DATA CLASSIFICATION BASED ON THE LOCAL INTRINSIC DIMENSION

Michele Allegra

Data classification based on the intrinsic dimension

classification and intrinsic dimension

Classification

• hard in high dimension (many variables): computational problems, sampling issues...

- # of independent directions of variation can be lower: intrinsic dimension (ID)
- Accounting for ID can improve classification schemes

Our journey: from classification to intrinsic dimension and back

- We started with a classification problem (clustering algorithm)
- This required accurate ID estimation
- We developed a method to estimate the ID
- We realized than often the ID is not constant within a dataset
- This in turn allows for rough, topologically-based data classification

Density-based clustering

• Reconstruct the probability density of the data

- What is high? Results depend on the chosen density threshold
- Cannot resolve features at different density scales

*8quir virtute

Density Peak Clustering

A Rodriguez, A Laio, Science 344, 1492 (2014) M d'Errico, E Facco, A Laio, A Rodriguez, arXiv:1802.10549 (2018)

Cluster around density peaks, i.e. local maxima in the density

Original algorithm: density peaks are far from any point with higher density

Compute for all points min distance from point at higher density $\delta_i = \min_{j:\rho_j > \rho_i} d_{ij}$ Peak are outliers in decision graph ρ_i vs δ_i :

Michele Allegra

Density-peak clustering

Points are assigned to peaks by following a path of increasing density leading to one of the peaks.

One jumps from a point to a point with higher density

Density-peak clustering A Rodriguez, A Laio, Science 344, 1492 (2014) M d'Errico, E Facco, A Laio, A Rodriguez, arXiv:1802.10549 (2018)

Points are assigned to clusters by following a path of increasing density leading to one of the peaks.

This assignation rule allows to retrieve clusters of arbitrary shape

K-means

0.5

Short-term coherent pattern detection in fMRI

Density estimation

- Data can be thought of as samples of a density distribution •
- Reconstruct the probability density of the data with proper *density estimator* •
- K-nearest-neighbor: Assume $\rho \approx \text{const}$ in small region around each point •
- For each point *i*, consider its *k* nearest neighbors at • distances $r_{i1}, r_{i2}, r_{i3}, \ldots$
- density= *k*/volume of sphere containing the *k* points •

VI.

$$\rho = \frac{k}{V_{ik}} \qquad \delta\rho = \frac{\sqrt{k}}{V_{ik}} \qquad V_{ik} = \omega_d r_{ik}^d$$

$$V_{ik} = \omega_d r_{ik}^d$$

$$V_{ik} = \omega_d r_{ik}^d$$

$$V_{ik} = \omega_d r_{ik}^d$$

Data classification based on the intrinsic dimension

Density Estimation: PAk

A Rodriguez, M D'Errico, E Facco, A Laio, JCTC (2018)

- K-nearest-neighbor: Assume $\rho \approx \text{const}$ in small region around each point
- For each point *i*, consider its *k* nearest neighbors at distances $r_{i1}, r_{i2}, r_{i3}, \ldots$
- density= *k*/volume of sphere containing the *k* points

$$\rho = \frac{k}{V_{ik}} \qquad \delta \rho = \frac{\sqrt{k}}{V_{ik}} \qquad \qquad V_{ik} = \omega_d r_{ik}^d$$

- Two problems:
- 1) what is right *k*?
- 2) what is right *d*?

Density Estimation: PAk

what is right *k*?

k too small: large error in the estimate

k too large: density is not constant over V

Solution:

- Adapt *k to* each point so that the constant density assumption always holds
- Pointwise Adaptive k-NN (PAk) estimator

Intrinsic dimension

Problem 2): what is right *d*?

The data actually lie on hypersurface of lower dimension than D

The density should be evaluated on this hypersurface

Intrinsic dimension

Example: molecular dynamics

Michele Allegra

Data classification based on the intrinsic dimension

Intrinsic dimension

Example: images

20x20

 $\mathbb R$

ID estimation: projective approach

Project *D*-dimensional data into lower dimension d: Π^d : $\mathbf{x}_i \in \mathbb{R}^D \mapsto \mathbf{y}_i \in \mathbb{R}^d$

- Try different *d* and evaluate for each a "loss function" $\mathcal{L}(\Pi^d)$
- $\mathcal{L}(\Pi^d)$ measures the "data loss" occurring in the projection. Examples:

 $\mathcal{L}(\Pi^d) = \sum_i ||\mathbf{x}_i - \mathbf{y}_i||^2 \quad \text{preservation of original distance relations}$ $\mathcal{L}(\Pi^d) = \sum_i \mathbf{x}_i \mathbf{x}_i^T - \mathbf{y}_i \mathbf{y}_i^T \quad \text{preservation of original covariance matrix}$

- tradeoff between dimension reduction and data loss
- Problem (1): Computationally burdensome (search for optimal projection for each d)
- Problem (2): robust ID estimates only if $\mathcal{L}(\Pi^d)$ has large gap as a function of d if no gap, the estimation can be rather arbitrary

