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Outline

● Motivation: a rigorous basis for a clustering method

● A local model of nearest-neighbor distances under the 
assumption of locally constant density

● Density estimation

● Intrinsic dimension estimation

● An extension of the model for heterogeneous intrinsic 
dimension
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Density peak clustering

Find modes (peaks) of a density distribution

Reconstruct density around each point with ε-ball counting: 
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A Rodriguez, A Laio, Science 344, 1492 (2014)



  

Density Peak Clustering 
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 ρ maxima are far from points with lower ρ

Compute minimum distance from point at higher ρ

Peak are outliers in decision graph ρ
i
 vs δ

i
          

   



  

Validating DPC

“Significance” of the peaks?

 Peaks or density fluctuations?
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Validating DPC

● Find peaks and saddle points

● Compute error Δρ 

●  Significance: 
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A local model for the data

No global model for the data 

Only two broad assumptions:

H1)  the data points x
i 
are independent samples from a density ρ(x).

H2) local uniformity: for all x
i
, there exists  (small) k such that ρ(x) ~ const. in the 

region containing the first k neighbors of x
i 
 

                   local model for the distribution of neighbor distances around each point

 # points within a small region around each point follows Poisson process                     
       with parametric dependence on ρ 
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Estimating the density

k nearest neighbors of i at distances

hyperspherical shells S
j   

enclosed between neighbors  

            volumes 

distribution of shell volumes V
j  
follows from Poisson process

● Considering all volumes 

● Local model of NN distances depending on ρ  
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By max likelihood estimate ρ and error Δρ 

Two problems:

● 1) what is right k? 

● 2) what is right d?

What is right k?                      increase k until local model fails

What is right d?                   Intrinsic dimension

● The data lie on d-dimensional hypersurface  

● ρ should be evaluated on this hypersurface

Estimating the density

[Rodriguez et al., JCTC  2017]



  

ID estimation: TWO-NN
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local model for k=2

   distribution of ν is independent of ρ  

                               

under local model,  distribution of μ depends only on d

ID can be inferred from the μ of all points collectively 

   This is independent of the estimates of ρ  
   (assuming ρ is constant over scale of first 2 neighbors)

E Facco, M D’Errico, A Rodriguez, A Laio, Scientific Reports 7,  12140  (2017)



  

ID estimation: heterogeneous case
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Mixture model  

Under H1), H2) one can still predict the expected distribution of the μ  

mixture of Pareto distributions

The likelihood of the data is 

Then we can again estimate 

ID may not be uniform in the dataset!

H3)  ρ(x) has support on the union of a finite number K of  manifolds 

        with different intrinsic dimensions 

M Allegra, E Facco, A Laio and A Mira, in prep. (2018)
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ID estimation: heterogeneous case
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● Introduce latent variables  (manifold membership of each point) 

● Likelihood with latent variables

● Estimate jointly  

● K fixed by trying increasing values in [1,K
max

] and performing a model selection test       

e.g. likelihood ratio test

Problem:  

● Pareto distributions with different d are highly overlapping

● estimation of manifold membership fails

● diagnostic: neighboring points have different Z



  

Hidalgo
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● H4)  the first q neighbors of a point mostly belong to the same manifold 

   Probabilistic requirement on the Z of neighboring points
  
   Ζ: be probability that a neighbour of i belong to same manifold as i  

            # neighbors with same Z as i      
 
            # neighbors with diffferent Z

  additional term in the likelihood

  
                         

                   Controls the degree of uniformity     



  

Two types of data analysis
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Confirmatory analyis

 Exploratory analyis

● Starts from assumed model for the data, given a 
priori

● Uses statistics to verify whether the data fit the 
assumed model

● Can be rigid: fail to exploit richness of the data

● Procedures (algorithms) to find structure in 
the data

● Often, no formal evaluation of the results

● Danger of falling into magical thinking
(seeing structures that are not there)



  

A possible compromise
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● We started with E.D.A. method (density peak 
clustering) with no statistical validation of results

● for statistical validation, some assumption on the 
data was needed

● we introduced minimal assumptions on the data, 
allowing to maintain high flexibility

● as a result, we developed complex procedure to 
reconstruct probability density, its intrinsic 
dimension and peaks in high dimensional space
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Hidalgo

Example: molecular dynamics

● consider a MD of unfolding/refolding villing headpiece

● for each of the N ~ 32000 configurations,  D=32 dihedral angles.

   d=12              d=13            d=13             d=23  

The folded state is recognized from its higher ID!

   Q=0.53         Q=0.58          Q=0.64          Q=0.89      Fraction of native contacts

We find four manifolds

Example: molecular dynamicsExample: molecular dynamics
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