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classification and intrinsic dimension 
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● Classification

● hard in high dimension (many variables):                                                             
computational problems, sampling issues...

● # of independent directions of variation can be lower: 
intrinsic dimension (ID)

● Accounting for ID can improve classification schemes
                                         



  

Our journey: from classification to intrinsic dimension and back
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● We started with a classification problem (clustering algorithm)

● This required accurate ID estimation

● We developed a method to estimate the ID

● We realized than often the ID is not constant within a dataset

● This in turn allows for rough, topologically-based data classification

                                          



  

Density-based clustering
● Reconstruct the probability density of the data

● Then look for disconnected regions of high density

● What is high? Results depend on the chosen density threshold
● Cannot resolve features at different density scalesl
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Density Peak Clustering

Cluster around density peaks, i.e. local maxima in the density
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Original algorithm: density peaks are far from any point with higher density

Compute for all points min distance from point at higher density   

Peak are outliers in decision graph 

A Rodriguez, A Laio, Science 344, 1492 (2014)
M d'Errico, E Facco, A Laio, A Rodriguez, arXiv:1802.10549 (2018)



  

Density-peak clustering
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Points are assigned to peaks by following a path of increasing density 
leading to one of the peaks.

One jumps from a point to a point with higher density



  

Density-peak clustering

                     

 

.

 Michele Allegra        ISI 2017                                            Short-term coherent pattern detection in fMRI

ri

Points are assigned to clusters by following a path of increasing density leading to one of 
the peaks.

This assignation rule allows to retrieve clusters of arbitrary shape

K-means DPC

A Rodriguez, A Laio, Science 344, 1492 (2014)
M d'Errico, E Facco, A Laio, A Rodriguez, arXiv:1802.10549 (2018)



  

Density estimation

● Data can be thought of as samples of a density distribution

● Reconstruct the probability density of the data with proper density estimator

● K-nearest-neighbor: Assume ρ ≈ const in small region around each point 

● For each point i, consider its k nearest neighbors at
distances 

● density= k/volume of sphere containing the k points
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Density Estimation: PAk

● K-nearest-neighbor: Assume ρ ≈ const in small region around each point 

● For each point i, consider its k nearest neighbors at
distances 

● density= k/volume of sphere containing the k points

● Two problems:

● 1) what is right k?

● 2) what is right d?
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A Rodriguez, M D’Errico, E Facco, A Laio, JCTC 
(2018)



  

Density Estimation: PAk

what is right k? 
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 k  too small: large error in the estimate 

 k  too large: density is not constant over V

Solution: 

● Adapt k to each point so that the constant density 
assumption always holds 

● Pointwise Adaptive k-NN (PAk) estimator 



  

Intrinsic dimension

Problem 2):  what is right d?
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   The data actually lie on hypersurface of lower dimension than D 

The density should be evaluated on this hypersurface 



  

Intrinsic dimension
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3xN3xN

Example: molecular dynamics



  

Intrinsic dimension
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20x20
64x64

Example: images



  

ID estimation: projective approach 

Project D-dimensional data into lower dimension d : 

● Try different d and evaluate for each a “loss function”              

●             measures the “data loss” occurring in the projection. Examples:

                                          preservation of original distance relations
                  
                                          preservation of original covariance matrix

● tradeoff between dimension reduction and data loss

● Problem (1): Computationally burdensome (search for optimal projection for each d)

● Problem (2): robust ID estimates only if                has large gap as a function of d

if no gap, the estimation can be rather arbitrary  
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ID estimation: projective approach 

● Example: Principal Component Analysis (PCA)

● Prjoects data onto linear subspace spanned by first d eigenvalues of
 
covariance matrix.              Loss: 

● on the villin headpiece simulation:

● How can one select an appropriate d?
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● assumes that the data are sampled from a distribution with density   

● distances between points in the dataset follow a scaling law that depends 
● on           and d   

● If the dependence on           can be removed, then d can be estimated from
the scaling

● Example: correlation dimension

● The number of points at distance        from  point i  scales as

 

● If             is constant,  

● d can be estimated with simple linear fit 

● However, when            is variable the estimation fails dramatically 
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ID estimation: statistical approach 



  

ID estimation: TWO-NN
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● In principle, one should evaluate simultaneously both d and            !

● TWO-NN idea: decouple the estimation problem by finding suitable function
of the distances that depends only on d               

● Assumption:               is constant on the scale of the first two neighbors 

● Then if                 are distances from 1st and 2nd neighbor of point i, 

● their ratio                    follows a Pareto distribution: 

●  depends only on d, not on             ! 