ID estimation: projective approach

- Example: Principal Component Analysis (PCA)
- Prjoects data onto linear subspace spanned by first *d* eigenvalues of covariance matrix. $X^T X$ Loss: $\mathcal{L}(\Pi^d) = ||\sum \mathbf{x}_i \mathbf{x}_i^T - \mathbf{y}_i \mathbf{y}_i^T||$
- on the villin headpiece simulation:

How can one select an appropriate d

Data classification based on the intrinsic dimension

ID estimation: statistical approach

- assumes that the data are sampled from a distribution with density $\rho(\mathbf{X})$
- distances between points in the dataset follow a scaling law that depends
- on $\rho(\mathbf{X})$ and d
- If the dependence on $\rho({\bf X})$ can be removed, then d can be estimated from the scaling
- Example: correlation dimension
 - The number of points at distance $< \epsilon$ from point *i* scales as $N_i(\epsilon) = \sum_j \theta(d_{ij} < \epsilon) \approx \epsilon^d / \rho(\mathbf{X}_i)$
 - If $\rho(\mathbf{X})$ is constant, $N(\epsilon) = \sum_{ij} \theta(d_{ij} < \epsilon) \sim \epsilon^d / \rho$
 - *d* can be estimated with simple linear fit
- However, when $ho(\mathbf{X})$ is variable the estimation fails dramatically

Michele Allegra

Data classification based on the intrinsic dimension

ID estimation: TWO-NN

E Facco, M D'Errico, A Rodriguez, A Laio, Scientific Reports 7, 12140. (2017)

- In principle, one should evaluate simultaneously both d and $ho(\mathbf{X})$!
- TWO-NN idea: decouple the estimation problem by finding suitable function of the distances that depends only on d
- Assumption: $\rho(\mathbf{X})$ is constant on the scale of the first two neighbors
- Then if d_{i1}, d_{i2} are distances from 1st and 2nd neighbor of point i,
- their ratio $\mu_i = \frac{d_{i2}}{d_{i1}}$ follows a Pareto distribution: $f(\mu_i) = d\mu_i^{-(d+1)}$
- depends only on *d*, not on $\rho(\mathbf{X})$!
- Collect the μ for each point. Fit their emprical distribution and estimate d
- The ID is inferred from the μ collectively

ID estimation: TWO-NN

E Facco, M D'Errico, A Rodriguez, A Laio, Scientific Reports 7, 12140. (2017)

- In principle, one should evaluate simultaneously both d and $ho(\mathbf{X})$!
- TWO-NN idea: decouple the estimation problem by finding suitable function of the distances that depends only on d
- Assumption: $\rho(\mathbf{X})$ is constant on the scale of the first two neighbors
- Then if d_{i1}, d_{i2} are distances from 1st and 2nd neighbor of point i,
- their ratio $\mu_i = \frac{d_{i2}}{d_{i1}}$ follows a Pareto distribution: $f(\mu_i) = d\mu_i^{-(d+1)}$
- depends only on *d*, not on $\rho(\mathbf{X})$!
- Collect the μ for each point. Fit their emprical distribution and estimate d
- The ID is inferred from the μ collectively

ID estimation: TWO-NN

There are several ways of fitting:

- One can fit the empirical cumulative distribution of μ with $F(\mu) = 1 \mu^{-d}$
- Equivalently, linear fit on $\log(1 F(\mu)) = -d\log\mu$

• If the model is satisfied, then the distribution of the μ_{-} is well fitted (check χ^{2})

Michele Allegra

Data classification based on the intrinsic dimension

The problem of multiple IDs

If the fit is not good, it means the model fails

- 1) the density is strongly varying even on the scale of the first two neighbors
- 2) the dimension is not uniform in the dataset

The data may lie on several manifolds M_1, \ldots, M_K , each with different ID How to deal with this heterogeneous ID case?

Heterogeneous ID

he data may lie on several manifolds, each with different ID

USI April 2018

- H1) data sampled from manifolds of different ID
- H2) ρ is uniform on scale of the first neighbors
- Under H1), H2) one can still predict the expected distribution of the $~\mu$
- Assume point sampled from M_1, \ldots, M_K with different probabilities $\mathbf{p} = p_1 \ldots p_K$
- mixture of Pareto distributions $P(\mu_i) = \sum_{k=1}^{K} p_k d_k \mu_i^{-d_k-1}$
- The likelihood of the data is $\mathcal{L}(\mu)$

$$\mathcal{L}(\boldsymbol{\mu}|\mathbf{d},\mathbf{p}) = \prod_{i=1}^{N} \sum_{k=1}^{K} p_k d_k \mu_i^{-d_k-1}$$

- Then we can again estimate $\mathbf{d} = d_1 \dots d_K$, $\mathbf{p} = p_1 \dots p_K$
- K is not estimated as a parameter
- Fix K by trying increasing values in $[1, K_{max}]$ and performing a model selection test

