relation between “controllability” and structural degree is not specific to
brain networks

Michele Allegra Approaches to brain controllability SISSA June 2022
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Modeling:
[Tu, C., Rocha, R. P, Corbetta, M., Zampieri, S., Zorzi, M., & Suweis, S. (2018). Warnings
and caveats in brain controllability. Neurolmage, 176, 83-91.]

* 1) No dynamical information, only structural

» 2) the proper model requires a diagonal decay term ...
1
A=—-1+c¢cS
T

« 3) structural connectivity from dTl is symmetric. Cannot exploit directionality
(in particular, cannot define unmatched inout nodes)

* 4) relation between “controllability” and structural degree is not specific to
brain networks
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Provided the linear model provides accurate description of dynamics, linear
controllability theory solves the problem of designing targeted interventions

(measurement) neuroimaging may not provide an accurate enough
representation of brain activity

(modeling) The linear model may not be accurate enough, and it is
nontrivial to retrieve it from data (one should go beyond structural
connectivity)

(design) due to the size of the system, controlling the whole system
requires very large amount of energy

(implementation) in practice, we have o easy means of performing well-
localized perturbations

Michele Allegra Approaches to brain controllability SISSA June 2022
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linear controllability in a simpler animal model

Advantages of animal model:

(measurement) the connectome can be completely measured
(~2000 connections)

(modeling) Due to exhaustive knowledge, the model is faithful
(implementation) we can perform well localized perturbations
However:

However, controllability with SC was used only to identify neurons
that are necessary for muscle control

not used to induce specific movements via neuromodulation

Michele Allegra Approaches to brain controllability SISSA June 2022
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Issues with current controllability approach ¢
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Provided the linear model provides accurate description of dynamics, linear
controllability theory solves the problem of designing targeted interventions

(measurement) neuroimaging may not provide an accurate enough
representation of brain activity

(modeling) The linear model may not be accurate enough, and it is
nontrivial to retrieve it from data (one should go beyond structural
connectivity)

(design) due to the size of the system, controlling the whole system
requires very large amount of energy

(implementation) in practice, we have o easy means of performing well-
localized perturbations
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