
  

RECONSTRUCTING HIGH DIMENSIONAL 
PROBABILITY LANDSCAPES
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Reconstructing complex landscapes in phase space
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How to chart a probability density in such space ?

Phase spaces of complex physical systems 
are high-dimensional   

In D=2, one can easily produce a density map 

In large D, one can try to project data in dimension d=2  :                   

the “data loss” measured by preservation of distance relations:              

            when the space is high-dimensional, usually high loss!                                   
               

                  
                                          



  

Example: phase space landscape of folding protein

● consider a MD of unfolding/refolding villing headpiece

● for each of the N ~ 32000 configurations,  D=32 dihedral angles.
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We can try to project the data in 2D with several methods 

The resulting maps are quantitatively (and qualitatively) inaccurate



  

Charting complex data landscapes
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 ...to general data 

characterize structures in 
complex data spaces

 From molecular dynamics... 

characterize complex free energy landscapes



  

An intrusion into data analysis
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 From physics  to data analysis 

DPC PaK TWO-NN Hidalgo

 A toolkit of methods A chain of methodological developments



  

Density peak clustering
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DPC

A novel clustering approach



  

Density peak clustering

● Data can be thought of as samples of a density distribution

● Reconstruct the probability density of the data with proper density estimator

● K-nearest-neighbor: Assume ρ ≈ const in small region around each point 

● For each point i, consider its k nearest neighbors at
distances 

● density= k/volume of sphere containing the k points
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Density-based clustering
● Reconstruct the probability density of the data

● Then look for disconnected regions of high density

● What is high? Results depend on the chosen density threshold
● Cannot resolve features at different density scalesl
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Density Peak Clustering: the topography of data 

Characterize a density distribution by finding its maxima and saddle points 

Look for density peaks, i.e. local maxima in the density
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Original algorithm: density peaks are far from any point with higher density

Compute for all points min distance from point at higher density   

Peak are outliers in decision graph 

A Rodriguez, A Laio, Science 344, 1492 (2014)



  

Density-peak clustering
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Points are assigned to peaks by following a path of increasing density 
leading to one of the peaks.

One jumps from a point to a point with higher density



  

Density-peak clustering

                     

 

.

ri

Points are assigned to clusters by following a path of increasing density leading to one of 
the peaks.

This assignation rule allows to retrieve clusters of arbitrary shape

K-means DPC
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A Rodriguez, A Laio, Science 344, 1492 (2014)



  

Density-peak clustering
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After assigning points to peaks, find border points: their neighborhood
Contains points assigned to different clusters  

Saddle points are density maxima maxima on the borders between peaks

M d'Errico, E Facco, A Laio, A Rodriguez, arXiv:1802.10549 (2018)



  

Density-peak clustering
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Find hierarchical structure 

Peaks with high saddle point between them are “subpeaks” of larger peak
 
 Retrieve such hierarchical structure with single linkage algorithm:

●  rank saddle points by their density values  

● loop over saddle points and merge two peaks at each step 



  

Density-peak clustering
A compact representation of the probability density: density dendrogram
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Information about the size and density of the peaks, and their (hierarchical) relations



  

Density-peak clustering
A compact representation of the probability density: density dendrogram
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The problem of density Estimation

● Original DPC had two one key problem:  dependency on free parameter k

● Fixed k leads to inaccurate ρ and δρ , hence wrong assessment of the statistical 
significance of the clusters

  These problems can be solved by means of improved density estimation technique
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DPC

DPC PAk
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DPC

A novel parameter free density estimation approach

PAk

Density Estimation: PAk
A Rodriguez, M D’Errico, E. Facco and A Laio, JCTC  14 (3), 1206 (2017)



  

What is the right k? 

Bias – variance tradeoff: 

 k too small: large error in the estimate 

 k too large: density is not constant over V

 consider point i and neighboring point j 

● If the density at i  and j is different (M1): 

● If the density at i  and j is the same (M2):
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Pointwise Adaptive k-NN 

Compare M1 (same ρ) and M2 (different ρ,ρ’) for 
point i and its neighbors j 

 
start from first neighbor, then second ….

for each j , maximise 

perform likelihood ratio test to compare M1,M2

stop when D is large, i.e. M2 is significantly
more likely (p < 10-7)
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What is the right d?
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   The data actually lie on hypersurface of lower dimension than D 

the density should be evaluated on this hypersurface 

DPC Pak TWO-NN 

find good ID estimator!
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DPC

A novel intrinsic dimension estimator

Pak

Intrinsic dimension Estimation: TWO-NN

TWO-NN



  

● assumes that the data are sampled from a distribution with density   

● distances between points in the dataset follow a scaling law that depends 
● on           and d   

● If the dependence on           can be removed, then d can be estimated from
the scaling

● Example: correlation dimension

● The number of points at distance        from  point i  scales as

 

● If             is constant,  

● d can be estimated with simple linear fit 

● However, when            is variable the estimation fails dramatically 
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ID estimation: statistical approach 



  

ID estimation: TWO-NN
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● In principle, one should evaluate simultaneously both d and            !