● Collect the     for each point. Fit their emprical distribution and estimate d  

● The ID is inferred from the        collectively

E Facco, M D’Errico, A Rodriguez, A Laio, Scientific 
Reports 7, 12140. (2017)



  

ID estimation: TWO-NN
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E Facco, M D’Errico, A Rodriguez, A Laio, Scientific 
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ID estimation: TWO-NN
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There are several ways of fitting: 

● One can fit the empirical cumulative distribution of        with  

● Equivalently, linear fit on

● If the model is satisfied, then the distribution of the      is well fitted (check         )



  

The problem of multiple IDs
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If the fit is not good, it means the model fails

 

● 1) the density is strongly varying even on the scale of the first two neighbors 

● 2) the dimension is not uniform in the dataset

The data may lie on several manifolds                     ,    each with different ID 

How to deal with this heterogeneous ID case?



  

Heterogeneous ID
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he data may lie on several manifolds,    each with different ID 

 
 



  

Hidalgo
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● H1) data sampled from manifolds of different ID
● H2) ρ is uniform on scale of the first neighbors

● Under H1), H2) one can still predict the expected distribution of the  

● Assume point sampled from                       with different probablities    

● mixture of Pareto distributions

● The likelihood of the data is 

● Then we can again estimate 

● K is not estimated as a parameter

● Fix K by trying increasing values in [1,K
max

] and performing a model selection test



  

Hidalgo
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● To estimate parameters, fix inferential approach

● A) frequentist:   
●

● B) Bayesian

●  Fix  

● Compute mean 

  
● Because of the sum over k, hard to work with  

● Introduce latent variables                          :   manifold membership of each point

● Likelihood is seen as marginal over

● Estimate jointly  
  

● Heterogeneous ID algorithm (hidalgo)



  

Hidalgo

Michele Allegra                      Data classification based on the intrinsic dimension                   USI April 2018

Problem: this approach does not work!

  Two manifolds of dimension 
  d

1
=4  and d

2
=5,..,9

  (Gaussian ρ)
  
  estimation of  d

1
 and d

2 
 is inaccurate

  estimation of Z is completely wrong
  

 Why?

Pareto distributions with different d
are highly overlapping

The Z assignation is based only on the μ 
of each point

Difficult to assing Z if μ value is not predictive
  



  

Hidalgo
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 We get non-uniform neighborhoods

 Neighboring points have different Z

 
  We must assume that the manifolds are separated, with at most
  a (small) intersection

  This implies that the neighborhoods must be approximately uniform

  We enforce this through additional term in the likelihood

  Let the neighborhood of point i be defined by its first q neighbors

        # neighbors with same Z as i                       # neighbors with diffferent Z

                 Parameter that controls degree of uniformity 



  

Hidalgo
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We enforce uniform neighborhoods through additional term in the 
likelihood
 

Now we get correct estimates of both d,p and Z
 



  

Hidalgo
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We achieve a global topological description of the data space

Divide space into regions of uniform intrinsic dimension

 
 

M Allegra, E Facco, A Laio and A Mira, in prep. (2018)



  

Hidalgo
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Example: molecular dynamics

● consider a MD of unfolding/refolding villing headpiece

● for each of the N ~ 32000 configurations,  D=32 dihedral angles.

   d=12              d=13            d=13             d=23  

The folded state is recognized from its higher ID!

   Q=0.53         Q=0.58          Q=0.64          Q=0.89      Fraction of native contacts

We find four manifolds

Example: molecular dynamicsExample: molecular dynamics



  

Hidalgo
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Example: fMRI time series

● consider ~30000 time series corresponding to BOLD signal of 
each voxel in an fMRI experiment 

● for each of the N ~ 30000 time sieries,  D=202  values

The low-dimensional manifold nostly includes “noise” voxels

We find two manifolds: d=16, d=32

Task-relevant voxels are in the manifold with higher ID

Red: high-ID voxels

Blue: “task-relevant” voxels

Green: intersection



  

Hidalgo
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Example: firms from Compustat

● consider ~8000 firms in the Compustat Database 

● for each of the firms,  D=31 balance sheet variables

We find four manifolds: d=5, d=6, d=7, d=9

We compute S&P ratings for the different manifolds

Lower dimension tends to have 
lower ratings!



  

Data classification based on the intrinsic dimension
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● The problem of clustering led us to the problem of density estimation;
the problem of density estimation led us to the problem of ID estimation

● We developed a reliable ID estimator, TWO-NN, that limits the issue of density 
variations

● We realized that often the ID is not constant in the dataset:                                 
 we extended the statistical framework of TWO-NN to comply with this case

● We developed Hidalgo, a method that finds groups of points (manifolds) of
different ID in the manifold 

● Applications of Hidalgo to real datasets reveal that the topological information  
given by the ID discriminates points differing in important features
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Thank you for your attention!!
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