- To estimate parameters, fix inferential approach
- A) frequentist: $\mathbf{d}^e, \mathbf{p}^e = argmax(\mathcal{L}(\boldsymbol{\mu}|\mathbf{d},\mathbf{p}))$
- •
- B) Bayesian
 - Fix $P_{prior}(\mathbf{d}, \mathbf{p})$
 - Compute mean $\mathbf{d}^{e}, \mathbf{p}^{e} = \langle \mathbf{d}, \mathbf{p} \rangle_{post}$ $P_{post}(\mathbf{d}, \mathbf{p})$

$$P_{post}(\mathbf{d},\mathbf{p}) \propto \mathcal{L}(\boldsymbol{\mu}|\mathbf{d},\mathbf{p})P_{prior}(\mathbf{d},\mathbf{p})$$

• Because of the sum over k, hard to work with

$$\mathcal{L}(\boldsymbol{\mu}|\mathbf{d},\mathbf{p}) = \prod_{i=1}^{N} \sum_{k=1}^{K} p_k d_k \mu_i^{-d_k-1}$$

- Introduce latent variables $\mathbf{Z} = Z_1, \dots, Z_N$: manifold membership of each point
- Likelihood is seen as marginal over $\mathcal{L}(\boldsymbol{\mu}|\mathbf{d},\mathbf{p},\mathbf{Z}) = \prod_{i=1}^{N} p_{Z_i} d_{Z_i} \mu_i^{-d_{Z_i}-1}$
- Estimate jointly $\mathbf{d}, \mathbf{p}, \mathbf{Z}$
- Heterogeneous ID algorithm (hidalgo)

Michele Allegra

Data classification based on the intrinsic dimension

Problem: this approach does not work!

Two manifolds of dimension $d_1=4$ and $d_2=5,...,9$ (Gaussian ρ)

estimation of d_1 and d_2 is inaccurate

estimation of Z is completely wrong

Why?

Pareto distributions with different *d* are highly overlapping

The Z assignation is based only on the $\boldsymbol{\mu}$ of each point

Difficult to assing Z if $\boldsymbol{\mu}$ value is not predictive

Michele Allegra

Data classification based on the intrinsic dimension

We get non-uniform neighborhoods

Neighboring points have different Z

We must assume that the manifolds are separated, with at most a (small) intersection

This implies that the neighborhoods must be approximately uniform

We enforce this through additional term in the likelihood

Let the neighborhood of point *i* be defined by its first *q* neighbors

 n_i^{in} # neighbors with same Z as i n_i^{out} # neighbors with different Z

$$\mathcal{L}(n_i^{in} | \mathbf{Z}) = \frac{\zeta^{n_i^{in}} (1 - \zeta)^{n_i^{out}}}{\mathcal{Z}}$$

 $\zeta > \frac{1}{2}$ Parameter that controls degree of uniformity

Michele Allegra

Data classification based on the intrinsic dimension

We enforce uniform neighborhoods through **additional term in the likelihood**

$$\mathcal{L}(n^{in}|\mathbf{Z}) = \prod_{i} \frac{\zeta^{n_i^{in}} (1-\zeta)^{n_i^{out}}}{\mathcal{Z}}$$

Now we get correct estimates of both *d*,*p* and *Z*

Hidalgo M Allegra, E Facco, A Laio and A Mira, in prep. (2018)

We achieve a global topological description of the data space

Divide space into regions of uniform intrinsic dimension

Example: molecular dynamics

• for each of the N ~ 32000 configurations, D=32 dihedral angles.

We find four manifolds

The folded state is recognized from its higher ID!

Michele Allegra

Data classification based on the intrinsic dimension

Example: fMRI time series

- consider ~30000 time series corresponding to BOLD signal of each voxel in an fMRI experiment
- for each of the N ~ 30000 time sieries, D=202 values

We find two manifolds: d=16, d=32

Red: high-ID voxels Blue: "task-relevant" voxels Green: intersection

Task-relevant voxels are in the manifold with higher ID

The low-dimensional manifold nostly includes "noise" voxels

Michele Allegra

Data classification based on the intrinsic dimension

Example: firms from Compustat

- consider ~8000 firms in the Compustat Database
- for each of the firms, D=31 balance sheet variables

We find four manifolds: d=5, d=6, d=7, d=9

We compute S&P ratings for the different manifolds

Lower dimension tends to have lower ratings!

- The problem of clustering led us to the problem of density estimation; the problem of density estimation led us to the problem of ID estimation
- We developed a reliable ID estimator, TWO-NN, that limits the issue of density variations
- We realized that often the ID is not constant in the dataset: we extended the statistical framework of TWO-NN to comply with this case
- We developed Hidalgo, a method that finds groups of points (manifolds) of different ID in the manifold
- Applications of Hidalgo to real datasets reveal that the topological information given by the ID discriminates points differing in important features

Acknowledgments

Alessandro Laio

Alex Rodriguez

Elena Facco

Antonietta Mira

Data classification based on the intrinsic dimension

Thank you for your attention!!