● TWO-NN idea: decouple the estimation problem by finding suitable function
of the distances that depends only on d               

● Assumption:               is constant on the scale of the first two neighbors 

● Then if                 are distances from 1st and 2nd neighbor of point i, 

● their ratio                    follows a Pareto distribution: 

●  depends only on d, not on             ! 

● Collect the     for each point. Fit their emprical distribution and estimate d  

● The ID is inferred from the        collectively

E Facco, M D’Errico, A Rodriguez, A Laio, Scientific 
Reports 7, 12140. (2017)



  

ID estimation: TWO-NN
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● In principle, one should evaluate simultaneously both d and            !

● TWO-NN idea: decouple the estimation problem by finding suitable function
of the distances that depends only on d               

● Assumption:               is constant on the scale of the first two neighbors 

● Then if                 are distances from 1st and 2nd neighbor of point i, 

● their ratio                    follows a Pareto distribution: 

●  depends only on d, not on             ! 

● Collect the     for each point. Fit their emprical distribution and estimate d  

● The ID is inferred from the        collectively

E Facco, M D’Errico, A Rodriguez, A Laio, Scientific 
Reports 7, 12140. (2017)
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DPC

We reconstruct a probability density, its intrinsic dimension, 
and its peaks in a high-dimensional space.

Pak TWO-NN

Reconstruction of a probability landscapeReconstruction of a probability landscapeReconstruction of a probability landscape

The reconstruction of the density effectively takes place in a 
low-dimensional space, without the need of collective variables



  

The problem of multiple IDs
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If the fit is not good, it means the model fails

 

● 1) the density is strongly varying even on the scale of the first two neighbors 

● 2) the dimension is not uniform in the dataset

The data may lie on several manifolds                     ,    each with different ID 

How to deal with this heterogeneous ID case?
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DPC

A method to discrimimate regions of different ID in a data set

Pak

Heterogeneous ID: Hidalgo

TWO-NN Hidalgo



  

Hidalgo
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● H1) data sampled from manifolds of different ID
● H2) ρ is uniform on scale of the first neighbors

● Under H1), H2) one can still predict the expected distribution of the  

● Assume point sampled from                       with different probablities    

● mixture of Pareto distributions

● The likelihood of the data is 

● Then we can again estimate 

● K fixed by trying increasing values in [1,K
max

] and performing a model selection test

e.g. likelihood ratio test



  

Hidalgo
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● To estimate parameters, fix inferential approach

● A) frequentist:   
●

● B) Bayesian

●  Fix  

● Compute mean 

  
● Because of the sum over k, hard to work with  

● Introduce latent variables                          :   manifold membership of each point

● Likelihood is seen as marginal over

● Estimate jointly  
  

● Heterogeneous ID algorithm (hidalgo)



  

Hidalgo
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Problem: this approach does not work!

  Two manifolds of dimension 
  d

1
=4  and d

2
=5,..,9

  (Gaussian ρ)
  
  estimation of  d

1
 and d

2 
 is inaccurate

  estimation of Z is completely wrong
  

 Why?

Pareto distributions with different d
are highly overlapping

The Z assignation is based only on the μ 
of each point

Difficult to assing Z if μ value is not predictive
  



  

Hidalgo
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 We get non-uniform neighborhoods

 Neighboring points have different Z

 
  We must assume that the manifolds are separated, with at most
  a (small) intersection

  This implies that the neighborhoods must be approximately uniform

  We enforce this through additional term in the likelihood

  Let the neighborhood of point i be defined by its first q neighbors

        # neighbors with same Z as i                       # neighbors with diffferent Z

                 Parameter that controls degree of uniformity 



  

Hidalgo
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We enforce uniform neighborhoods through additional term in the 
likelihood
 

Now we get correct estimates of both d,p and Z
 



  

Hidalgo
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We achieve a global topological description of the data space

Divide space into regions of uniform intrinsic dimension

 

Using the information on the Z, the different d could be used for a more
Precise density computation

M Allegra, E Facco, A Laio and A Mira, in prep. (2018)



  

Hidalgo
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Villin example

The folded state is recognized from its higher ID

We can identify it only with topological information



  

Charting high dimensional data spaces
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DPC PAk TWO-NN Hidalgo

 A toolkit of methods

 A chain of methodological developments

 A lot of applications...

Brain ImagingMolecular dynamics Protein classification
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Thank you for your attention!!
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